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ABSTRACT:

This publication concentrates on the photogrammetric crack width measurement of crack patterns of concrete probes under impact
loading in high-speed stereo image sequences. The presented algorithm works for non-planar specimens with deformations that only
appear tangential to the surface and the method is based on triangle mesh analysis. Experiments were conducted with cylindrical
specimens with an impact load affecting parallel to the main axis of the cylinder.

1. INTRODUCTION

To reduce damage from impact loading due to natural catastro-
phes, buildings and walls can be strengthened with material-
bonded composites. These composites are analyzed in dynamic
tests where photogrammetric deformation measurement tech-
niques are used. High-speed stereo systems offer the possibility
to analyze impact tests due to their high temporal resolution.
For civil engineers, the detection of cracks and the measure-
ment of the according widths are an interesting issue. In recent
years, several publications were contributed in the field of pho-
togrammetric crack width determination. (Dare et al., 2002)
applied edge detection techniques such as the Fly-Fisher algo-
rithm and the Route-Finder algorithm to detect cracks in single
images of crack patterns and also measured crack widths by
the analysis of profiles perpendicular to the crack courses. In
(Lange, Benning, 2006), the theoretical crack opening vector is
expressed as follows:

~tc =

 crack width
crack edge displacement along the crack course

vertical crack edge displacement

 (1)

where ~tc = crack opening vector

This vector bases on the theoretical modes of fracture refering
to (Irwin, 1958). (Lange, Benning, 2006) measured artificial
targets on concrete specimens with a multi-ocular camera sys-
tem and computed crack widths with a method given by (Görtz,
2004) using averages of displacements in 4-point-elements, also
including the direction of the cracks. However, global rotations
between the epochs were neglected. (Barazzetti, Scaioni, 2009)
presented a 2D image sequence analysis procedure to deter-
mine crack deformations using artificial targets and an orien-
tation frame. (Maas, Hampel, 2006) and (Hampel, Maas, 2009)
used digital image correlation techniques to compute a dense
displacement field and to analyze crack openings in horizon-
tal and vertical profiles. (Liebold, Maas, 2018) show how to
compute crack widths of concrete probes in monocular image
sequences using triangle mesh analysis.

Monocular image sequences can only be used for planar sur-
faces and if the deformations only appear in this plane. The
approach presented in this publication gives an extension to
the work of (Liebold, Maas, 2018). It will be shown how to
detect deformations on non-planar surfaces in triangle meshes
between two epochs. Herein, the triangles are transformed into
2D space using the parametrization of a known surface and are
analyzed with the 2D algorithm of (Liebold, Maas, 2018). A
stereo system is used to measure 3D surface points for each
epoch of the sequence. With the mesh analysis of 3D surface
points, it is possible to work with non-planar surfaces, for ex-
ample, from cylindrical specimen. Another advantage of stereo
systems is the robustness against relative movements between
the object and the camera system. A prerequisite for the algo-
rithm presented here are deformations that are only tangential to
the surface (only opening and in-plane shear). Our experiments
are designed such that this condition is fulfilled. It is assumed
that there is no out-of-plane shear, what means that the z com-
ponent in Eq. 1 is zero.

The next chapter deals with the description of the experimental
setup. In the following part, the method for the crack width
determination is presented. After this, the application in the
experiment is shown. At the end, a conclusion and an outlook
is given.

2. EXPERIMENTAL SETUP

Cylindrical concrete specimens are tested in a gravity-driven
split-Hopkinson tension bar to investigate performance of the
material at high strain rates (Heravi et al., 2019), see Fig. 1.
The height of the specimen is approximately 4 cm.

During the experiment, an image sequence is recorded with a
high-speed stereo camera system consisting of two FASTCAM
SA-X2 cameras (Fig. 2). The frame rate is set to 100,000 frames
per second at an image resolution of 128 × 504 px such that
1 px in image space corresponds to 0.1 mm in object space.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W18, 2019 
Optical 3D Metrology, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W18-107-2019 | © Authors 2019. CC BY 4.0 License.

 
107



Figure 1. Gravity-driven split-Hopkinson tension bar and
cylindrical specimen.

Figure 2. High-speed stereo camera system.

3. CRACK WIDTH MEASUREMENT IN 3D
DISPLACEMENT FIELDS

3.1 Preparation and acquisition of the data

First, the inner and the relative orientation of the stereo camera
system is determined in a system calibration. Furthermore,
the surface of the specimen must have a suitable texture for
the matching process. In case of concrete, the surface to be
measured may have to be prepared with an artificial pattern.
During the experiment, an image sequence is recorded. The
first image pair is acquired under zero load without any defor-
mation. The first step of the analysis is the matching of a grid
of points between the stereo image pair and between the epochs
(current epoch to the reference epoch under zero load). For each
epoch, the 3D coordinates are computed by intersection of the
corresponding points in the stereo image pair, see Fig. 3.

For each epoch, all 3D points that could be matched success-
fully in the current time step are triangulated into a mesh using
Delaunay triangulation as it is done in (Koschitzki et al., 2011),
(Liebold, Maas, 2016) and (Liebold, Maas, 2018), see Fig. 4.

3.2 Workflow of the algorithm

Fig. 5 shows the steps of the presented algorithm for the crack
width computation in a flow chart. The single steps of the al-
gorithm are explained in the following sections. The workflow
begins after computing the 3D displacements and the triangula-
tion for each epoch.

Figure 3. Matching in the stereo image pair and between epochs.

Figure 4. Triangle mesh of the 3D points.

Figure 5. Flow chart of the algorithm: ~trel is the relative
translation vector. δ is a threshold. ~ncrack is the crack normal.

3.3 Transformation to 2D

First, the edge vectors between the triangle vertices in the
reference (undeformed) and the deformed state are calculated,
see Eq. 2. The triangle indices are 1, 2 and 3.

~s12ref = ~p2ref − ~p1ref
~s13ref = ~p3ref − ~p1ref
~s23ref = ~p3ref − ~p2ref

(2)
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where ~sijref = vector from vertex i to j (reference state)

and

~s12 = ~p2 − ~p1
~s13 = ~p3 − ~p1
~s23 = ~p3 − ~p2

(3)

where ~sij = vector from vertex i to j (deformed state)

The following two terms are computed for the transformation
in 2D space for the reference state:

dx13,ref = ||~s13,ref || · cos (∠~s12,ref , ~s13,ref )

=
~s T
12,ref · ~s13,ref
||~s12,ref ||

dy13,ref =
√
||~s13,ref ||2 − dx213,ref

(4)

The transformed 2D coordinates in the reference state are:

~q1,ref =
(
0 0

)
~q2,ref =

(
||~s12,ref || 0

)
~q3,ref =

(
dx13,ref dy13,ref

) (5)

For the deformed state, the two terms are:

dx13 = ||~s13|| · cos (∠~s12, ~s13) =
~s T
12 · ~s13
||~s12||

dy13 =
√
||~s13||2 − dx213

(6)

The transformed 2D coordinates in the deformed state are:

~q1 =
(
0 0

)
~q2 =

(
||~s12|| 0

)
~q3 =

(
dx13 dy13

) (7)

3.4 Computation of the relative translation vector

In order to compute the relative translation vector in the 2D
space, the algorithm from (Liebold, Maas, 2018) is applied
using the point triples from Eq. 5 and Eq. 7. Fig. 6 shows the
movement of the triangle in 2D. In the deformed state, the upper
point has an additional relative translation.

The edge with the minimal distance change is considered as the
constant base line edge:

b1, b2 = imin, jmin = argmini,j ||||~sij || − ||~sij,ref |||| (8)

where b1 = index of the first base line vertex
b2 = index of the second base line vertex

Figure 6. Movement of a triangle crossed by a crack.

For the base line vertices, a Helmert transformation (rigid trans-
formation with fixed scale) is applied:

~qb1 = ~t2D + R2D · ~qb1,ref
~qb2 = ~t2D + R2D · ~qb2,ref

(9)

where ~t2D = translation vector
R2D = rotation matrix

The Helmert parameters ~t2D, R2D can be computed with the
coordinates of base line vertices in the reference and the de-
formed state.

For the upper point, the formula is extended:

~qup = ~t2D + R2D · ~qup,ref + ~trel,2D (10)

where ~trel,2D = relative translation vector

Figure 7. Deformed and transformed reference triangle. r: crack
width. qj,ref,t: transformed reference points with index j.

The relative translation vector can be computed by reorganizing
Eq. 10:

~trel,2D = ~qup − ~t2D − R2D · ~qup,ref (11)

The norm of the relative translation vector ||~trel,2D|| is used to
detect deformed triangles including cracks.

If ||~trel,2D|| > δ: the triangle is considered as crack candidate
where δ is a threshold depending on the quality of the displace-
ment field. The threshold should be in the order of magnitude
of the precision of the 3D object coordinates.
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3.5 Computation of the crack normal

For each deformed triangle (crack candidate), the deformed tri-
angles of the second order neighborhood (neighbors and neigh-
bors of neighbors) are determined. Neighbor triangles have at
least one common vertex with the crack candidate. Then, a line
fit through the center points of these triangles is computed in
order to determine the line direction ~l, see Fig. 8.

Figure 8. Determination of direction of the crack edge ~l. The
triangle with the strong red color is the triangle which ~l is

computed for. The center points of the triangle and the deformed
neighbor triangles are shown as black points, the deformed

neighbor triangles have a less strong red color. The blue
triangles are undeformed. The fitted line direction vector ~l is

depicted in black.

The normal of the triangle is also needed for the computation
of the crack normal in addition to the line direction:

~ntriangle = ~s12 × ~s13 (12)

The crack normal is calculated using the cross product of the
normal vector of the triangle and the line direction vector, see
Eq. 13 and Fig. 9.

~ncrack =
~ntriangle ×~l
||~ntriangle ×~l||

(13)

Figure 9. The crack normal is perpendicular to the line direction
and the normal of the triangle.

After this, the crack normal is transformed into 2D space.
Therefore, the crack normal can be expressed as a linear com-
bination of the edges in the deformed state:

~ncrack = v1 · ~s12 + v2 · ~s13 (14)

Eq. 14 can be written as a linear system using matrices:

(
~s12 ~s13

)
·
(
v1
v2

)
= ~ncrack (15)

The system is overdetermined such that the reduced form of the
singular value decomposition can be used to solve it:

(
~s12 ~s13

)
3×2

= U0
3×2
· S0
2×2
· VT

2×2
(16)

where U0 = reduced matrix of the left singular vectors
S0 = reduced matrix of the singular values
V = matrix of the right singular vectors

The components v1 and v2 can be obtained as follows:(
v1
v2

)
= V · S−1

0 · U
T
0 · ~ncrack (17)

The reconstruction in the 2D system leads to the transformed
2D crack normal:

~ncrack,2D = v1 · (~q2 − ~q1) + v2 · (~q3 − ~q1) (18)

3.6 Computation of the crack width and the horizontal
displacement

The crack width r is calculated by the projection of the relative
translation vector (Eq. 11) onto the normal in 2D as shown in
(Liebold, Maas, 2018):

r = ||~trel,2D|| · ||cosβ|| =
~n T
crack,2D · ~trel,2D
||~ncrack,2D||

(19)

Furthermore, it is possible to compute the shift along the crack
(in-plane displacement/shear). The absolute value is:

||t|||| =
√
||~trel,2D||2 − r2 (20)

The direction vector in the 2D space without correct orientation
(sign) is:

~t||,2D,temp =

(
−ncrack,2D,y

ncrack,2D,x

)
(21)

The correct orientation can be obtained using the dot product to
~trel,2D:

~t||,2D =

{
~t||,2D,temp if ~t T

rel,2D · ~t||,2D,temp > 0

−~t||,2D,temp else
(22)

To get the direction in the 3D space, ~t||,2D has to be trans-
formed. First, the system of Eq. 23 has to be solved for ṽ1
and ṽ2. Then, the vector is reconstructed in 3D space and nor-
malized (Eq. 24).

~t||,2D = ṽ1 · (~q2 − ~q1) + ṽ2 · (~q3 − ~q1)

=
(
~q2 − ~q1 ~q3 − ~q1

)
·
(
ṽ1
ṽ2

)
(23)

~t|| =
ṽ1 · ~s12 + ṽ2 · ~s13
||ṽ1 · ~s12 + ṽ2 · ~s13||

(24)
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4. APPLICATION OF THE CRACK WIDTH
DETERMINATION IN THE EXPERIMENT

4.1 Computation of the 3D displacements

The system calibration and the computation of the 3D displace-
ments are done with the commercial software ARAMIS devel-
oped by GOM GmbH. The 3D coordinates and displacements
serve as input for the application of the crack detection and
crack width computation.

4.2 Crack detection and crack width analysis

The algorithm from section 3 is applied on the data. δ is set to
0.02 mm (corresponds to 0.2 px in image space) and defines the
threshold for crack candidates.

Fig. 10 shows color-coded maps of the norms of the relative
translations of the triangles for the first time steps where defor-
mations could be detected. Therefore, the color-code is very
sensitive. The widths are changing in the sequence. After
0.19 ms, the first cracks appear in the visualization. On the far
left, there is an area where it is not sure if there is a crack. Later,
this possible crack closes as other cracks open. The largest
crack at time step of 0.20 ms closes in the following time steps
too, whereas the neighbor cracks become larger.

Figure 10. Crack detection. Visualization of ||~trel,2D|| for each
triangle for some selected time steps at the begin of the crack

opening.

Triangles with ||~trel,2D|| > δ can be merged to a region if there
are neighbors that also fulfill this condition using region grow-
ing, see Fig. 11.

Fig. 12 and Fig. 13 show color-coded visualizations of the
norms of the relative translation vectors ||~trel,2D|| for two later
epochs with 2 cracks. In addition, the histograms of the crack
widths of the two crack areas are depicted. In these histograms,
some statistical values are given: the mean of the crack widths
r, the median rmedian, the maximum crack width rmax, the

Figure 11. Color-labeled regions of triangles with ||~trel,2D|| > δ
at 0.22 ms.

standard deviation of the crack widths σr and the standard de-
viation σr,MAD computed using the median absolute deviation
(MAD) which is more robust against outliers.

σr,mad = k ·median


||r1 −median(~r)||||r2 −median(~r)||

...




with
k = q−1

0.75 ≈ 1.48

(25)

where σr,mad = standard deviation computed with MAD
~r = vector with the measured crack widths
qp = quantile of order p for N (0, 1)
N (0, 1) = standard normal distribution

Figure 12. Color-coded visualization of ||~trel,2D|| for epoch 25
at 0.24 ms. For the two cracks, histograms of the crack widths
are depicted. In addition, the original image of one camera is

shown.

In the histograms, some outliers appear due to uncertainties in
the normal vector computation at the borders of the mesh. An-
other reason for outliers are incorrect matching results that are
influenced by cracks crossing matching patches. Therefore, in
the neighborhood of crack triangles, there are some triangles
that are also detected as crack candidates (||~trel,2D|| > δ) but
have smaller values of ||~trel,2D||.

The diagram in Fig. 14 shows 4 curves: the sum of the mean
crack widths of the crack areas (

∑
rmean), the sum of medi-

ans (
∑
rmedian) and the sum of the maxima (

∑
rmax). In

addition, the total deformation of the sample that is calcu-
lated with the wave analysis in the split-Hopkinson tension
bar is depicted (

∑
rwaveanalysis) to compare the crack widths

with another measurement method. The values of mean and
median are strongly depending on the threshold δ which is
set to 0.02 mm in this experiment because δ defines which
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Figure 13. Color-coded visualization of ||~trel,2D|| for epoch 29
at 0.28 ms. For the two cracks, histograms of the crack widths
are depicted. In addition, the original image of one camera is

shown.

triangles are considered as crack candidates. Crack widths
according to ||~trel,2D|| ≤ δ are not included in the sums
(
∑
rmean,

∑
rmedian and

∑
rmax). Because of that, the val-

ues tends to be smaller than the real value and smaller than∑
rwaveanalysis, too. In this experiment, there are no fur-

ther external measurements to compare the results of the single
crack width computation because it is very difficult to obtain
single crack widths with other measurement techniques in high
speed tension tests.

Figure 14. Diagram of the sum of crack widths.

Fig. 15 shows the mean standard deviations σr of the crack
widths of each epoch where cracks are detected. Due to outliers,
the mean standard deviation computed with the MAD σr,MAD

is also plotted. σr increases with higher crack widths because
the outliers are small (close to δ) and greater values are more
influenced by these outliers. In contrast, σr,MAD is more or
less stable over the time. σr,MAD is below 0.015 mm (corre-
sponds to 0.15 px in image space) whereas σr reaches values up
to 0.075 mm. Due to the outliers, σr,MAD should be preferred
as a measure of precision.

Figure 15. Means of the standard deviations of the crack width
areas for each epoch.

5. CONCLUSION AND OUTLOOK

This publication presents a strategy for detection of cracks on
concrete specimens with non-planar surfaces in tension tests,
and the computation of the according widths. A prerequisite is
that deformations only appear tangential to the surface. The
accuracy of the crack widths depends on the quality of the
displacement field and is in the same order of magnitude. In
our experiments, accuracies of approximately 0.01 mm were
reached. The next step can be the development of an algorithm
that can determine crack opening vectors for cracks with signif-
icant z-components. Further improvements should also allow to
analyze arbitrary 3D surfaces.
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