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ABSTRACT:

By offering fast and flexible solutions to create 3D models, handheld scanners are currently under the focus of many research
activities in various 3D data processing fields. The real-time constraint is still challenging to achieve especially when it comes with
concurrent needs, such as level of accuracy in the data acquisition, easiness of recovering from scanning interruptions or loop closure
abilities... Among them, object/scene tracking quality is one of the most critical. In this work, we describe two issues that affects
its performance, focusing on the robustness of the process. Specifically, we encounter such issues at to two different steps while
moving through the working pipeline of a prototype handheld scanner, i.e. (1) the data pre-processing before running a pairwise
alignment between a frame and the model representation, called key-frame, and (2) the temporal and quality criteria that govern
key-frame updates. Our approach simply consists in substituting the use of a rigid (uniform) pattern for sampling, with a random
distribution of points. We then implement an adaptive statistical method to select suitable timing steps for key-frames refreshing,
comparing this solution with a previous static one based on regular updating rate. We run experiments on a dataset created with our
own scanner and we show that the adoption of such alternatives reduce the number of tracking failures, consequently increasing the
robustness of the system, improving the quality of the alignments and preserving the real-time behavior of the device.

1. INTRODUCTION

In a classic 3D scanning and modeling workflow, the amount
of generated data and computational needs make the recon-
struction of the 3D model to take place asynchronously and
delayed with respect to acquisitions. In recent years, increas-
ingly powerful and affordable processors come on the market
one after the other, de facto enabling 3D reconstructions in a
real-time fashion. However, this cannot be considered a self-
driving progress, since modern 3D reconstruction applications
require solutions characterized by unprecedented degrees of re-
sponsiveness, robustness, accuracy and flexibility. This started
new research directions (often re-opening more classical ones)
and it defines scenarios where diversified combinations of tech-
nological and application-related potentialities and limitations
can be found. The flexibility introduced by real-time scanners
can be exploited adjusting the scanning on-the-fly, to avoid the
frustrating situation of finding poorly represented or lacking
parts in the model only after post-processing. This can prevent
unwanted waste of time or even the worst case of information
loss due to some unfeasibility of measure repetition. This is
why the interest and also the availability of real-time scanners
is increasing in many fields, such as construction industry and
civil engineering, robotics, geomatics, design process, reverse
engineering, quality assurance and industrial metrology, cul-
tural heritage, entertainment (cinema and video games), med-
ical CAD/CAM (orthotics and dentistry). However, a high de-
gree of flexibility requires fast, accurate and robust acquisi-
tions, which, in turn, calls for high performance of the views
alignment processes that work on the stream of acquired par-
tial scans. In this work, we identify and propose solutions for
two criticalities that emerge from a low-complexity real-time
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(a) Setup (b) InSight CAD

Figure 1: Acquisition hardware: InSight (Open Technologies,
Italy) handheld structured-light scanner.

3D alignment pipeline by focusing on both pairwise alignment
and camera tracking robustness, which are both crucial to guar-
antee quality reconstructions. The data flow considered here is
generated during acquisitions with a commercial handheld 3D
scanner (Figure 1).

2. RELATED WORK AND CONTRIBUTION

A good alignment of fairly close 3D views (as they typically are
in real-time scanning with sufficiently high frame-rate and/or
sufficiently moderate scanning speed) can be typically provided
by the Iterative Closest Points (ICP) algorithm (Besl, McKay,
1992) and its variants (Chen, Medioni, 1992, Rusinkiewicz, Le-
voy, 2001). In our specific case, we have pairs of dense sets of
3D points to align, meaning that they are redundant and com-
putationally heavy to process in their entirety. This is why,
as an input for ICP, working on a sub-sampled version of the
acquired data is a common practice. While the uniform 2D
sub-sampling, facilitated by the regular reference grid of the
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(a) Face 1 model (239 RIs) (b) Geometric model (85 RIs) (c) Face 2 model (208 RIs)

(d) Forearm model (102 RIs) (e) Dummy model (161 RIs) (f) Hand model (145 RIs)

Figure 2: Examples of some 3D reconstructions from our dataset (the total number of Range Images is indicated for each dataset)
acquired with the optical scanner of (Figure 1).

acquired range images, seems to be the most natural way to
lighten the data load in a computationally workable way, here
we investigate whether and how a random sub-sampling could
be adopted instead, by measuring its impact on the alignment
performance. Intuitively, this also relates to the tracking ro-
bustness of the scanner, which is the second aspect under our
attention. Being able to determine rigid pairwise transform-
ations allows recomputing and tracking the location in space
of the scanning device. However, alignments can fail and so
tracking recovery strategies must be devised. This can be done
by adding flexibility in the proposition or computation of al-
ternate targets to prevent or react to possible alignment failures.
Moreover policies that look beyond frame-to-frame alignment
are also functional to counteract error accumulation drifts. To
this purpose, frame-to-model alignment solutions (Izadi et al.,
2011, Newcombe et al., 2011a) are of interest, however they
do not come without possibly severe additional computational
load (Nießner et al., 2013). To cut complexity, instead of using
the whole model, new scans can be aligned to key-frames (New-
combe et al., 2011b, Steinbrucker et al., 2013), built through
ray-casting, which can be used to represent the model un-
der reconstruction in a given temporal window. The decision
about when a given key-frame should be updated is critical.
Good strategies are those able to guide decisions considering
the trade-off between reconstruction accuracy/robustness and
computational/memory load. A first trivial but practical solu-
tion is to wait a fixed number of new frames before updating
the key-frame. In this work, we investigate a smarter approach
we derive from the context of dense visual odometry. Inspired
by (Kerl et al., 2013a, Kerl et al., 2013b) we propose a statist-
ical method to dynamically update the key-frames according to
an entropy ratio criterion.

3. METHODS

We introduce the two focus of our research for the improve-
ment of the tracking robustness of a 3D real-time scanner. We

show issues related to each point and describe the solutions we
adopted to overcome them.

3.1 Points Sampling for ICP

Many choices can be made to sub-sample the data before align-
ing via ICP (Rusinkiewicz, Levoy, 2001). Since our range
image has been created via stereo triangulation by using two
infrared cameras, we have a 2D domain (the reference grid)
defined onto the field of view of such cameras, that can be used
to retrieve the 3D position of each point. When a new range im-
age is acquired, the first trivial approach is to reduce the number
of points by exploiting a regular sub-sampling grid, and then try
to align this new subset of points with the current key-frame.
The resolution of each camera is of 1280× 1024 pixels and we
typically work with around 500k-700K valid points per range
image. Then, for instance, by using a reducing factor equal to 5
(on both rows and columns), we usually end up working with a
smaller set of about 20K-30K valid points. We need to keep the
subsampling factor relatively low because of the risk we incur in
using a fixed pattern to filter the 2D domain: given the possibly
high geometric complexity of the object/scene, we could fall
into many sectors mainly containing invalid points (i.e. empty
space) and consequently fail the tracking. Leveraging on a fixed
pattern is a poor choice when we need a good level of general-
ization, as it is in our case, since we have no clue a priori about
the shape we are going to acquire. Moreover, this approach is
quite easy but it behaves critically also in case of data redund-
ancy, for which a lot of sampled points could be, at best, not
helpful or even could cause drifts during the alignment. There-
fore it is interesting to investigate a solution that pick the points
using different criteria with respect to a predetermined grid.
Ideally, a feature based approach should lead to the extraction
of salient key-points. However, their detection and selection
likely involves a computational load which is not sustainable in
our real-time working scenario, so we need an alternative that
has to be fast and lightweight as the uniform sampling was. The
idea then is to sub-sample again the natively dense data-grid but
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now extracting the points according to a random distribution. It
is reasonable to expect that a randomly covered valid area will
need less redundancy with respect to the previous solution, so
we can set a smaller number of valid points to use. In Figure
3 we show a qualitative example of both methods applied to
a range image inside our dataset. We expect that with points
not belonging to a predefined regular grid we could reduce the
number of required iterations when the alignment task is more
challenging or that we might be more effective in solving some
ICP alignment failure cases.

(a) Uniform sub-sampling (b) Random sub-sampling

Figure 3: Qualitative example for two different sub-sampling ap-
proaches. In red the hypothetical points extracted from a range
image, in (3a) by using a uniform distribution and in (3b) by ad-
opting a random sampling.

3.2 Key-frame selection

In the frame-to-model solution, ICP is performed between the
incoming range image and the already acquired model. Simil-
arly to (Newcombe et al., 2011b), the model in our pipeline is
not the whole set of points obtained from the previous registra-
tions (it would be unfeasible to use it in a real-time scenario)
but a representation of it, obtained through ray-casting from a
specific position of the camera to the volume. Such representa-
tion is then again a range image that we also call anchor.
During the scan process, we must update the key-frame many
times in order to pick a newer position of the camera, closer to
the current one, both in time and in space so that the two range
images have a bigger overlapping region and the ICP can suc-
cessfully run. However, the ray-cast is computationally expens-
ive so that we can not do it constantly during frame acquisitions.
The first trivial solution was to update the keyframe at a regu-
lar, a priori defined, rate. This is a static approach which does
not consider how fast the topology of the target under test is
changing, both because of its shape and because of how rapidly
the scanner is moving. Indeed a slower variation of the topo-
logy will require less key-frames and viceversa. In Figure 4 we
show how the two approaches (uniform and adaptive) behave
differently.

In order to be responsive, we need to define a parameter to
describe the difference between the range image and its key-
frame. Common strategies employ a threshold for instance on
the rigid transformation allowed (Stückler, Behnke, 2012) or on
the variance and the total value of the alignment error (Meilland
et al., 2011). We found promising results in the work of Kerl et
al. (Kerl et al., 2013a, Kerl et al., 2013b), coming from the con-
text of visual dense odometry, so we implemented and tested it
on our own data.
The method aims to estimate the camera motion g∗ between two
range images, parametrized by a six-dimensional vector ξ ∈ R6

that contains the three components of the linear velocity of the

motion (v1, v2, v3), and the three components of its angular ve-
locity (ω1, ω2, ω3). The estimate is done by minimizing the
photometric and the geometric residuals, respectively rI and
rZ , defined as:

rI = I2
(
τ(xT)

)
− I1(x) (1)

rZ = Z2

(
τ(xT)

)
−
[
Tπ−1

(
x, Z1(x)

)]
Z

(2)

Here Ii(x) and Zi(x) represent the intensity and the depth val-
ues at pixel x for a generic frame i. T is the rigid body trans-
formation, π−1 represents the inverse of the projection func-
tion π(p) which projects a 3D point p from homogeneous co-
ordinates space onto the pixel x, while τ is the warping function
which maps the location of a pixel from one image to the other.
Finally, [·]Z returns the Z component of a point. Assuming
both the geometric and photometric consistencies, the residuals
differ from zero with a distribution that follows the probabil-
istic sensor model p(rI,Z |ξ). Moreover the noise is assumed
to be independent and identically distributed (i.i.d.) for all n
pixels, then using the Bayes’ rule the camera motion ξ∗ can be
determined by maximizing the probability given the pixel-wise
error p(ξ|rI,Z):

ξ∗ = arg max
ξ

p(rI,Z |ξ)p(ξ)
p(rI,Z)

(3)

Using the i.i.d. property, dropping the ξ-non dependent ele-
ments and converting the maximization to a minimization of
the negative log-likelihood, Equation (3) can be written as:

ξ∗ = arg min
ξ

(
−

n∑
i

log
(
p(r(I,Z)i

|ξ)
)
− log

(
p(ξ)

))
(4)

From such equation, by dropping the motion prior log
(
p(ξ)

)
and setting the derivative of the log likelihood to zero we end
up with the equation:

∂ri
∂ξ
w(ri)ri = 0 (5)

where ri is an easier to read notation for r(I,Z)i
and w(ri)

(wi in the follow) is the weight function defined as w(ri) =
∂ log(p(ri)/∂ri · 1/ri.
We intentionally omitted few steps in the computation in order
to avoid an overhead of formalization, however one can refer
to (Kerl et al., 2013b) for more details on the estimate of ξ∗

and on the assumptions made on the distribution of the error.
In particular, inspired by (Lange et al., 1989), such distribution
results to be better approximated by a t-distribution which in our
case is bivariate (because of the bivariate random variable rI,Z),
i.e. pt(0,Σ, ν), with 0 mean, scale matrix Σ and ν degrees
of freedom. In the bivariate case and with all the assumptions
made above, the Equation 4 now can be re-written as:

ξ∗ = arg min
ξ

(
−

n∑
i

wir
T
i Σ−1ri

)
(6)

This is a non-linear problem in the motion parameter ξ, there-
fore Kerl et al. used a first order Taylor expansion to lin-
earize it around the current estimate xik and such non-linear
least square problem results into a normal equations A∆ξ = b
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(a) Static approach

(b) Dynamic approach

Figure 4: Different policies for the key-frame update inside the registration pipeline. The static approach (4a) performs the update
every N new range images, while the adaptive method (4b) tries to do it when the new range image is sufficiently different from the
current key-frame.

where:

A =

n∑
i

wiJT
i Σ−1Ji (7)

b = −
n∑
i

wiJT
i Σ−1ri (8)

Here J is a 2 × 6 Jacobian matrix containing the derivatives of
ri with respect to ξ. The normal equations are iteratively solved
for increments ∆ξ. Moreover, A can be seen also as an Hessian
matrix, or, equivalently, as the negative of the observed Fisher
information matrix (Kerl et al., 2013a).
Now it is finally possible to define the metric that express the re-
lation between a new generic frame and the key-frame. In (Kerl
et al., 2013a) the use of the ratio between the differential en-
tropy H(·) of the estimate of the motion occurred between the
key-frame k and the current frame j, defined as ξk,k+j , and
the differential entropy of the estimate of the motion from the
same key-frame to the very next frame, i.e. ξk,k+1, is proposed.
The last assumption is that the estimated parameters ξ are nor-
mally distributed with mean ξ∗ and covariance Σξ such as ξ ∼
N (ξ∗,Σξ). According to how the Fisher information matrixA
is defined in (7), this gives the lower bound to the variance of ξ,
i.e. Σξ = A−1. Moreover, the differential entropy of a generic
multivariate normal distribution x ∼ N (µ,Σ) with n dimen-
sions is defined as H(x) = 0.5 ·

(
n
(
1 + ln(2π)

)
+ ln(|Σ|)

)
.

Dropping the constant terms, the entropy is proportional to the
natural logarithm of the determinant of the covariance matrix,
i.e. H(x) ∝ ln(|Σ|), so the information about uncertainty en-
coded in the covariance matrix is converted into a scalar value.
Therefore, we first compute the Hessian matrix A by iterat-
ively solving the normal equations for increments of ∆ξ us-
ing a standard expectation maximization algorithm for the t-
distribution (Liu, Rubin, 1995), then we can compute H(ξ).
The new metric becomes the entropy ratio α:

α =
H(ξk,k+j)

H(ξk,k+1)
(9)

The reason behind this metric evaluation is the relation between
the error of the estimated trajectory and H(ξ), such that when
the first new frame is matched against the key-frame, the dis-
tance is the best possible for that frame and the estimate is ac-
curate. The accuracy then degrades with the increasing distance
between matching frames and so the entropy (which is a neg-
ative differential entropy) increases, i.e. getting closer to zero.
So, in absolute value, the ratio α decreases until it reaches a
threshold we set, telling that the accuracy is too low to continue
with the current key-frame and that an update is recommen-
ded. This method is adaptive, as opposite to the uniform update
rate shown above and then we expect to reduce the number of
updates during the alignment process and even to recover ad-
ditional range images that could be tried to align with a sub-
optimal selected key-frame.

4. RESULTS

We run our experiments on a dataset created with the considered
optical 3D scanner (few model examples are given in Figure
2) and we evaluate the system performance with and without
one or both the adopted solutions, comparing them to the basic
pipeline. The tests are performed offline, so that we can tune
the parameters on the same data for all the evaluations. Through
experience with the dataset we found a configuration that is usu-
ally able to generalize quite well to new acquisitions. Among
the main parameters to set, the scaling factor used for uniform
sampling has been set to 5, implying working with around 10k-
30k points. Conversely, for our tests, we set the maximum num-
ber of randomly sampled points to 500 (thus much less than in
the uniform case). Moreover, while the key-frame update when
performed uniformly has been done with a rate equal to N = 5
(to guarantee decent robustness), in the dynamic case, for the
update policy based on entropy ratio, we used a threshold α set
to 0.9.
For the evaluation we focused on:

• The total number of correct alignments,

• The average number of iterations occurred during ICP
(evaluated on the positive alignments only),
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Models Total Alignments Avg. Iterations Avg. KF Updates Avg. Distance [mm]
U&S R&A U&S R&A U&S R&A U&S R&A

Dummy 134/161 161/161 3.97 2.27 0.20 0.14 1.05 0.34
Face 1 204/239 218/239 4.30 4.75 0.20 0.05 0.98 0.49
Face 2 119/208 205/208 1.10 1.25 0.20 0.13 0.27 0.31

Forearm 93/102 98/102 3.80 2.23 0.20 0.19 0.66 0.36
Geometric 81/85 85/85 1.77 1.81 0.20 0.20 0.67 0.36

Hand 145/145 145/145 1.07 1.02 0.20 0.04 0.21 0.21

Table 1: Results run on 5 models in our test set. We compare the initial solution (uniform sampling and static key-frame update,
classified as U&S) with the new solution (random sampling and adaptive key-frame update, namely R&A).

Models Total Alignments Avg. Iterations Avg. KF Updates Avg. Distance [mm]
U&A R&S U&A R&S U&A R&S U&A R&S

Dummy 145/161 161/161 5.03 2.76 0.07 0.20 0.88 0.37
Face 1 202/239 211/239 5.63 4.38 0.05 0.20 0.72 0.59
Face 2 119/208 200/208 1.18 1.25 0.06 0.20 0.29 0.31

Forearm 93/102 98/102 2.76 2.31 0.10 0.20 0.38 0.41
Geometric 85/85 85/85 1.73 1.78 0.20 0.20 0.37 0.34

Hand 145/145 145/145 1.01 1.09 0.04 0.20 0.22 0.21

Table 2: Results run on 5 models in our test set. We compare the remaining combinations of the methods (uniform sampling with
adaptive key-frame update, labeled as U&A, and random sampling with static key-frame update, R&S).

• The average number of key-frame updates (again com-
puted over the positive alignments only),

• The average of the final distance returned after the ICP
pairwise alignment.

Table 1 shows the results obtained on four representative
sample models, by comparing the two opposite solutions: the
one using the original policies for sampling and updating the
key-frames, and the other adopting both the new solutions. We
complete the comparison by showing, in Table 2, the results on
the same datasets using the other two available mixed combin-
ations of the presented methods.
Overall we see that changing the initial solutions (either only
one or both) we always have an increment of total alignments.
The Face 2 model is the best case: because of redundancy and
noise in the data, the uniformly sampled points resulted to be
meaningless, so the ICP minimization algorithm diverged when
reaching the range image number 120 and the pipeline was not
able to recover the tracking afterwards. The problem was in-
stead overcame by selecting less points but randomly and in
fact the test shows an increment of 86 new alignments.
The Dummy model case shows how using a non-fixed grid
to sample the data, combined with a dynamic policy for up-
dating the key-frames, reduces the number of iterations re-
quired to perform the alignment and reduces also the number
of ICP failures by concurrently improving the alignment accur-
acy without impairing real-time reconstruction with the same
hardware (with few data-dependent variations the complexity
remains of the same order of magnitude). Although in the other
study cases the average number of iterations is not considerably
modified, we are always adding to the evaluation new aligned
range images, which resulted to be critical in the first attempt
(indeed the alignment failed), so to us is not surprising to see
ICP requiring few more iterations in these situations. The tim-
ing analysis showed no particular differences between the two
versions: both perform a single alignment within 90 ms. The
additional computation of the random distribution is then ab-
sorbed and does not affect the overall real-time experience.
Moreover, regarding the number of key-frame updates, is clear
how the previous policy (i.e. to update every 5 frames) was
sub-optimal: using an adaptive method we were able to align
at least the same amount of range images with less than half of

the key-frames. This means that we can reduce the amount of
ray-casting operations, which cost around 15 ms every time. A
significant example is the Hand dataset. In this case the acquisi-
tion were performed by moving quite slowly the scanner, so the
dataset contains a lot of very similar range images. In the end,
the new method achieves the same result of total alignments (all
the set were successfully aligned), with the same average dis-
tance (it is hard to go below the 0.2 mm because of the intrinsic
error coming from the acquisition) but with just a fifth of the
total updates.
In addition, because of the smarter decision about the timing
for the update of the key-frame, each alignment is performed
between pairs of range images that shares enough overlapping
area. Then together with the random selection of points, the
whole new process also produces a better alignment overall, as
pointed out by the final average distance that is always smaller
then the original method. The only exception happens for the
Face 2 model, but we point out that its averages are computed
on a much bigger pool of correct alignments and so there is a
bias to consider for the comparison of such measurements. In-
deed if we average on the first 119 range images only also for
the new implementation, we get the same result for the average
distance, i.e. 0.27 mm.
Finally, we add a comparison on how the pairwise alignment
performs when the same range image is aligned to two different
key-frames: in the former case (Figures 5 and 7) it was updated
by using a fixed rate, while the latter (Figures 6 and 8) lever-
aged on the adaptive solution. These examples highlight the
fact that the adaptive update can select a key-frame closer to
the current data with a smaller average point-to-point distance
and less outliers (as shown by the increased standard deviation
on the distance) with respect to the static counterpart.

5. CONCLUSION

We conclude that the use of random sampling and dynamic
updating strategies outperformed former fast solutions while
maintaining low computational complexity. In particular, the
new sampling method, despite being slower, allowed maintain-
ing the timing performance, concurrently solving critical align-
ment failure occurrences in the original solution. Moreover,
the new key-frame update method resulted to be more flexible
and more efficient, since the update is performed only when it
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(a) Superposition of aligned frames (b) Distribution of point-to-point
distances

Figure 5: Distance comparison between two range images from
Dummy model, aligned with the original methods. This and
the following figures was produced with CloudCompare (version
2.9.1) http://www.cloudcompare.org/

(a) Superposition of aligned frames (b) Distribution of point-to-point
distances

Figure 6: Distance comparison between two range images from
Dummy model, aligned with the new methods.

(a) Superposition of aligned frames (b) Distribution of point-to-point
distances

Figure 7: Distance comparison between two range images from
Geometric model, aligned with the original methods.

(a) Superposition of aligned frames (b) Distribution of point-to-point
distances

Figure 8: Distance comparison between two range images from
Geometric model, aligned with the new methods.

is deemed necessary (which translates into optimized resource
consumption) and, since it is forced when there is not enough
overlap between the frame and the key-frame, this allowed to
solve other alignment failures that we experienced with the ori-
ginal solution.
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