The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D — Sensors, Algorithms, Applications, 2—3 December 2019, Strasbourg, France

IMPLEMENTING FUNCTIONAL MODULARITY FOR PROCESSING OF GENERAL
PHOTOGRAMMETRIC DATA WITH THE DAMPED BUNDLE ADJUSTMENT
TOOLBOX (DBAT)

N. Borlin" 7 A. Murtiyosoz, P. Grussenmeyer2

! Department of Computing Science, Umea University, Sweden — niclas.borlin@cs.umu.se
2 Photogrammetry and Geomatics Group, ICube Laboratory UMR 7357, INSA Strasbourg, France —
(arnadi.murtiyoso, pierre.grussenmeyer) @insa-strasbourg.fr

Commission IT

KEY WORDS: Open-source software, bundle adjustment, flexible computations, photogrammetry

ABSTRACT:

The Damped Bundle Adjustment Toolbox (DBAT) is a free, open-source, toolbox for bundle adjustment. The purpose of DBAT is
to provide an independent, open-source toolkit for statistically rigorous bundle adjustment computations. The capabilities include
bundle adjustment, network analysis, point filtering, forward intersection, spatial intersection, plotting functions, and computations
of quality indicators such as posterior covariance estimates and parameter correlations. DBAT is written in the high-level Matlab
language and includes several processing example files. The input formats have so far been restricted to PhotoModeler export files
and Photoscan (Metashape) native files. Fine-tuning of the processing has so far required knowledge of the Matlab language.

This paper describes the development of a scripting language based on the XML (eXtensible Markup Language) language that allow
the user a fine-grained control over what operations are applied to the input data, while keeping the needed programming skills at a
minimum. Furthermore, the scripting language allows a wide range of input formats. Additionally, the XML format allows simple
extension of the script file format both in terms of adding new operations, file formats, or adding parameters to existing operations.
Overall, the script files will in principle allow DBAT to process any kind of photogrammetric input and should extend the usability

of DBAT as a scientific and teaching tool for photogrammetric computations.

1. INTRODUCTION

1.1 Background

Bundle adjustment is a crucial part of photogrammetry and com-
puter vision. Several commercial photogrammetric software in-
clude a dedicated module for the computation of bundle adjust-
ment, e.g., Trimble Inpho and ERDAS (Lumban-Gaol et al.,
2018). In other software, the bundle adjustment might be hid-
den in a more black-box manner. Open source solutions to the
bundle adjustment problem also exist in the form of toolboxes
and/or dedicated functions. Examples include the Apero mod-
ule from the Apero-MicMac photogrammetric suite (Rupnik et
al., 2017) or the DGAP developed by the University of Stuttgart
(Cramer, 2006). From the computer vision domain, other open
source options also exist, for example Sparse Bundle Adjust-
ment (SBA) (Lourakis, Argyros, 2009), multi-core bundle ad-
justment (MCBA) (Wu et al., 2011), or the Bundler software
(Snavely et al., 2008). Most of these solutions are written in a
low-level language such as C or C++.

The Damped Bundle Adjustment Toolbox in Matlab (DBAT)
is written in the high-level Matlab language (Borlin, Grussen-
meyer, 2013a). One goal is to provide open-source, easy-to-use
implementations of core photogrammetric computation, includ-
ing computation of posterior statistical quality estimates.

Several demo examples and data sets are included in DBAT.
However, unless only minor modifications of the examples are
needed to suit the user needs, programming skills have been

*Corresponding author

required to use DBAT on the user’s own data. Furthermore,
the user has so far been restricted to either Photomodeler or
Metashape (Photoscan) formats as input.

1.2 Aim

The aim of this paper is to present a modular, script-based, pro-
cessing of photogrammetric data. The goal is to reduce the level
of needed programming skills and allow for a wider range of in-
put data sources.

2. THE DAMPED BUNDLE ADJUSTMENT TOOLBOX
(DBAT)

2.1 Background

As the name suggests, the Damped Bundled Adjustment Tool-
box started out as a toolbox to study different damping strate-
gies known in non-linear optimisation (Borlin, Grussenmeyer,
2013a, Borlin, Grussenmeyer, 2013b). The source code has
been available on GitHub since February 2014 L.

An early application was camera calibration (Borlin, Grussen-
meyer, 2014). Later, the focus shifted into validating other,
closed-source, Photogrammetric software, such as Photomod-
eler and Metashape (then Photoscan) (Borlin, Grussenmeyer,
2016, Murtiyoso et al., 2017, Murtiyoso et al., 2018).

A recent development was to modularise the bundle projection
model to allow users to develop novel projection models for,
e.g., non-standard lenses or underwater applications (Borlin et
al., 2018, Menna et al., 2018, Borlin et al., 2019).

Thttps://github.com/niclasborlin/dbat

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-69-2019 | © Authors 2019. CC BY 4.0 License. 69

https://github.com/niclasborlin/dbat

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D — Sensors, Algorithms, Applications, 2—3 December 2019, Strasbourg, France

Figure 1: An input image with measured coordinates.

2.2 Current capabilities

The current DBAT release 2 includes the following capabilities:

2.2.1 Bundle adjustment The bundle adjustment proper,
with or without self-calibration. Fixed and weighted prior ob-
servations are supported, e.g., control points and camera sta-
tions, as are check points. The parameters to be estimated by
the bundle are selectable at the parameter level, e.g., for indi-
vidual camera parameters. Furthermore, the parameters can be
block-invariant (the same for a whole block), image-variant (in-
dividual for each image), or anything in between.

Multiple damping schemes may be used to avoid divergence
due to poor initial values (Gauss-Newton-Armijo (default),
classical Gauss-Markov, Levenberg-Marquardt, or Levenberg-
Marquardt-Powell) (Borlin, Grussenmeyer, 2013a).

Posterior covariance estimates are computed from the bundle
result, including correlations and significance levels, point and
image quality statistics.

2.2.2 Photogrammetric processing Besides bundle adjust-
ment, DBAT supports several other core photogrammetric com-
putations, e.g., spatial resection, forward intersection, and ab-
solute orientation.

2.2.3 Software compatibility DBAT can input data from
Photomodeler-style text export files and point tables. Further-
more, DBAT can read and post-process native Metashape (Pho-
toscan) .psz files.

2.2.4 Network analysis and quality DBAT includes func-
tions to filter points and analyse camera networks to detect net-
work problems. The filter allows removal of points with low
point count and/or intersection angles. The analysis functions
can detect both structural rank problems, e.g., caused by miss-
ing observations or gaps in the network, and numerical prob-
lems, e.g., caused by weak networks.

2.2.5 Output and report generating DBAT can present the
results graphically in 2D and 3D and in text files. The available
2D plots present the raw data (Figure 1) or image and point
quality statistics, such as image coverage, ray count, ray inter-
section angles, posterior standard deviations, etc., (figures 2—
3). Other 2D plots illustrate the evolution of the bundle process
(Figure 4). The 3D plots either show the final camera network
or the evolution of the camera network and OP parameters dur-
ing the bundle process (Figure 5).

The text output is mainly a PhotoModeler-style text summary
report file that contain the processing input and setup, any de-
tected problems, the estimated values and posterior covariances.
Any detected high correlations among the estimated parameters
are also listed.

2DBAT v0.8.5.1, released January 13, 2019.

Image coverage (percent)

100
[Rectangular
50 [Convex

0 Point count

100 ‘
0

0 RMS point (-- = global RMS)

Camera ray angles
02— — — = =

0.1

50

g Spatial standard deviations (camera station)

standard deviati (camera station)

Degrees Project units
o~ map

kappa

5 10 15 20 NN ol

Image number

Figure 2: Image and external orientation statistics.

Point count

angles

OP standard deviations

X107

21 I X
] -
2 z
3 I Tota!
3
a0

o o —t

oM =S

Figure 3: Object point statistics.

Focal length, principal point (gna)
xR
k- * « « “ x «

)

IS
i
|
X
F X
X
*

Tangenti:il distortion

100 //Y AY _— SN
o/x\\ \\”‘*’7 e
N

—%—10°P1
— % —10°%pP2

-100

-200 /

Affine distortion

—%—104af
50 — % —sk

Iteration count

Figure 4: Parameter evolution during the bundle iterations.

Figure 5:
points.

Damping: gna. lteration 9 of 9

-0.5

-0.5

Evolution of the 3D camera network and object

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-69-2019 | © Authors 2019. CC BY 4.0 License.

70

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D — Sensors, Algorithms, Applications, 2—3 December 2019, Strasbourg, France

<meta>
<name>Camcaldemo</name>
<date>2019-10-28</date>
<author>Niclas Borlin</author>
<project>DBAT</project>
<purpose>
Demonstrate camera calibration using the scripting
feature of DBAT. See also camcaldemo.m in the demo folder.
</purpose>
<project_unit>m</project_unit>
<version>1.1</version>
<software>
Software used to generate the data files, e.g., the
image measurements.
</software>
<control_points>
Information about how the control points were measured.
</control_points>
</meta>

Listing 1: The metadata section is intended for project informa-
tion but is extendable to contain any structured information.

3. SCRIPT-BASED PROCESSING

Script-based processing uses a single DBAT function
rundbatscript to load and execute a script. The script
is written in the XML language (extensible markup language).
Advantages of the XML file format include that they are
human-readable, structured, and can easily be extended. Fur-
thermore, since they follow the XML standard, other software
may be used for searching or organising the files.

The DBAT XML file contain four major sections: metadata,
input, processing, and output.

3.1 Metadata

The metadata section of the XML file is intended for project
information, software and hardware that were used to obtain
the measurements, the image source, etc. The only DBAT pro-
cessing of the metadata is to write it in the report file. For an
example of a metadata section, see Listing 1.

3.2 Input

The input section of a DBAT XML file contain the data and
data sources needed for the processing. The main subsections
include camera information, control and check information, im-
age information, image measurements and other prior observa-
tions.

3.2.1 Camera information The camera information is
specified in XML format and can either be present in the main
XML file or in a separate file. The basic camera information
include the camera name, the camera unit, the sensor and im-
age sizes, and the the nominal focal length. The camera unit
specifies the unit used for the internal parameters, typically mm
or pixels. For a calibrated camera, the estimated values of the
interior orientation parameters are also specified. The aspect
parameter can either be computed from the sensor and image
sizes or specified directly, in which case the sensor width is
computed to match the aspect. The projection model specify
what interpretation — Photogrammetry or Computer Vision —
of the (Brown, 1971) lens distortion model is used (Borlin et
al., 2019), together with the number of radial and tangential co-
efficients (nK and nP, respectively). Calibrated distortion coef-
ficients are listed directly (K and P, respectively). See Listing 2
for some examples.

<camera>
<file>cameras/c4040z.xml</file>

</camera>

<camera>
<name>0lympus Camedia C4040Z</name>
<unit>mm</unit>
<sensor>auto,5.43764</sensor>

<aspect>1</aspect>
<focal>7.5</focal>
<model>3</model>
<nK>3</nK>
<nP>2</nP>

</camera>

<camera>
<name>Canon EO0S 5D</name>
<unit>mm</unit>
<sensor>35.96404,24</sensor>

<focal>25</focal>
<cc>24.3581</cc>
<pp>18.1143, 12</pp>
<K>2.174e-4, -1.518e-7</K>
<P>0,0</P>
<model>3</model>
<skew>0</skew>
<aspect>auto</aspect>

</camera>

Listing 2: Camera information can be specified either in a sep-
arate XML file (top example) or directly in the main XML file
(middle example). If the camera is calibrated, the estimated
interior parameters are also specified (bottom example).
Blocks in main XML file

<ctrl_pts>

<file format="id,label,x,y,z,sx,sy,sz">sxb-ctrl.txt</file>

<filter id="351,410">remove</filter>
</ctrl_pts>

<check_pts>
<file format="id,label,x,y,z,sx,sy,sz">sxb-ctrl.txt</file>
<filter id="351,410">keep</filter>

</check_pts>

sxb-ctrl.txt
Id, Name, X, Y, Z, sigmaX, sigma¥, sigmaZ

317, B2.16, 999604.58, 112344.44, 139.45, 0.02, 0.02, 0.04
351, B4.6 , 1000551.27, 112275.28, 139.86, 0.02, 0.02, 0.04

607, B5.21, 1000502.46, 112625.88, 139.64, 0.02, 0.02, 0.04

Listing 3: The control and check point blocks typically use a
separate comma-separated data source file. The format argu-
ment allows for flexibility in the format used in the data file.
The point sets may be filtered after loading to separate control
and check points from the same source file.

3.2.2 Control and check information The control and
check information is expected to be listed in “comma-
separated” data files, although it is possible to specify other
separator characters. A format string allows for flexibility in
the format used in the data file and is specified as an argument
to the file directive (see Listing 3). The typical information to
include is the point id, a label, the point coordinates and the
coordinate uncertainties. The uncertainties can be specified per
coordinate (sx, sy, sz) or jointly (sxy, sxyz).

The control and check point sections can contain filter direc-
tives. This enables a single, master, file to be used as a joint
control and check point source.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-69-2019 | © Authors 2019. CC BY 4.0 License. 71

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D — Sensors, Algorithms, Applications, 2—3 December 2019, Strasbourg, France

Block in main XML file

<images>
<file format="id,path">images/images.txt</file>
</images>

images/images.txt
Image paths for DBAT camera calibration demo
Format: id, path

1, data/dbat/images/cam/P8250021.JPG

21, data/dbat/images/cam/P8250041.JPG

Listing 4: The images subsection refers to a separate text file.
Blocks in main XML file
<image_pts>
<file format="im,id,x,y,sx,sy">mea/imagepts.txt</file>
</image_pts>

<image_pts>
<file format="im,id,x,y,ignored,ignored" sxy="0.5">
mea/markpts.txt
</file>
<file format="im,id,x,y,ignored,ignored" sxy="1.0">
mea/smartpts.txt
</file>
</image_pts>

mea/imagepts.txt
Mark points for DBAT camera calibration demo

Format: image id, point id, x, y, sx, sy
1, 2, 1429.1, 1456.4, 0.1, 0.1

21, 90, 1516.1, 57.9, 0.1, 0.1

Listing 5: The image points are read from a comma-separated
text data file. In the format string, im and id refers to the
image id and point id, respectively. The uncertainties can be
present in the data files (top example) or specified via attributes
to the file directive. Uncertainty values may be overridden
by a combination of the ignored format string and uncertainty
attributes (bottom example).

3.2.3 Image information The images information block
uses a similar file directive and format string as the control
information block (see Listing 4). The typical information is
the image id and the image path, although only the image id
is necessary for the processing. The image path name is only
necessary if the images are to be visualised.

3.24 Image measurements The image measurements are
specified in the image_pts subsection and follows the same
pattern as the previous (see Listing 5). The typical informa-
tion in the format string is the image id, the point id, the image
coordinates, and the measurement uncertainty. Multiple files
may be specified as sources by multiple file directives. The
uncertainty values in the text files may be overridden by a com-
bination of the ignored format string and file attributes sx,
Sy, Or sxy.

3.2.5 Prior observations Prior EO observations can be
specified via the prior_eo directive (see Listing 6). Further-
more, if pre-computed initial EO or OP values are to be used by
the bundle, the data sources are specified via the initial_eo
and initial_op directives, respectively.

3.3 Operations
The operations section contain information about the pro-

cessing to be applied to the input data. The operations are exe-
cuted in the specified order. A typical operation sequence is:

<prior_eo>
<file format="id,x,y,z,omega,phi,kappa,sx,sy,sz,so,sp,sk"
angle_units="deg">
prior/prior_eo.txt
</file>

</prior_eo>

<initial_eo>
<file format="id,x,y,z,omega,phi,kappa" angle_units="deg">
prior/initial_eo.txt
</file>
</initial_eo>

<initial_op>
<file format="id,x,y,z">prior/initial_op.txt</file>
</initial_eo>

Listing 6: Prior observations and pre-computed initial values
can be similarly specified.

1. Apply a sanity check on the input.
(a) Optionally, filter points on low ray count.
2. Set up initial values for the bundle.

(a) Optionally, apply secondary sanity checks and/or fil-
tering given the initial values.

3. Specify what parameters the bundle should estimate.

4. Execute the bundle.

3.3.1 Sanity checks The sanity checks can be used to catch
blunders in the data files, poor initial values, and network prob-
lems. The supported sanity check operations are

check_ray_count Check that no point has too few rays. Can
be used to catch, e.g., missing points in the data files.

check_ray_angles Check that no point has a too small ray in-
tersection angle. Requires initial or estimated values for
the camera and object point positions. Can be used to un-
derstand why a bundle fails.

check_projection Check whether the object points are pro-
jected outside the images. If used on initial values and
a wide tolerance, the operation can catch grossly incor-
rect initial values. If used on the final values and a strict
tolerance, the operation can detect object points that have
converged to an incorrect position behind a camera.

check_structural_rank Check whether the structural rank
of the Jacobian (design matrix) is too low. Can be used
to, e.g., detect holes in the network.

check numerical _rank Check whether the numerical rank of
the Jacobian (design matrix) is too low. Can be used as
a debugging tool to understand why a bundle operation
failed.

3.3.2 Filtering The filter_points operation can be ap-
plied to remove points that have too few rays and/or a too small
intersection angle. The latter operation requires that the EO and
OP positions have been estimated.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-69-2019 | © Authors 2019. CC BY 4.0 License. 72

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D — Sensors, Algorithms, Applications, 2—3 December 2019, Strasbourg, France

3.3.3 Setinitial values The initial values can be set by spec-
ifying constant or pre-loaded values or as a result of performing
a photogrammetric computation. The set_initial values
directive allows the user to set individual or groups of
parameters to specific values or to use pre-loaded values.
An alternative is to use the spatial_resection and/or
forward_intersection operations. Spatial resection requires
initial values of the IO parameters and measurements of con-
trol points. Forward intersection requires initial values of the
IO and EO parameters.

3.3.4 Specify parameters to estimate The parameters to
estimate are set by the set_bundle_estimate_params direc-
tive. It allows the user to specify exactly parameters should be
estimated by the bundle and what parameters should be treated
as fixed. A standard bundle would estimate the EO and OP pa-
rameters only. A self-calibration project would also estimate
some or all IO parameters.

As a special case, if the datum is not set by the control points,
the set_datum operation can set the datum. Currently, only the
dependent relative orientation is supported.

3.3.5 Execute the bundle The bundle_adjustment opera-
tion executes the bundle adjustment. This is typically the last
operation specified.

3.3.6 A full operations example Listing 7 shows the full
operational flow for a camera calibration script. Since the cam-
era calibration situation is assumed to be reasonably controlled,
only a single sanity test is included to catch major blunders,
such as to include the wrong files. For less controlled settings,
more sanity checks and/or filtering might be necessary.

<operations>
<operation min_rays:“2">check_ray_count</operation>
<set_initial_values>
<io>
<cc>focal</cc>
<others>default</others>
</io>
</set_initial_values>
<operation>spatial_resection</operation>
<operation>forward_intersection</operation>
<set_bundle_estimate_params>
<io>
<all>true</all>
<skew>false</skew>
</io>
<eo>
<all>true</all>
</eo>
<op>
<all>true</all>
</op>
</set_bundle_estimate_params>

<operation>bundle_adjustment</operation>

</operations>

Listing 7: The full operation sequence for a camera calibration.
After an initial ray count sanity check, the camera constant is
initialised to the nominal focal length. The other parameters
are set to default values (principal point at the image center,
unit aspect, zero skew and zero lens distortion). The initial EO
parameters are computed by spatial resection, followed by for-
ward intersection to set the initial object point coordinates. All
OP, EO, and 10 parameters except skew are estimated by the
bundle.

<output>
<plots>
<plot id="1">image</plot>
<plot>image_stats</plot>
<plot max_op="1000">op_stats</plot>
<plot convex_hull="true">coverage</plot>
<plot>params</plot>
<plot cam_size="0.1">iteration_trace</plot>
</plots>
<files base_dir="$HERE">
<report_file>
<file>result/report.txt</file>
</report_file>
<io>
<file>result/c4040z.xml</file>
</io>
<image_residuals top_count="50">
<file>result/top_residuals.txt</file>
</image_residuals>
</files>
</output>

Listing 8: The output section specifies plots and result files of
interest for the user. This example contains image point obser-
vations overlaid on the image (see Figure 1), image and object
point statistics (figures2—-3), the image coverage, the evolution
of the camera parameters during the bundle (Figure 4), and a
3D evolution of the camera network and the object points (Fig-
ure 5). The result files include a standard summary report file,
the calibrated camera, and a text file that contain the top 50
largest image residuals.

3.4 Output

The output section contain information about what kind of re-
sults are of interest for the user. This includes different kinds
of plots and files. The plotting can either show some quality
parameters graphically, e.g., image coverage, or show how the
parameter estimates have evolved during the bundle iterations,
see section 2.2.5. Output files include report files that sum-
marise the processing, DBAT XML camera files to store cali-
brated cameras, or comma-separated table files that can be im-
ported into other software.

3.5 Data integrity

During processing of all input text data files, each non-blank,
non-comment line in the data file is expected to match the
format string. To reduce the probability of accidentally pro-
cessing bad data, any mismatch between the number of ex-
pected and actual fields triggers an error.

3.6 File structure

The input and output sections may have an attribute
base_dir to specify a common base directory for the files.
Non-absolute path names within the same section are assumed
to be relative to the specified base directory. This simpli-
fies grouping of data files while retaining flexibility for special
cases.

3.7 Language extensions

The combination of the XML language and the Matlab lan-
guage makes it easy to extend the DBAT scripting language.
An extension with a new operation requires adding two things:
A Matlab function that performs the operation and adding the
name of the operation to the list of known operations of the

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-69-2019 | © Authors 2019. CC BY 4.0 License. 73

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D — Sensors, Algorithms, Applications, 2—3 December 2019, Strasbourg, France

script parser. Any parameters to the function can be specified
as XML attributes to the operation. Adding a parameter to an
existing function would only require the latter. Similarly, ex-
tending the input capabilities may simply require adding a key-
word to the format string and support for the keyword in the
corresponding Matlab function.

4. CONCLUSIONS AND FUTURE WORK
4.1 Conclusions

The modularity provided by the scripting allows a simple setup
of the DBAT processing with little to no programming knowl-
edge. At the same time, the language provides flexibility of
what parameters to estimate or what operations to perform and
in what order. Furthermore, the ability to read text files with
a general format enables input from many sources. The com-
bination of the XML and Matlab languages makes it relatively
easy to add new function or file format to the DBAT scripting
language. These qualities suggest that DBAT XML scripting
should be useful both for users that want to independently ver-
ify a black-box computation by another software, or teach stu-
dents the inner workings of the bundle adjustment process. The
modularity concept is particularly interesting for teaching pur-
poses, as it enables a step-by-step learning of the photogram-
metric workflow in lieu of a one-click black-box solution. The
implementation of the XML file also presents a simple interface
with which the workflow may be explained systematically.

4.2 Future work

Future work include adding scripting support for multiple cam-
eras per project, something already supported by the DBAT
back-end. Additional future work include adding support for
binary input and output formats and the input and output of full
covariance matrices.

REFERENCES

Borlin, N., Grussenmeyer, P., 2013a. Bundle Adjustment with
and without Damping. Photogrammetric Record, 28(144), 396-
415.

Borlin, N., Grussenmeyer, P., 2013b. Experiments with
Metadata-derived Initial Values and Linesearch Bundle Adjust-
ment in Architectural Photogrammetry. ISPRS Annals of the
Photogrammetry, Remote Sensing, and Spatial Information Sci-
ences, 11-5/W1, 43-48.

Borlin, N., Grussenmeyer, P., 2014. Camera Calibration using
the Damped Bundle Adjustment Toolbox. ISPRS Annals of the
Photogrammetry, Remote Sensing, and Spatial Information Sci-
ences, 11(5), 89-96. Best paper award.

Borlin, N., Grussenmeyer, P., 2016. External Verification of
the Bundle Adjustment in Photogrammetric Software using the
Damped Bundle Adjustment Toolbox. International Archives
of Photogrammetry, Remote Sensing, and Spatial Information
Sciences, XLI-B5, 7-14.

Borlin, N., Murtiyoso, A., Grussenmeyer, P., Menna, F., No-
cerino, E., 2018. Modular Bundle Adjustment for Photogram-
meric Computations. International Archives of Photogram-
metry, Remote Sensing, and Spatial Information Sciences,
XLII(2), 133-140.

Borlin, N., Murtiyoso, A., Grussenmeyer, P., Menna, F., No-
cerino, E., 2019. Flexible Photogrammetric Computations us-
ing Modular Bundle Adjustment. Photogrammetric Engineer-
ing and Remote Sensing, 85(5), 361-368.

Brown, D. C., 1971. Close-range camera calibration. Pho-
togrammetric Engineering, 37(8), 855-866.

Cramer, M., 2006. The ADS40 Vaihingen/Enz geometric per-
formance test. ISPRS Journal of Photogrammetry and Remote
Sensing, 60, 363-374.

Lourakis, M. 1. A., Argyros, A. A., 2009. SBA: A Software
Package for Generic Sparse Bundle Adjustment. ACM Trans-
actions on Mathematical Software, 36(1), 30 pp.

Lumban-Gaol, Y. A., Murtiyoso, A., Nugroho, B. H., 2018. In-
vestigations on the bundle adjustment results from SfM-based
software for mapping purposes. International Archives of Pho-
togrammetry, Remote Sensing, and Spatial Information Sci-
ences, XLII(2), 623.

Menna, E., Nocerino, E., Drap, P., Remondino, F., Murtiyoso,
A., Grussenmeyer, P., Borlin, N., 2018. Improving Underwater
Accuracy by Empirical Weighting of Image Observations. In-
ternational Archives of Photogrammetry, Remote Sensing, and
Spatial Information Sciences, XLII(2), 699-705.

Murtiyoso, A., Grussenmeyer, P., Borlin, N., 2017. Reprocess-
ing Close Range Terrestrial and UAV Photogrammetric Projects
with the DBAT Toolbox for Independent Verification and Qual-
ity Control. ISPRS - International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, XLII-
2/W8, 171-177.

Murtiyoso, A., Grussenmeyer, P., Borlin, N., Vandermeerschen,
J., Freville, T., 2018. Open Source and Independent Meth-
ods for Bundle Adjustment Assessment in Close-Range UAV
Photogrammetry. Drones, 2(1). http://www.mdpi.com/2504-
446X/2/1/3.

Rupnik, E., Daakir, M., Pierrot Deseilligny, M., 2017. Mic-
Mac - a free, open-source solution for photogrammetry. Open
Geospatial Data, Software and Standards, 2(1), 14.

Snavely, N., Seitz, S. M., Szeliski, R., 2008. Modeling the
World from Internet Photo Collections. International Journal
of Computer Vision, 80(2), 189-210.

Wu, C.,, Agarwal, S., Curless, B., Seitz, S. M., 2011. Multicore
bundle adjustment. Proceedings of the CVPR, 3057-3064.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-69-2019 | © Authors 2019. CC BY 4.0 License. 74

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D — Sensors, Algorithms, Applications, 2—3 December 2019, Strasbourg, France

APPENDIX

This appendix presents a full example script for camera calibra-
tion. The example includes the main XML file and the associ-

ated text files.

Main XML file

<?xml version="1.0" encoding="UTF-8"2>
<document dbat_script_version="1.0">
<meta>

<name>Camcaldemo</name>

<date>2019-10-23</date>

<author>Niclas Bérlin</author>

<version>1.0</version>

<project>DBAT</project>

<purpose>
Demonstrate camera calibration using the scripting
feature of DBAT. See also camcaldemo.m in the demo
folder.

</purpose>

<software>
Measurements: Photomodeler scanner 2015.

</software>

<control_points>
Synthetic control points.

</control_points>

</meta>

<input base_dir="$HERE">
<ctrl_pts>
<file format="id,label,x,y,z,sxyz">
reference/camcal-ctrl.txt
</file>
</ctrl_pts>

<images>
<file format="id,path">
images/images.txt
</file>
</images>

<image_pts>
<file format="im,id,x,y,sxy">
measurements/markpts.txt
</file>
</image_pts>

<cameras>
<camera>
<name>0lympus Camedia C4040Z</name>
<unit>mm</unit>
<sensor>auto,5.43764</sensor>

<aspect>1</aspect>
<focal>7.5</focal>
<model>3</model>
<nK>3</nkK>
<nP>2</nP>
</camera>
</cameras>
</input>

<operations>
<operation min_rays="2">check_ray_count</operation>

<set_initial_values>
<io>
<cc>focal</cc>
<others>default</others>
</io>

</set_initial_values>

<operation>spatial_resection</operation>
<operation>forward_intersection</operation>

<set_bundle_estimate_params>
<io>
<all>true</all>
<skew>false</skew>
</io>
<eo>
<all>true</all>
</eo>
<op>
<all>true</all>
</op>
</set_bundle_estimate_params>

<operation>bundle_adjustment</operation>
</operations>

<output>
<plots>
<plot id="1">image</plot>
<plot>image_stats</plot>
<plot max_op="1000">op_stats</plot>
<plot convex_hull="true">coverage</plot>
<plot>params</plot>
<plot cam_size="0.1">iteration_trace</plot>
</plots>
<files base_dir="$HERE">
<report_file>
<file>result/report.txt</file>
</report_file>
<io>
<file>result/c4040z.xml</file>
</io>
<image_residuals top_count="50">
<file>result/top_residuals.txt</file>
</image_residuals>
</files>
</output>
</document>

camcal-ctrl.txt

Control point coordinates for Photomodeler camera
calibration sheet.

Id,label,X,Y,Z,sxyz

1001, CP1, 0, 1, 0, 0.01

1002, CP2, 1, 1, 0, 0.01

1003, CP3, 0, 0, 0, 0.01

1004, Cp4, 1, 0, 0, 0.01

images.txt

Image paths for DBAT camera calibration demo
Format: id, path

1, data/dbat/images/cam/P8250021.JPG

2, data/dbat/images/cam/P8250022.JPG

20, data/dbat/images/cam/P82560040.JPG
21, data/dbat/images/cam/P8250041.JPG

markpts.txt

Mark points for DBAT camera calibration demo
Format: image id, point id, x, y, sxy

1, 2, 1429.1, 1456.4, 0.1

1, 3, 1217.8, 1456.1, 0.1

21, 92, 1358.1, 61.8, 0.1
21, 90, 1516.1, 57.9, 0.1

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-69-2019 | © Authors 2019. CC BY 4.0 License. 75

	Introduction
	Background
	Aim

	The Damped Bundle Adjustment Toolbox (DBAT)
	Background
	Current capabilities
	Bundle adjustment
	Photogrammetric processing
	Software compatibility
	Network analysis and quality
	Output and report generating

	Script-based processing
	Metadata
	Input
	Camera information
	Control and check information
	Image information
	Image measurements
	Prior observations

	Operations
	Sanity checks
	Filtering
	Set initial values
	Specify parameters to estimate
	Execute the bundle
	A full operations example

	Output
	Data integrity
	File structure
	Language extensions

	Conclusions and future work
	Conclusions
	Future work

