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ABSTRACT:

Thermal cameras are increasingly used in many photogrammetric and computer vision tasks. Nowadays it is possible to detect and
recognize objects in infrared images, to solve such tasks as pedestrian detection (Huckridge et al., 2016), security applications, and
autonomous driving (Wenbin, Li et al., 2017). Nevertheless, some tasks that are easily solved in the visible range data are still challenging
to achieve in the infrared range. Reconstruction of a 3D object model from infrared images is challenging due to the low contrast of the
original infrared image, noise of the sensor, and the absence of feature points on the image. Nevertheless, thermal cameras have their
advantages, which make them popular for solving practical problems. Firstly, thermal cameras can be used in degraded environments
(smoke, fog, precipitation, low light conditions). Secondly, infrared images can be fused with color images (Gao et al., 2013) to increases
the system’s performance.
This paper is focused on the evaluation of accuracy of 3D object reconstruction from thermal images. The evaluation of the accuracy is
threefold. Firstly, we train four stereo matching methods (CAE, LF-Net, SURF, and SIFT) on the MVSIR dataset (Knyaz et al., 2017)
and our new ThermalPatches dataset. We used two RTX 2080 Ti GPUs and the PyTorch library for the training. Secondly, we evaluate
the matching score for the selected methods. Finally, we perform 3D object reconstruction using the SfM (Remondino et al., 2014)
approach and matches for each method. We compare the object space accuracy of the resulting surfaces to the ground-truth 3D models
generated with a structured light 3D scanner.

1. INTRODUCTION

Thermal cameras are increasingly used in many photogrammetric
and computer vision tasks. Nowadays it is possible to detect and
recognize objects in infrared images, to solve such tasks as pedes-
trian detection (Huckridge et al., 2016), security applications, and
autonomous driving (Wenbin, Li et al., 2017). Nevertheless, some
tasks that are easily solved in the visible range data are still chal-
lenging to achieve in the infrared range. Reconstruction of a 3D
object model from infrared images is challenging due to the low
contrast of the original infrared image, noise of the sensor, and
the absence of feature points on the image. Nevertheless, ther-
mal cameras have their advantages, which make them popular
for solving practical problems. Firstly, thermal cameras can be
used in degraded environments (smoke, fog, precipitation, low
light conditions). Secondly, infrared images can be fused with
color images (Gao et al., 2013) to increases the system’s perfor-
mance (Kniaz et al., 2019a, Kniaz andKnyaz, 2019). Finally, mul-
tispectral image datasets are highly demanded nowadays. While
many large datasets of images captured in the visible range can
be found in the public domain (Lin et al., 2014, Everingham et al.,
2015), nowadays only a few small thermal images datasets are
available.

Moreover, such datasets are limited in terms of object classes and
imaging conditions. 3D object reconstruction techniques such as
Structure from Motion (SfM) (Remondino et al., 2014), simul-
taneous localization and mapping (SLAM) (Engel et al., 2014),
Semi-global Matching (SGM) (Hirschmuller, n.d., Bethmann and
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Luhmann, 2015), silhouette-based 3D reconstruction (Tzevanidis
et al., 2010), Shape from Interaction (Michel et al., 2014), and
deep learning-based methods (Knyaz et al., 2019, Kniaz et al.,
2019b) prove to be fast and robust techniques for 3D model gen-
eration from the imagery captured in the visible range.But these
methods are not accurate for reconstructing infrared models (Fig-
ure 1). Thus a feature extraction method that is robust to low con-
trast details is required for 3D object reconstruction in the thermal
range. 3D modeling is a perspective approach for the generation
of large datasets of thermal images. Nevertheless, real thermal
textures are required to generate realistic 3D models. Therefore,
thermal 3D scanning systems are needed to create 3Dmodels with
thermal textures. Moreover, 3D reconstruction of objects from
thermal images is required in such applications as thermal textur-
ing of 3D models and reconstruction of hot air streams.

Figure 1. Example of 3D reconstruction in the thermal range.
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Figure 2. Example of point matching in thermal images using
SIFT algorithm.

2. RELATEDWORK

The reconstruction of three-dimensional models of objects from
images has been developing successfully for a long time. Re-
cently the possibility of of solving this task using a monocular
camera has been actively investigated. Robust image matching
is the main element in modern reconstruction techniques. Such
methods of 3D object reconstruction are based on feature descrip-
tors (Bay et al., 2006).

The development of infrared cameras has increased interest in the
reconstruction of three-dimensional models in the infrared range
(Hajebi and Zelek, 2008, Weinmann et al., 2014, Negied et al.,
2015, Lewis et al., 2015). However, reconstruction of objects in
the infrared range is a very difficult task due to the presence of dif-
ferent distortions such as infrared reflections, infrared halo effects,
saturation. Also, there are low contrast in the infrared images and
such methods as SIFT (Lowe, 1999) and SURF (Bay et al., 2006)
fail to obtain feature points (Figure 2). The evaluation of methods
that do not use feature points such as the LSD-SLAM (Engel et
al., 2014, Yamaguchi et al., 2017) showed that they also could not
recover scene geometry due to lack of contrast in features in ther-
mal images. Thus, the main problem of 3D reconstruction and
pose estimation in the infrared range is the poor performance of
existing image matching methods on the thermal imagery.

Imagematchingmethods that use finite object planes such as plane
sweep matching or PatchMatch (GALLIANI et al., 2016, Bleyer
et al., n.d., Gallup et al., 2007) seem to be robust on low-textured
areas. Still, such methods require diffuse Lambertian reflection
properties of the observed surface and regularization conditions
to provide smoothness between adjacent local planes.

Active development of convolutional neural networks has led to
the appearance of deep learning based feature descriptors (Wohlhart
and Lepetit, 2015). They outperform their hand-crafted prede-
cessors in matching accuracy.Recently many deep learning meth-

ods were proposed for robust stereo matching such as the con-
volutional autoencoder (CAE) for stereo matching (Knyaz et al.,
2017), LF-Net (Ono et al., 2018), and LIFT (Yi et al., 2016). The
first group is based on classical deep convolutional neural net-
works (CNN) for image classification (Krizhevsky et al., 2012,
Szegedy et al., 2015). To perform matching top layers of the net-
work are removed. The output of the remaining layers is used
as a code to find feature correspondences. One such method is
LIFT(Learned Invariant Feature Transform). This is a novel deep
network architecture that implements the full feature point han-
dling pipeline, that is, detection, orientation estimation, and fea-
ture description in a unified manner. LIFT is based on the four-
branch Siamese architecture. Each branch contains three distinct
CNNs, a detector, an orientation estimator, and a descriptor. Ex-
perimental results demonstrate that such approach outperforms
the state-of-the-art methods on visible range,but there are no eval-
uations for infrared images. Another algorithm from this group
is LF-Net(a Local Feature Network). LF-Net has two main com-
ponents. The first one is a dense, multi-scale, fully convolutional
network that returns keypoint locations, scales, and orientations.
It is designed to achieve fast inference time, and to be agnostic to
image size. The second is a network that outputs local descriptors
given patches cropped around the keypoints produced by the first
network.

The second group of deep learning based descriptors is based on
the unsupervised learning approach. As the number of possible
image points in a dataset could reach billions of classes, it is of-
ten impossible to choose good classes at the training stage. In
(Kehl et al., 2016) it is proposed to use CAE to overcome this dif-
ficulty. The usage of CAE for 6D pose estimation with RGB-D
data have shown the state-of-the-art results on various datasets.
The other benefit of CAE is their robustness to previously un-
seen data. The performance of machine learning methods can be
tuned by training on the dataset containing local patches of tar-
get objects. However, there are few training datasets (Knyaz et
al., 2017) that include local patches of thermal images. All in all,
deep learning based architectures provide a robust solution for lo-
cal patch matching that can adapt to arbitrary kind of features and
spectral range.

3. METHOD

Our evaluation of 3D Object Reconstruction accuracy is twofold.
Firstly, we want to compare the accuracy of keypoint matching
for four algorithms: SIFT (Lowe, 1999), SURF (Bay et al., 2006),
LF-Net (Ono et al., 2018), and CAE-64 (Knyaz et al., 2017). Sec-
ondly, we would like to perform 3D Object reconstruction using
the single SfM approach and various keypoint matches provided
by the four algorithms. We perform evaluation on two datasets:
MVSIR (Knyaz et al., 2017) and our new ThermalPatches dataset.

3.1 ThermalPatches Dataset Generation

MVSIR dataset was generating using two FLIR P640 cameras
with a resolution of 640×480 pixels and focal length of 130 mm.
Our new ThermalPatches dataset contains images from a low cost
thermal 3D reconstruction system that includes two FLIR ONE
Pro cameras with an internal resolution of 160×120 pixels up-
sampled to 640×480 using super-resolution chip and focal length
of 40 mm. The dataset consists of thermal stereo pairs of three
solid objects: Gnome statue, Head, and Car (Figure 3).The dataset
includes 540 thermal images.Multiview pictures were taken in in-
crements of 2 degrees. The FLIR ONE camera produces as a stan-
dard output thermal preview images that present temperature of
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captured objects as monochrome (or pseudocolors) images with
a reference temperature scale bar. Also the FLIR ONE camera
provides raw 16bit data and the EXIF information for acquired
images. Values of the raw data represent the object emission in
the wavelengths 8–14 μ.

We generated ground-truth 3D models of the test objects using a
structured light scanner. Also, we generated scans of a hot water
stream, to evaluate the scanners’ performance on the task of 3D
reconstruction of liquid objects. We generated ground-truth corre-
spondences for the thermal stereo pairs using the ground-truth 3D
models and raytracing. We provide the ground-truth correspon-
dences both as the cropped image patches and a dense optical flow
from the left to the right image in the stereo pair. Our Thermal-
Patches dataset includes 1200 cropped image patches (Figure 5),
three ground-truth 3D models, and camera poses in the object co-
ordinate system for each stereo pair.

4. EXPERIMENTS

We present the results of the evaluation and demonstrate the qual-
ity of 3D object reconstruction from different image datasets.We
reconstructed the ground truth 3Dmodels of each object in visible
range. After that we compare the matching accuracy four feature
descriptors.In the end, we demonstrate the evaluate of full 3D ob-
ject reconstruction for MVSIR and ThermalPatches. As a ground
truth data, we use 3D models generated by a 3D scanner based
on fringe projection. The 3D scanner (Knyaz, 2010) provides 0.1
mm accuracy for reconstructed reference 3D models.

The first part of the evaluation of three-dimensional reconstruc-
tion of objects is the matching feather points on thermal images.
Using thermal images of an object of the same class from different
datasets, we present that the traditional feature descriptors meth-
ods are not robust and effective especially for low-cost cameras
(Figure 6).

We use precision-recall curve (PR) and area under the curve (AUC)
as performance metrics. The detailed results for PR AUC are
given in Table 1

Dataset SIFT SURF LF-NET CAE-64

ThermalPatches 0.2 0.4 0.7 0.85
MSVIR 0.35 0.62 0.81 0.9

Table 1. PR AUC for MVSIR and ThermalPatches dataset.

The second step in evaluation of three-dimensional reconstruction
objects has begun the demonstrate the evaluate of full 3D object
reconstruction for MVSIR and ThermalPatches. We compare the
accuracy of reconstructed 3D models using open source and com-
mercial software: Agisoft PhotoScan (PS) and GeoMagic Design
X. To evaluate the deviation of 3D models obtained by various
techniques from the reference 3D model we transform them to a
common coordinate system and display deviations using pseudo
colors. Our pipeline failed to reconstruct three-dimensionalmodel
of the Gnomemodel fromThermalPatches datasets. The accuracy
of the reconstructed surfaces and examples of comparing some
objects are presented in Figures 7–9 and Table 2.

Method Head Gnome Car

ThermalPatches 10.1 - 9.8
MSVIR 6.07 5.25 5.8

Table 2. Standard deviation of distances in mm for MVSIR and
ThermalPatches dataset.

Figure 7. Evaluation result for the Head statue for images from
MSVIR dataset.

Figure 8. Evaluation result for the Gnome statue for images
from MSVIR dataset.

Figure 9. Evaluation result for the Car for images from
ThermalPatches dataset.

5. CONCLUSION

We evaluated the accuracy of four feature point matching algo-
rithms on the MVSIR and our new ThermalPatches datasets. We

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W18, 2019 
Optical 3D Metrology, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W18-129-2019 | © Authors 2019. CC BY 4.0 License.

 
131



Gnome Head Car

M
V
SI
R

T
he
rm

al
Pa
tc
he
s

G
ro
un
d
Tr
ut
h

Figure 3. Comparing images from MVSIR and ThermalPatches datasets.
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Figure 4. Examples of cropped images patches from MVSIR
dataset.

generated a new ThermalPatches dataset that includes low resolu-
tion infrared images of three objects.The size of the dataset is 540
images. Evaluation of matching feature points demonstrates that
traditional methods cannot obtain feature points on low resolution
thermal images. 3D models reconstructed from low-cost thermal
scanner show limited details and have the object space accuracy
of about 50 mm for the working volume of 100 × 100 × 100
mm. While such accuracy is insufficient for texture generation, it
is still possible to track the flow of the hot liquid using a low-cost
scanner. 3D reconstruction using the moderate resolution images
allows acheiving the object space accuracy of about 7 mm for the
working volume of 100× 100× 100 mm.
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Figure 5. Examples of cropped images patches from
ThermalPatches dataset.
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