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ABSTRACT: 
 
Structure from motion (SfM) has been widely used to achieve automatic 3D reconstructions.  However, as the 3D point clouds 
obtained via SfM are sparse, multi-view stereo (MVS) was developed to compensate for this sparseness.  The accuracy of the 3D 
surface depends on the accuracy of the orientation elements based on the SfM.  Additionally, in the case of an unmanned aerial 
vehicle (UAV), SfM exhibits a decrease in the accuracy of the orientation elements during complex camera movements.  This paper 
proposes a patch-based MVS (PMVS) method considering the accuracy of the orientation elements.  The proposed method involves 
applying the global SfM, estimating accuracy of exterior orientation (EO) elements, and introducing the accuracy of EO elements to 
PMVS.  The PMVS approximates an object surface by using small rectangular patches, namely local tangent plane approximation.  
The patches are optimized by minimizing the sum of the photometric discrepancy scores.  The accuracy of the EO elements is 
introduced to the patch optimization as weighting function.  This accuracy is defined using the variances of the estimated parameters 
in the bundle adjustment.  We also investigate the types of weighting functions.  The results indicate that the proposed method is 
capable of considering geometric conditions during patch estimation.  The proposed method was applied to the three types of image 
datasets, i.e., images captured using an SLR camera at ground level, images captured using a UAV equipped with a SLR camera, and 
images captured using an airplane equipped with an oblique camera.  Through the experimental results, the improved accuracy and 
the effectiveness of the proposed method were confirmed.   
 
 

 
*  Corresponding author 
 

1. INTRODUCTION 

3D models have been widely used due to extensive availability 
of multiple free software.  These software are mainly based on 
structure from motion (SfM), which is used to achieve 
automatic 3D reconstructions.  As SfM calculates the 3D 
coordinates only for feature points, the results of the 3D point 
clouds are sparse.  Therefore, dense image matching techniques 
have been developed to compensate for this sparseness by 
estimating the 3D surface corresponding to all pixels in the 
images.  These dense image matching techniques are based on 
stereo matching methods.  The stereo matching methods can be 
extended to methods that can address multiple images, known 
as multi-view stereo (MVS).  Thus far, many MVS methods 
such as voxel-based approach, deformable polygon meshes, 
multiple depth maps, and patch-based methods (Remondino et 
al., 2012; Remondino et al., 2014; Seitz et al., 2006) have been 
developed. 
 
A majority of MVS methods generally consist of 4 steps 
(Scharstein and Szeliski, 2002): (1) matching cost (similarity 
measure) calculations, (2) cost aggregation in the peripheral 
domain, (3) calculation and optimization of disparity, and (4) 
improvement of disparity (filtering).  Based on the process of 
calculating and optimizing disparity, the MVS methods are 
categorized as local, global, or semi-global methods (Szeliski, 
2011). 
 
Global methods estimate disparities based on the formulation of 
the optimization problem, such as energy minimization, in the 
entire image rather than cost aggregations.  A regularization 

term can be introduced in the energy function for a stable 
estimation.  The computation load depends on the shape 
complexity of the objects.  Semi-global methods (Hirschmüller, 
2008; Bethmann and Luhmann, 2014) were proposed to reduce 
computational load. 
 
Local methods are advantageous in terms of their computation 
load.  They estimate the disparities of pixels by minimizing 
matching costs, such as intensity difference, in the peripheral 
domain, i.e., winner-take-all optimization.  One of the most 
popular method among these local methods is the patch-based 
MVS (PMVS) (Furukawa and Ponce, 2010).  The PMVS 
approximates the object surface by using a large number of 
small patches with normal vectors.  The patches are expanded 
from the results of SfM.  The PMVS is robust against 
occlusions and mismatches, and it does not require an initial 
approximation.   
 
The accuracy of the 3D surface reconstruction obtained via 
PMVS depends on the accuracy of the orientation elements 
based on the SfM.  In the case of an unmanned aerial vehicle 
(UAV), SfM exhibits a decrease in the accuracy of orientation 
elements when the camera movement is complicated.  
Additionally, the image should be selected according to the 
accuracy to apply the method to enormous image sets (Fuse and 
Harada, 2016).  This paper proposes a PMVS method 
considering the accuracy of the orientation elements.  
Specifically, the accuracy of the exterior orientation (EO) 
elements obtained by SfM is introduced to the patch extension 
in PMVS.   
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2. ESTIMATING EXTERIOR ORIENTATION 
ACCURACY THROUGH BUNDLE ADJUSTMENT 

The proposed method introduces the EO accuracy into the patch 
extension in PMVS.  This section explains the procedure of 
estimating the EO accuracies.  In this study, global SfM 
(Moulon et al., 2013; Martinec and Pajdla, 2007), including 
bundle adjustment, is applied to estimate EO accuracies.  The 
global SfM is robust against cumulative error.  In this study, 
interior orientation elements (intrinsic parameters) are estimated 
in advance using Zhang’s method (Zhang, 2000).   
 
2.1 Image Matching 

Initially, image matching performed for the image pairs from 
the set of images, and the image coordinates of the feature 
points that are common to the image pairs are determined.  
Scale invariant feature transform (SIFT) (Lowe, 2004) is 
adopted as the image matching method.  Even if SIFT is applied 
for feature point extraction and matching, incorrect matching 
still exist.  The feature points matching is refined using random 
sample consensus (RANSAC) (Fischler and Bolles, 1981).  The 
RANSAC algorithm employs a method of outlier removal.  
Finally, the remaining points are accepted as feature points. 
 
2.2 Global SfM 

Using the image coordinates of each feature point provided by 
image matching, the EO elements are estimated through relative 
orientations.  The global SfM estimates relative rotations 
between all images as the essential matrix by using the five-
point algorithm (Nistér, 2004) and the epipolar graph.  The 
accuracy of rotation is fairly independent of the baseline length 
(Enqvist et al., 2011).  The relative rotation estimation is 
followed by applying rotation consistency (Zach et al., 2010).   
 
The translation is then estimated through the trifocal tensor 
method (Moulon et al., 2013).  The trifocal tensor method 
minimizes the reprojection error of the 3D coordinates of 
feature points Xj as compared to the image coordinates 
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where ti is the translation, and Ri is the rotation of image i.  The 
relative orientation tij between image i and j is transformed to 
the world coordinates Ti (i.e., translation registration) as 
follows: 
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where 

ij  is the scale factor.  Finally, the bundle adjustment is 

applied to all images.   
 
Through the trifocal tensor and bundle adjustment, the 
translation vector t, rotation matrix R, and 3D coordinates of 
feature points X can be calculated.  When a camera position is 

translated with t and rotated with R in a fixed world coordinate 
system, the 3D coordinates X = (X, Y, Z)T are projected to the 
image coordinates x = (x, y)T.  Let the intrinsic parameter matrix 
of the camera be K.  The geometric relationship between the 3D 
coordinates and the image coordinates are expressed by using 

the homogeneous coordinates  1
T

X Y ZX  and  1
T

x yx . 

 
  TKR I x | t X  .     (4) 

 
2.3 Estimating EO Accuracy 

The EO accuracy is calculated according to the 3D coordinates 
of the feature points and EO elements.  Prior to calculating the 
accuracy, the bundle adjustment with ground control points is 
applied again.   
 
The accuracy of the EO elements is defined by the variances of 
the estimated parameters in the bundle adjustment.  Let x* be 
the estimated parameter vector.  The covariance matrix Cov(x*) 
can be expressed as the inverse of the Fisher information matrix 
F(x*): 
 

          1
1 2 TCov F J J


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where  2  = variance of observation error 
  J *x  = Jacobian matrix of parameters 

 
3D models obtained via SfM possess gauge ambiguity.  Due to 
this gauge ambiguity, the Jacobian matrix of the parameters 
becomes rank deficient.  To avoid this rank deficiency, QR 
decomposition is applied, and the ground control points are 
fixed.   
 
The translation accuracy is defined as the variance of translation.  
The representation matrix of the Rodrigues' rotation formula is 
adopted for calculating rotation accuracy.  These accuracies are 
introduced to the PMVS.   
 
3. PATCHE-BASED MVS CONSIDERING EXTERIOR 

ORIENTATION ACCURACY 

3.1 Basic Models 

The proposed method is based on PMVS (Furukawa et al., 
2010).  The PMVS employs a patch model, a photometric 
discrepancy function, patch optimization, and an image model.   
 
The patch model approximates the surface of the object by 
using small rectangular patches, namely local tangent plane 
approximation.  The patch model p includes the coordinates of 
patch centre c(p) and normal unit vector n(p).  The normal unit 
vector is in the same direction as that of the corresponding 
camera.   
 
Let V(p) be the image (I) set, which contains the patch p.  The 
photometric discrepancy score g(p) defines the dissimilarity 
between the images in V(p).   
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where  R(p) = reference images 
 h(p, I, R(p)) = dissimilarity between I and R(p) 
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The dissimilarity score h is computed using the normalized 
cross correlation (NCC), and it is defined as 1-NCC.  When the 
value of h is higher than a threshold, the patch is regarded as the 
wrong image and discarded.   
 
The patches are optimized by minimizing the sum of the 
photometric discrepancy scores regarding c(p) and n(p): 
 
  min

p
g p .      (7) 

 
The conjugated gradient method is normally used for this 
optimization.   
 
For efficient computation, the reprojected patch locations on the 
image are saved (image model), and the image i is divided into 
image cells Ci(x,y).  When the reprojected patch location is in 
the cell, it is associated with the patch set Qi(x,y). 
 
3.2 PMVS Algorithm 

The PMVS algorithm mainly consists of feature matching, 
patch expansion, and patch filtering.  The patches are created 
based on the photometric discrepancy function, as mentioned in 
previous sections, and then they are expanded to obtain a dense 
3D reconstruction.   
 
3.2.1 Feature matching: Feature matching creates a sparse 
point cloud with patches.  For feature matching, the difference-
of-Gaussian filter and the Harris operator are applied, as in a 
previous study (Furukawa et al., 2010).  The epipolar line is 
also used for an efficient search.  Through the feature matching 
process, c(p) and n(p) of the patches can be determined.   
 
3.2.2 Patch expansion: Patch expansion creates new patches 
adjacent to the previous sparse patches.  For a sparse patch p, 
the neighbouring image cells C(p) in all images are defined 
according to the following condition:   
 
       , | , , 1iC p C x y p Q x y x x y y         .  (8) 

 
If the neighbouring image cell does not contain patches, a new 
patch p’ is created.  The direction of the normal vector n(p’) is 
the same as that of the light ray through the corresponding 
image cell centre.  The patch centre c(p’) is determined as the 
intersection between the line including the normal vector n(p’) 
and the plane of the neighbouring patch p.  c(p’) and n(p’) are 
optimized by minimizing the sum of the photometric 
discrepancy scores, similar to that described in the previous 
section.  During optimization, c(p’) is constrained such that the 
projected point of c(p’) on the image cell does not change.  
According to the new patches, V(p) and Qi(x,y) are also updated.   
 
3.2.3 Patch filtering: Filters are utilized to eliminate the 
incorrect patches.  The first filter is based on visibility 
consistency.  To apply visibility consistency, the neighbouring 
patches are defined as follows: 
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When the patches p and p’ are included in same image cell but 
do not satisfy equation (9), the two patches are defined as the 
inconsistency set U(p).  Additionally, if the following condition 
is satisfied, the patch p’ is removed as an outlier. 
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The second filter is also related to visibility consistency.  When 
the number of the image set |V(p)| is less than a threshold value, 
the corresponding patch is removed.   
 
3.3 Incorporating EO Element Accuracies and PMVS 

The accuracy of the EO element is introduced to the patch 
optimization of PMVS.  The EO element accuracy is converted 
to a weighting function for the sum of the photometric 
discrepancy scores (Figure 1): 
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where wij is the weighting function for image i and j. 
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Figure 1. Weighting sum of photometric discrepancy scores for 

patch optimization 

 
When the accuracy of an image is high, the weight also 
becomes high.  This indicates that the contributions of the 
image with high accuracy to the goal function is higher.  Let 

 2 2 2, ,      and  2 2 2, ,x y z    be variances of each rotation and 

translation, respectively.  The EO accuracies of rotation 2
R  and 

translation 2
t  are defined as follows: 
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The suffix i, j, avg are added for the image i, j, and average of 
all images.  We also investigate the types of weighting 
functions:   
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where   and   are the balancing parameters, and 1   .  
1
ijw  and 2

ijw  are simple ratio of accuracy and inverse of accuracy, 

respectively.  Furthermore, 3
ijw  and 4

ijw  only consider the 

accuracy of image i.  Image j is regarded as a reference image.  
The accuracy of the reference image can be considered to be 
constant; thus, it can be ignored.  As a result, the proposed 
method can consider geometric conditions during patch 
optimization.   
 

4. EXPERIMENTAL RESULTS 

The proposed method was applied to the following three types 
of datasets.   
 
4.1 Experiment 1: Images Taken at Ground Level 

Images were captured using an SLR camera from the ground, 
and the laser scanner data was prepared for evaluation (Figures 
2, 3).  Table 1 presents the specifications of the camera.  The 
accuracy of the laser scanner data is 5 mm.  A total of 20 points 
were picked from the laser scanner data up to be used as ground 
control points (12 points) and test points (8 points). 
 

 
Figure 2. Image taken at ground level 

 

 
Figure 3. Laser scanner data for evaluation 

 
Table 1. Camera specifications 

Camera CANON Eos 60D 
Number of pixels 18 M [pix] 
Focal length 18 [mm] 
Image size 3456 × 2304 [pix] 
Ground resolution 10 [mm/pix] 
Number of images 18 
Overlap 95 [%] 
 
The accuracy of the test points was verified, and the 3D points 
acquired by using the proposed method and the laser scanner 
were compared.  Table 2 and Figure 4 depict the results of the 
proposed method.   
 
The results showed that the accuracy was improved in a 
majority of the cases.  Through a detailed comparison between 
the results of the proposed method and the laser scanner data, 
the higher effectiveness of the proposed method was confirmed 
at the flat parts and the edge parts of the building.  However, a 
lower accuracy was observed at the patterned and indented 
surface.   

Table 2. Accuracy evaluation of experiment 1 
Weights  ,   Horizontal [mm] Vertical [mm] 

No weight  12.86 20.95 
1
ijw  (1.0, 0.0) 13.57 21.15 

(0.5, 0.5) 14.63 23.15 
(0.0, 1.0) 12.82 20.42 

2
ijw  (1.0, 0.0) 14.53 21.67 

(0.5, 0.5) 13.94 22.97 
(0.0, 1.0) 13.37 20.08 

3
ijw  (1.0, 0.0) 12.74 19.88 

(0.5, 0.5) 13.17 20.38 
(0.0, 1.0) 12.95 20.25 

4
ijw  (1.0, 0.0) 13.42 20.70 

(0.5, 0.5) 14.19 21.44 
(0.0, 1.0) 12.41 18.94 

 

 
(a) SfM 

 
(b) PMVS 

Figure 4. Result of images taken at ground level 

 

4.2 Experiment 2: UAV Images 

Images were captured from a UAV equipped with an SLR 
camera (Figure 5).  Table 3 lists the specifications of the camera.  
A total of 58 points were surveyed as ground control points (13 
points) and test points (45 points). 
 

 
Figure 5. UAV image 
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Table 3. Camera specifications of UAV 
Camera CANON Eos Kiss X7 
Number of pixels 18 M [pix] 
Focal length 20 [mm] 
Image size 4608 x 3456 [pix] 
Ground resolution 22 [mm/pix] 
Number of images 15 
Overlap 95.6 [%] 
 
The results of the second experiment showed that the proposed 
method achieved sub-pixel accuracy (as shown in Table 4 and 
Figure 6).  However, the results of the proposed method were 
slightly improved as compared to those of the original PMVS 
method.  In this case, vertical images were used; thus, the 
accuracy of EO elements was approximately the same for all 
images.   
 

Table 4. Accuracy evaluation of experiment 1 
Weights  ,   Horizontal [mm] Vertical [mm] 

No weight  6.38 23.07 
1
ijw  (1.0, 0.0) 6.50 23.91 

(0.5, 0.5) 6.47 23.78 
(0.0, 1.0) 6.64 23.19 

2
ijw  (1.0, 0.0) 6.40 23.45 

(0.5, 0.5) 6.54 24.41 
(0.0, 1.0) 6.45 24.16 

3
ijw  (1.0, 0.0) 6.43 23.10 

(0.5, 0.5) 6.30 22.80 
(0.0, 1.0) 6.48 22.95 

4
ijw  (1.0, 0.0) 6.40 24.57 

(0.5, 0.5) 6.47 24.69 
(0.0, 1.0) 6.54 24.42 

 
 

 
(a) SfM 

 
(b) PMVS 

Figure 6. Result of UAV images 

In the first and second experiments, we also investigated the 
types of weighting functions.  The weighting function 3

ijw  that 

was based on the ratio of the variance of the target image and 
average variance was more effective than others.  However, the 
weighting function 2

ijw  based on the harmonic average of 

variance exhibited better results at the flat section of the object.   

 

4.3 Experiment 3: Images Captured Using an Oblique 
Camera 

In the third experiment, images were captured using an airplane 
equipped with an oblique camera (Figure 7).  Table 5 lists the 
specifications of the camera.   
 

 
Figure 7. Image captured via oblique camera 

 
Table 5. Oblique camera specifications 

Camera IGI Penta-DigiCam 
Number of pixels 60 M [pix] 
Focal length 50 (nadir), 82 (oblique) [mm] 
Image size 8956 x 6708 [pix] 
Ground resolution 100 [mm/pix] 
Number of images 100–200 
Overlap 75 [%] 
 
The third experiment demonstrated the applicability of the 
proposed method to large data.  The proposed method was 
applied to images captured using an oblique camera.  The 
computation was stable, and significantly denser results were 
obtained as compared with those obtained using SfM.  Figure 8 
presents the results of the proposed method.   
 

5. CONCLUSIONS 

In this study, a multi-view stereo considering the accuracy of 
exterior orientation elements was developed.  The proposed 
method is based on global SfM and patch-base multi-view 
stereo (PMVS).  The accuracy of the EO elements obtained by 
global SfM is incorporated in the patch optimization of PMVS.  
This accuracy is defined as the variances of the EO elements, 
namely the geometric conditions that can be considered in the 
PMVS.  Through three types of experiments, the accuracy 
improvement of the patches and their applicability to enormous 
images were confirmed.   
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(a) PMVS 

 
                  (b) SfM                                    (c) PMVS 

Figure 8. Results of oblique camera images 

 
Future studies should focus on the application of the method to 
short baseline image pairs as the PMVS computation of these 
pairs is unstable.  The proposed method is expected to be 
applicable to various types of images such as shared images on 
the Internet.  In such cases, the interior orientation elements 
should be introduced.  To address the additional elements, the 
definition of the weighting function should be investigated.  
Furthermore, the relationships between the efficiency and 
accuracy should be analysed.  These endeavours will lead to a 
further improved applicability of the PMVS.   
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