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ABSTRACT: 
 
Low cost imaging and positioning sensors are opening new frontiers for applications in near real-time Photogrammetry. 
Omnidirectional cameras acquiring images with 360o coverage, when combined with information coming from GNSS (Global 
Navigation Satellite Systems) and IMU (Inertial Measurement Unit), can efficiently estimate orientation and object space structure. 
However, several challenges remain in the use of low-cost sensors and image observations acquired by sensors with non-perspective 
inner geometry. The accuracy of the measurement using low-cost sensors is affected by different sources of errors and sensor 
stability. Microelectromechanical systems (MEMS) present a large gap between predicted and actual accuracy. This work presents a 
study on the performance of an integrated sensor orientation approach to estimate sensor orientation and 3D sparse point cloud, using 
an incremental bundle adjustment strategy and data coming from a low-cost portable mobile terrestrial system composed by off-the-
shelf navigation systems and a poly-dioptric system (Ricoh Theta S). Experiments were performed in an outdoor area (sidewalk), 
achieving a trajectory positional accuracy of 0.33 m and a meter level 3D reconstruction. 
 

1. INTRODUCTION 

The advancements in the photogrammetric data processing and 
the increasing number of low-cost and lightweight navigation 
(MEMS) and imaging sensors, available in the market have 
encouraged the development of new integrated sensor 
orientation (ISO) approaches. These sensor technologies have 
opened many possibilities for real-time Photogrammetry 
considering several sets of observations from different sources. 
Real-time and mobile Photogrammetry requires an incremental 
approach for positioning and reconstruction with bundle 
adjustment (BA), since new measurements are made available 
at each time step during sensor traversing. An incremental BA 
can be understood as an estimation technique based on a 
sequential adjustment for determination of image orientation 
and 3D points´ coordinates, in order to obtain an optimal least 
square solution (Gruen, 1988). A reasonable computational cost 
for a real-time solution requires a dynamic data acquisition and 
suitable initial information of the sensor pose and tie point 
coordinates. Initial information provided by GNSS/IMU 
systems can improve the processes having high computational 
requirements, such as image matching and bundle adjustment. 
 
Low cost commercial cameras with fisheye lenses (e.g. Go Pro 
360°, Ricoh Theta, Insta360, Samsung Gear360, Nikon 
Keymission 360 and LG360.) and catadioptric systems 
(e.g. VSN Mobil V.360°) have motivated the use of large field 
of view images in close range Photogrammetry (CRP), 
especially for indoor robot navigation (Lourenco et al., 2012) 
and outdoor mapping applications, such as urban mapping and 
ground vehicles automation (Scaramuzza et al., 2009) (Mur-
Artal et al., 2015) (Suhr et al., 2017), forest monitoring 
(Campos et al., 2018) and precision agriculture (Ericson and  
Åstrand, 2010;  Cheein et al., 2011). Omnidirectional systems 
are an attractive alternative due to large field of view around the 
sensor, which allows more features to be tracked in a single 
image shot. However, using these new navigation and imaging 
sensors requires adaptations in the photogrammetric processes 

to support applications in CRP. Omnidirectional images have 
huge scale and illumination variations between scenes and large 
radial distortion, which directly affects photogrammetric 
processes, such as image matching and bundle adjustment. 
Furthermore, measurements generated by low cost MEMS 
sensors present large noise and there is a substantial gap 
between their predicted and actual performances.  
 
Therefore, this paper presents an ISO approach to estimate 
sensor orientation and a sparse 3D point cloud from data 
acquired by a low-cost portable mobile terrestrial system 
(PMTS), using an incremental bundle adjustment strategy 
consistent with the fisheye lens geometry. 
 

2. PERSONAL MOBILE MAPPING SYSTEM SETUP 

The mobile terrestrial system used in this research is a PMTS, 
which can be defined as a set of sensors embedded in a 
backpack platform that are carried by a human operator 
(Figure 1.a). PMTS approaches have been increasingly used in 
CRP applications, due to the dynamic data acquisition on 
ground perspective, in places with difficult access, such as 
forest, agricultural fields, sidewalks and indoor buildings. The 
proposed PMTS consists of miniaturized and off-the-shelf 
navigation sensors and an omnidirectional camera (Figure 1.b).  
 
The navigation system, which is composed of a GPS receiver 
(Ublox NEO-6M) and an IMU (MPU 6050) integrated with an 
Arduino microprocessor. Ublox NEO-6M is a low-cost single 
frequency GPS (global positioning system) receiver that 
provides real-time position (latitude, longitude and geometric 
height), velocity and time data in the NMEA (National Marine 
Electronics Association) protocol with a meter level 
planialtimetric accuracy, while, MPU 6050 measures angular 
velocities and accelerations for X, Y and Z axis. Therefore, 
yaw, pitch and roll angles can be estimated.  
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The Ricoh Theta S is a polydioptric system composed of two 
cameras with fisheye lenses (sensor 1 and sensor 2) specially 
arranged in the same structure in a back-to-back position to 
cover a full spherical field of view, aiming at 360° image 
generation (Figure 1.b). Ricoh Theta S acquires 29 dual-fisheye 
frames per second in video mode with a fisheye image 
composed of 960 x 1080 pixels for each sensor. Therefore, the 
PMTS affords two fisheye images (one for each sensor) and 
initial exterior orientation parameters (EOPs) for each one 
second of data collection. More details about the PMTS setup 
can be found in Campos et al. (2018). 
 

  
(a)                         (b) 

Figure 1. Personal mobile terrestrial system (PMTS) for a 
sequential data acquisition: (a) PMTS carried by an operator, (b) 
Ricoh Theta S camera  (Campos et al., 2019). 
 

3. MATHEMATICAL MODEL 

The image acquisition using polydioptric systems based on 
dual-fisheye lenses does not follow the collinearity condition, 
requiring a suitable functional model to reflect the behaviour of 
the fisheye lenses (Hughes et al., 2010). Furthermore, the 
relative orientation between cameras needs to be considered for 
a rigorous approach. The mathematical model used in the 
incremental bundle adjustment is based on the equidistant 
projection (Equation 1). Concerning the offsets and 
misalignment angles between the two fisheye lenses of the 
cameras composing Ricoh Theta S, constraints based on 
stability of the relative orientation parameters (ROPs) between 
cameras (base elements Bx, By, Bz and rotation matrix RR) 
were added in the bundle adjustment for a simultaneous 
estimation of the EOPs from sensor 1 and sensor 2 (Tommaselli 
et al., 2013). The simultaneous bundle adjustment with relative 
orientation constraints is based on the condition that ROP are 
stable during the same image acquisition process, but small 
variations are admitted as random variables (Equations 2 and 3) 
(Tommaselli et al., 2013). This approach was implemented in 
C/C++ language on the CMC (Calibration of Multiple Cameras) 
program, based on (Tommaselli et al., 2013) and (Marcato 
Junior et al., 2015). Equation 1 represents the equidistant 
mathematical model, in which the image coordinates (xf, yf) are 
related to the principal distance (c) and Xc, Yc and Zc (the 3D 
point coordinates in the photogrammetric reference system) 
(Lowe, 2004). The relationship of these 3D points coordinates 
with the ground coordinates system requires a similarity 
transformation as a function of the perspective centre 

coordinates and Euler angles (Marcato Junior et al., 2015), 
which will be embedded in Equation 1.   
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4. INCREMENTAL BUNDLE ADJUSTMENT 

METHODOLOGY 

The structure of the proposed incremental bundle adjustment 
relies on five main sequential steps (1) Data acquisition of two 
fisheye images (sensor 1 -S1 and sensor 2 - S2) and initial EOPs 
with a frequency of 1 Hz; (2) an image matching process for 
fisheye images based on SIFT (Scale-Invariant Feature 
Transform) operator (Lowe, 2004), known as SIFTRFS (Campos 
et al., 2019); (3) The estimation of initial 3D coordinates (X, Y, 
Z) of the k image observation from SIFTRFS, using a space 
intersection method adapted for fisheye lens geometry; (4) A 
local bundle adjustment with incremental observations, and 
finally; (5) the initial values of EOPs and 3D coordinates (X, Y, 
Z) are updated with the estimated values from the bundle 
adjustment and respective standard deviations obtained from the 
covariance matrix (σXYZ, σOBS). The image matching process 
and the initial map estimation were developed in MATLAB 
scripts, while the incremental bundle adjustment was performed 
with the in-the-house software CMC, implemented in C/C++ 
language. 
 
4.1  Input data and PMTS sequential data acquisition 

The proposed methodology considers that IOPs (interior 
orientation parameters), ROPs and system boresight angles are 
known from a previous calibration process. The location of a set 
ground control points (GCP), especially in the begging of the 
trajectory, or an accurate position of the starting exposure 
station is recommended to enable a suitable initial solution. This 
external information is an input data for the incremental 
process. The sequential data acquisition is performed using the 
PMTS described in Section 2. This system enables the 
acquisition of omnidirectional images (dual-fisheye) and initial 
EOPs with 1 Hz frequency, ranging in a period of time (t) 
between 0 (start) and n seconds (end). Therefore, a set of M 
fisheye images and M initial EOPs are obtained in function of 
the time (M = 2*t).  
 
4.2 Image Matching 

The image matching process starts with t = 3 (and, thus M = 6), 
considering an initial pair of triplets of omnidirectional images 
(6 fisheye images, forming 3 pairs with 360° viewing angle) and 
6 initial EOPs (S1 and S2). The ROPs, between S1 and S2, 
estimated in a previous calibration step, are 179.98º, 0.11º and 
179.66º (, , , respectively), and 0.019 m between 
cameras perspective centers. A strategy for reduction of the 
search space, considering the epipolar geometry on the sphere 
domain, was combined with SIFT to avoid outliers. This 
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approach was named as SIFTRFS (Campos et al., 2019). For each 
key point extracted in the left image a search window is defined 
in the right image, based on the epipolar line projection. Then, 
the invariant descriptor vector from the key point searched is 
compared only with the key points belonging to that search 
window. The estimation of the epipolar line uses the ROPs 
values computed from the initial EOPs (for images taken at 
different exposure stations). Therefore, the search window 
dimensions depend on the errors in the initial EOPs. 
Subsequently, EOPs are recursively estimated thus improving 
the search window endpoints and reducing its dimensions. The 
use of ROPs parameters from EOPs measured with the 
GPS/IMU, brings many benefits for an optimized process, for 
instance, there is no need for system calibration, systematic 
errors are the same in both images, the adjustment 
implementation is simplified, and the relative accuracy is higher 
than absolute, especially using low-cost sensors. This iterative 
process was performed from each possible pair of images 
(keyframes) during image acquisition (Campos et al., 2019).  
 
SIFTRFS was applied in the two sets of fisheyes images from 
sensor 1 and sensor 2 independently. At the end of each 
iteration, k match points coordinates in the image space are 
obtained, which are used as tie points in the incremental bundle 
adjustment. Initial 3D coordinates of the tie points in the object 
space (ground coordinates) are required in the bundle 
adjustment, to reduce iterations and the computational time. 
 
4.3 Initial map (approximated values for the ground 
coordinates of the tie points) 

Initial values for the ground coordinates of the tie points 
detected by SIFTRFS were obtained with a space intersection 
model adapted with a mathematical model for fisheye geometry 
and using the data provided by the PMTS navigation system as 
initial EOPs. In this case, the image coordinates are projected to 
an intermediary spherical surface, with z component being 
different from the principal distance. Therefore, the z 
component of a point over a sphere is computed (Equation 4) 
for each observation in the photogrammetric system (x, y) as a 
function of the radius (r) and the incident angle (α), which will 
be used to calculate the projecting vectors u, v, w, for the right 
(i) and left images (j). Then, the approximate values for the 
scales (λi, λj) for each match point can be estimated solving a 
system of three linear equations with two unknowns (Equation 6 
to Equation 8). Equation 6 is used to estimate the scales (λi,j), 
which are obtained from Equation 5, according to the base 
elements (Bx, By, Bz). Equation 7 presents the vector of 
observation (Lb) composed by the base elements (Bx, By, Bz) 
computed from the initial EOPs (acquired by Ublox NEO 6M), 
the coefficients matrix (A) with the projecting vectors and the 
parameter vector (Xa). Equation 8 presents the solution from the 
least squares method, estimating values for the scale factors 
(Xa), in which the observations have the same weight. 
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If the scales are known (Xa), the x and y coordinates in the 
object space from the right (i) and left images (j) can be 
projected to the object space (Xproj, Yproj, Zproj) by Equations 5. 
The average values of Xi

proj, Yi
proj, Zi

proj and Xj
proj, Yj

proj, Zj
proj, 

computed by space intersection, are the 3D coordinates of the 
match point in the object space (X, Y, Z). This initial 
coordinates in the object space are computed for each set of new 
image observations (k) from the sequential image matching 
process with SIFTRFS. 
 
4.4 Incremental bundle adjustment estimation 

The incremental approach starts with image points from the 
omnidirectional image triplet obtained with SIFTRFS. These 
observations, the GCPs coordinates, approximated values of 3D 
ground coordinates (X, Y, Z), initial EOPs and the calibrated 
IOPs and ROPs (considered as constants), are inputs for the first 
iteration of the incremental bundle adjustment. Observations 
and parameters are combined in an adjustment performed with 
the unified approach of least squares method and parameters 
constraints (Mikhail and Ackerman, 1976), which enables the 
simultaneous estimation of EOPs and 3D ground coordinates 
for this omnidirectional image triplet. The initial values of EOPs 
and 3D coordinates are updated with the estimated values from 
the bundle adjustment and their respective standard deviations 
obtained from the covariance matrix. Then, an omnidirectional 
image pair (two fisheye images from each sensor) is added to 
the process with the respectively initial EOP and GCP in the 
next iteration. SIFTRFS is applied for the new keyframes. The 
initial map and the set of EOPs are now composed by 
previously adjusted and initial values. Therefore, in the 
incremental bundle adjustment process, parameters are 
organized in two sets with different weights: one with 
parameters that had been already estimated in the bundle 
adjustment in an earlier instance and a second one with new 
parameters observed in the scene in the current instance with 
initial values. The bundle adjustment process is performed 
again, and this incremental process repeats until the end of the 
dataset. The observations and parameters storage can be a 
computational problem during the incremental B.A. process. 
Therefore, a further step of data reduction should be necessary 
to evaluate which of the previous data are essential to be 
maintained, need to be updated or become outdated and can be 
discarded. This step will not be approached in this work.  
 

5 EXPERIMENTS AND RESULTS 

5.1 Dataset 

A sequential data acquisition with the PMTS (Section 2) was 
performed in a narrow path (22° 07’ S, 51° 24’ W) covered with 
sparse vegetation areas (Eucalyptus trees and ground 
vegetation) and urban features (small building, light poles and 
traffic signs). A 10 m trajectory was traversed, resulting in a set 
of 28 images (14 omnidirectional images) and 28 groups of 
initial EOPs from the PMTS navigation system (Ublox NEO-
6M/MPU6050). The pixel size in object space units of the 
fisheye images in this dataset range between 1 and 80 cm. The 
initial navigation data were obtained with a positional accuracy 
varying between 1 and 5 m. Larger systematic errors in the 
Ublox NEO-6M positioning are usually obtained in height 
(Campos et al., 2018). Thus, an initial correction value 
(ΔZ ≈ 5 m) was applied in the heights of all camera positions 
(Z0) estimated with Ublox NEO-6M. The ΔZ value (constant) 
was computed considering the height of GCPs in the begging of 
the trajectory aligned with the camera center position, which 
enable a better estimation of the initial 3D ground coordinates. 
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The Ublox NEO-6M data were acquired in NMEA format 
(latitude, longitude) and converted to UTM (E, N, h), which is 
compatible with the coordinate system that is used for GCPs. 
  
A set of 12 GCPs (6 appearing in the image of each sensor) 
were obtained from an existing terrestrial LASER point cloud 
(collected with Leica ScanStation P40). A standard deviation of 
5 cm was assigned for the GCPs in the object space which is 
compatible with the point cloud accuracy and resolution. The 
3D ground coordinates were measured in the LASER point 
cloud using Cloud Compare and Fugro Viewer software. All 
corresponding GCPs were identified and manually measured in 
the images. The coordinates in the image and object spaces 
were previously informed for the incremental process. The 12 
GCPs were located in the begging of the trajectory, but along 
the trajectory the visibility of the reference points decreased 
until the total absence of GCPs. At the end of the trajectory a 
bundle adjustment was performed with 4 check points measured 
in the last six images to estimate the accuracy of the 3D point 
cloud generated. The coordinates of the check points used as 
reference were also measured in the LASER point cloud 
 
A simulation of a real-time photogrammetric process was 
performed considering the dataset above described and the 
workflow defined in Section 4. The performance assessment of 
the incremental bundle adjustment using PMTS data was done 
mainly focusing on the positional accuracy of the trajectory and 
the accuracy of the 3D coordinates map. 
 
5.2 PMTS trajectory and the 3D ground coordinates 
accuracy 

The accuracy of the camera stations (trajectory) was estimated 
by comparing the results from the incremental bundle 
adjustment with reference values (a simultaneous bundle block 
adjustment with PhotoScan). Figure 2 presents the trajectory 
estimated with the Ublox GPS receiver (red), the estimated 
trajectory with the incremental bundle adjustment for sensor 1 
(gray) and sensor 2 (blue) and the ground reference (green). The 
trajectory was estimated with a positional accuracy (RMSE) of 
0.25 m, 0.16 m and 0.15 m for E, N and h respectively, resulting 
in a planimetric accuracy of 0.29 m and planialtimetric accuracy 
of 0.33 m. 
 
The accuracy of the 3D ground coordinates was assessed with 4 
checkpoints, specially positioned at the end of the trajectory 

path (last 6 images). Table 1 presents the statistics, including the 
mean (𝐱ത) standard deviation (σ) and RMSE of the discrepancies 
between the 3D coordinates of the 4 check points measured in a 
LASER point cloud (reference) and the coordinates estimated 
by the incremental bundle adjustment. Therefore, the 3D ground 
coordinates (E, N, h) of the points detected with SIFTRFS (tie 
points) were estimated at the end of the trajectory with a 
positional accuracy (RMSE) of 0.8 m, 0.7 m and 0.5 m for E, N 
and h respectively, resulting in planimetric accuracy of 1 m.  
 

Statistics E (m) N (m) h (m) TOTAL (m) 

𝐱ത -0.245 0.190 0.304 - 

 0.876 0.752 0.356 - 

RMSE 0.798 0.679 0.433 1.02 

Table 1. Statistics: mean, standard deviation and RMSE of the 
checkpoints 

The results presented in Figure 2 and Table 1 show the drift of 
the solution along the trajectory caused by different sources of 
errors. The 3D map accuracy is affected by the sequential error 
propagation. First of all, the MPU5060 data was very noisy 
after 6 meters (after sensor pose n. 7) of PMTS traversing due to 
the platform movements. The error in the initial EOPs directly 
affected automatic extraction of image observations (SIFTRFS) 
and the initial map estimation. Regarding SIFTRFS performance, 
the reprojection errors of image observations are smaller than 2 
pixels. However, the errors in the initial EOPs affected the 
precision of the epipolar line projection, which usually results in 
a poor geometric distribution of the match points in the 
keyframes. The outliers and the weak geometry of match points 
are also mentioned in related works, as the main reasons for the 
drift of the incremental bundle adjustment solution (D. 
Scaramuzza et al., 2009). The space intersection model used to 
compute the initial 3D ground coordinates of the tie points also 
depends directly on initial EOPs accuracy. Thus, the 3D ground 
coordinates estimated at the end of the trajectory presented a 
standard deviation between 3 m and 5 m. At this point (instant 
t=10), the number of GCPs is reduced and far from the sensor, 
for instance, 2 GCPs for each sensor side (maximum), which 
hinders a more accurate solution in the incremental process. 
 
Despite of the GPS/IMU noises and the weak geometry of some 
images, the proposed methodology was able to weight the 
observations properly and recover the solution, as presented in 
Figure 2. For instance, the residuals in the sensor position start 

 
 

Figure 2. Sensor trajectory estimated by simultaneous bundle adjustment with PhotoScan (taken as ground reference), Ublox GPS 
receiver and in the incremental bundle adjustment using PMTS data along the trajectory. 
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to increase between instant t=7 and t=10 (nearly to 1 m in E), 
since some keyframes with weak geometry were included. 
However, the solution for instants t=11 to t=14 are close to the 
reference values with a planimetric error of 0.5 m, 
approximately, which is consistent with the average trajectory 
accuracy (RMSE) estimated.  
 
Furthermore, the proposed incremental BA methodology was 
evaluated considering a data acquisition performed with the 
proposed PMTS in an outdoor area (sidewalk) with areas 
covered with vegetation, which can be considered more 
challenging due to obstruction of the GNSS signals. The PMTS 
trajectory was estimated with the incremental bundle adjustment 
with an accuracy (RMSE) of 0.33 m. These results showed that 
passive optical systems combined to low-cost navigation 
sensors can be considered a feasible alternative to estimate 
sensor position in covered areas, for instance, natural or planted 
forests, where direct methods based only on GNSS and IMU are 
not often available or accurate due to GPS signal obstruction. 
 

6. CONCLUSIONS 

This work presented a feasibility study of an incremental bundle 
adjustment methodology for real-time orientation and mapping, 
based on ISO approach and using data coming from a low-cost 
and lightweight PMTS acquired in an outdoor test area. The 
experimental assessment showed the potential of low-cost 
systems based on MEMS measurement, as source of initial 
information for the photogrammetric processing. For instance, 
methodologies based on the use of relative orientation 
parameters estimated from GNSS/IMU-MEMS, such as 
SIFTRFS, can provide more accurate and optimized solutions. 
However, the MEMS navigation system used still provides high 
level of errors and noise. These errors can result in a quick drift 
of the solution, requiring future assessments focusing in a 
stochastic treatment of the initial information provided.  
 
This optical-based omnidirectional system offered an option for 
mobile mapping over covered areas, enabling more flexible 
mobile mapping systems for CRP applications. Since Ricoh 
Theta S cameras are arranged in the same structure, the relative 
orientation stability constraints were introduced to improve the 
consistency between the EOPs estimative for an omnidirectional 
image. For instance, the estimated positions of each Ricoh 
Theta S camera station vary only 2 cm (linear offset). However, 
at the end of the trajectory, the two sets of EOPs from an 
omnidirectional image were estimated with discrepancies higher 
than the expected linear and angular offsets, due to the errors 
propagation. On average, the EOP estimated for each Ricoh 
Theta S camera had a linear offset of 10 cm. Therefore, further 
investigations are required, aiming a more stable mathematical 
model.  
 
Many improvements are still required to automate the PMTS 
process for robust real-time applications. The weak geometry of 
some points in fisheye images is one of the main reasons for the 
non-convergence and the instability of the incremental BA 
solution. Therefore, the main challenges observed in this study 
for real-time CRP application relies on the automatic detection 
of image observations (image matching assessment and 
geometry) to support a consistence network of matches and the 
auto-diagnosis to remove or maintain observations (outliers and 
points with weak geometry). 
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