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ABSTRACT:

With increasing performance and availability of thermal cameras the number of applications using them in various purposes grows
noticeable. Nowadays thermal vision is widely used in industrial control and monitoring, thermal mapping of industrial areas, surveil-
lance and robotics which output huge amount of thermal images. This circumstance creates the necessary basis for applying deep
learning which demonstrates the state-of-the-art performance for the most complicated computer vision tasks. Using different modali-
ties for scene analysis allows to outperform results of mono-modal processing, but in case of machine learning it requires synchronized
annotated multimodal dataset. The prerequisite condition for such dataset creating is geometric calibration of sensors used for image
acquisition. So the purpose of the performed study was to develop a technique for joint calibration of color and long wave infra-red
cameras which are to be used for collecting multimodal dataset needed for the tasks of computer vision algorithms developing and
evaluating.
The paper presents the techniques for camera parameters estimation and experimental evaluation of interior orientation of color and
long wave infra-red cameras for further exploiting in datasets collecting. Also the results of geometrically calibrated camera exploiting
for 3D reconstruction and 3D model realistic texturing based on visible and thermal imagery are presented. They proved the effectivity
of the developed techniques for collecting and augmenting synchronized multimodal imagery dataset for convolutional neural networks
model training and evaluating.

INTRODUCTION

Recent impressive progress in technical characteristics of sen-
sors of different types (vision, near infra-red, short, middle and
long wave infra-red, ultra-violet etc.) allows using these sensors
for solving sophisticated tasks in wide variety of applications:
surveillance and industrial infra-structures monitoring, driver as-
sistance and robotics, 3D scene analysis and understanding. The
significant part of optical 3D reconstruction and analysis appli-
cations require not only qualitative but also quantitative analysis,
and the required quantitive characteristics could be provided by
calibration of the acquisition devices.

Techniques for geometric calibration of thermographic cameras
has been proposed for different kinds of application such as en-
ergy pollution analysis in the urban area (Conte et al., 2018),
architecture, civil engineering and industry inspection (Lagüela
et al., 2011), non-destructive testing (Yang et al., 2018), assess-
ing the energy efficiency of real estates (Borrmann et al., 2012),
building survey (Iwaszczuk and Stilla, 2017), material testing
(Luhmann et al., 2013) and others. They allow to estimate cam-
era interior orientation parameters for further retrieving 3D scene
geometry from thermal images.

Another outcome of growing accessibility and quality of differ-
ent sensors is the increase of available data which is necessary for
developing and evaluating of new state-of-the-art methods and al-
gorithms. Dealing with big datasets allows to receive higher algo-
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rithms performance due to possessing representative information
accounting wide variety of possible conditions of operation. This
circumstance provides the progress in machine learning by apply-
ing deep learning techniques. Now state-of-the-art deep learning
models show best results in many tasks of computer vision.

The possibility of using different modalities creates a good basis
for improving the performance of machine vision methods, espe-
cially for degraded vision environment. For better exploiting the
advantages of multimodality, corresponding images of different
spectral range should be synchronized and calibrated. But in most
cases thermal and color cameras used for multimodal scene anal-
ysis has different resolution, field of view and frame rate. This
circumstance requires to perform a lot of manual work on data
matching, orienting, aligning and labeling and interferes the col-
lecting synchronized multimodal datasets which are needed for
successful convolutional neural networks (CNN) training.

The performed study was focused on developing a technique for
joint calibration of color and long wave infra-red cameras which
are to be used for collecting multimodal dataset needed for the
tasks of computer vision algorithms developing and evaluating.
Two color and thermal camera pairs were calibrated for multi-
modal imagery acquisition and further processing for synchro-
nization and annotation. Also the technique for automated data
aligning and augmenting was proposed and evaluated. CNN train-
ing on the prepared in such way dataset allowed improving CNN
performance in tasks of multimodal scene segmentation, object
detection and re-identification.
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1. RELATED WORK

Using multimodal color-thermal data is necessary for a notice-
able set of computer vision and industrial applications. So the
problem of getting geometrically accurate thermal imagery has
received scholar attention recent decades when thermal cameras
were widely used for different practical and scientific researches.

The overview of thermal imaging sensors for photogrammetric
close-range applications and results of the geometric calibration
of thermographic cameras as they are used for building inspection
and material testing were given in (Luhmann et al., 2010) and
(Luhmann et al., 2013). Interior orientation for a set of considered
thermal cameras was estimated using two different (plane and
spatial) test fields.

A calibration method (Choinowski et al., 2019) for a trifocal sen-
sor including stereo camera and thermal imaging camera, oper-
ating in the Long Wave Infrared (LWIR) spectrum utilized for
calibration a passive aluminum chessboard as a test field. After
corner detection and subsequent bundle adjustment for all syn-
chronized image triplets the remaining re-projection errors were
at the sub-pixel level. Also chessboards with high contrast (as
well as different markers suitable for extrinsic calibration) (En-
gstrom et al., 2013) were evaluated as test fields for geometric
calibration thermal cameras with recommendation for indoor and
outdoor scenarios. Three calibration methods for infrared cam-
eras (Usamentiaga et al., 2018) has been studied compared to es-
timate the best. The performed study showed that a complete
camera calibration method using a specifically designed calibra-
tion target outperforms both direct and iterative estimation of the
transformation between image and world coordinates techniques.

To study potentials and limitations of Structure from Motion ap-
proach for the automated generation of thermal orthomosaics sev-
eral different strategies (Conte et al., 2018) were applied for pro-
cessing two thermal flights over a 10 km2 area in Bologna city
(Italy). The best results (absolute planimetric accuracy being at
the level of 3 - 4 pixels) were obtained for performing camera
calibration on a smaller subset of images, with a limited number
of ground control points and an adaptive fitting algorithm.

A study for verifying of the geometric accuracy, repeatability and
drift of thermographic cameras for further incorporating geomet-
ric information obtained by thermal cameras into the quality con-
trol processes (Lagüela et al., 2011), (Lagüela et al., 2012) has
been performed using a grid of burning lamps as a test field.
Evaluation of two thermographic cameras from FLIR and NEC
manufacturers showed repeatability better than 1mm for all cases
with geometric quality being slightly better for the NEC camera.

A geometric mask with high thermal contrast and not requiring
a flood lamp (Vidas et al., 2012) has been used in automatic
end-to-end system for calibrating single or multiple cameras. A
clustering-based algorithm utilizing the maximally stable extremal
region detector provided accurate locating calibration points on
the pattern.

Several studies has been performed on estimating quality of image-
based 3D reconstruction using only calibrated thermal images
(Knyaz et al., 2017), or combined color-thermal camera setup
(Yang et al., 2018). A cost-effective method for 3D thermal model
reconstruction based on image-based modeling (Yang et al., 2018)
has been proposed for two smart phones and a low-cost thermal
infrared camera. The experimental evaluation demonstrated the

ability of the proposed method to effectively reconstruct a 3D
thermal model.

Methods for geometric calibration of robots, equipped with a set
of sensors (Borrmann et al., 2012), (Kniaz, 2017), (Dias et al.,
2013) allows to reconstruct 3D model of environment containing
thermal information. A robot equipped with a 3D laser scanner,
a thermal camera, and a color camera has been used for creating
high-precise heat distribution maps of so-called Passivhaus (or
the Zero-energy) buildings (Borrmann et al., 2012). Two differ-
ent calibration test fields were used for calibration of color and
thermal cameras. After calibration procedure data from all the
sensors are combined to model the environment precisely.

The calibration method (Dias et al., 2013) combined the utiliza-
tion of special patterns for interior calibration of thermographic
cameras, with the usage of a high-resolution 3D laser scanner
for the extrinsic calibration, relating the cameras frames with the
robot frame. The sensors setup was used in autonomous surface
vehicle (ASV) ROAZ II for detection, location and tracking of
human targets.

2. JOINT CAMERAS CALIBRATION

The purpose of joint color and thermal cameras calibration was
to receive oriented aligned and synchronized color-thermal image
pairs for the tasks of machine learning. Initial multimodal dataset
was collected using two color-thermal camera pairs. The first
sensor was FLIR ONE PRO camera for smartphones. It provides
preliminary aligned and synchronized color and thermal images.
The second sensor pair was color and thermal cameras mounted
on DJI Mavic Pro unmanned aerial vehicle.

The collected dataset (Knyaz, 2019) contains more than 5000
pairs of color and thermal images of urban and suburb scenes
gathered in different seasons, different times of day and various
weather conditions.

Calibration of all cameras was carried out using the previously
developed techniques for laboratory (Knyaz, 2010) and on-site
calibration (Knyaz and Zheltov, 2017).

The vector vie = (xp, yp,mx,my, a0, ..., a5)T of estimated in-
terior orientation parameters for calibration includes coordinates
of principal point xp, yp, image scales mx,my and additional
parameters a0, ..., a5 accounting non-linear distortion in camera
model (co-linearity equations). Preliminary calibration includes
estimation of cameras interior and exterior orientation.

The calibration procedure uses the basic model of central projec-
tion for relation between point of a 3D scene and corresponding
point of its image – the collinearity equation, expressing the con-
dition that the point of the scene G, the center of the projection
of O and the image of this point g lie on one straight line:

XG = X0 − λAT · (xg − xp) (1)

Here
X0 = (X0, Y0, Z0) – coordinates of the center of the projection,
XG = (X,Y, Z) – scene point coordinates,
xg = (x, y,−f) – the corresponding coordinates of the scene
point in the image,
A – coordinate system transformation matrix,
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xp – coordinates of the main point of the snapshot,
λ – scale factor.

For distortions accounting additional terms are introduced into
the collinearity equations ∆x and ∆y, describing various distort-
ing factors. Then the real (distorted) xd, yd coordinates of a point
in the image are defined as:

xd = x+ ∆x; (2)

yd = y + ∆y; (3)

The practice of photogrammetric measurements have proved that
the good description for nonlinear distortion is the following model
(Beyer, 1992):

∆x = a0 · ya + xa(a1r
2 + a2r

4 + a3r
6)

+ a4(r2 + 2x2a) + 2a5xaya;

∆y = a0 · xa + ya(a1r
2 + a2r

4 + a3r
6)

+ a5(r2 + 2y2a) + 2a4xaya;

with r2 = x2a + y2a

Here
xa, ya – coordinates of a point on the image,
a0, ..., a5 – camera interior orientation parameters:
a0 – coefficient of affine distortion;
a1, a2, a3 – coefficients of radial distortion;
a4, a5 – coefficients of tangential distortion.

The vector vle = (xp, yp,mx,my, a0, ..., a5)T of estimated pa-
rameters for test field calibration includes coordinates of principal
point, image scales and additional parameters correspondingly,
spatial coordinates of reference points being known by indepen-
dent precise measurements.

2.1 FLIR ONE PRO camera calibration

FLIR ONE PRO thermal camera (Figure 1) acquires synchro-
nized visible images of 1440 × 1080 pixels and thermal images
of 640×480 pixels. Thermal sensor works in 8−14µm spectral
range and it has pixel size of 12µm.

Figure 1. FLIR ONE PRO camera.

Main technical characteristics of FLIR ONE Pro are given in Ta-
ble 1.

Color and thermal sensors of FLIR ONE PRO are aligned to ac-
quire aligned images. The camera generates output images in
different modes: color, thermal gray, thermal rainbow, thermal
ironbow and some others.

Table 1. FLIR ONE PRO camera specification

Thermal sensor Pixel size 12 µm
Spectral range 8–14 µm
Thermal resolution 160x120
Visual resolution 1440x1080
HFOV / VFOV 55 °/ 43 °
Frame rate 8.7 Hz
Focus Fixed 15 cm – Infinity

Scene dynamic range -20 °C to 400 °C
Accuracy ± 3 °C
Thermal sensitivity (MRTD) 150 mK

Operating temperature 0 – 35 °C
Size 68x34x14 mm

FLIR ONE PRO camera provides MSX (or Muti Spectral Dy-
namic imaging) technology which makes use of the high contrast
visual image to emboss key aspect of a scene on top of full ther-
mal image. This feature helps to easily identify the position of
heat patterns in the captured image of a scene (Figure 2), but as
Figure 2 demonstrates, it could not provide accurate matching of
corresponding features.

Figure 2. MSX image of the test field

Laboratory joint color and thermal cameras calibration was per-
formed using special test field (Figure 3) allowing to obtain a
required contrast for thermal images.

Figure 3. Sample images used for joint calibration.

A plane metal plate with 49 accurate holes was used as a test
field for calibration. For calibration of thermal camera different
conditions of acquisition (positive and negative thermal contrast
of the test field relatively to a background) were evaluated.
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The results of estimation of interior orientation parameters of
FLIR ONE PRO cameras are presented in Table 2.

Table 2. Results of joint FLIR ONE PRO cameras calibration

Color camera Thermal camera
mxc 0.01210001 mxt 0.01184560
myc 0.01240495 myt 0.01221366
xpc 301.0574 xpt 318.9313
ypc 140.8023 ypt 132.4496
a0c -0.02317030 a0t -0.01824143
a1c 0.00148937 a1t 0.00153720
a2c 0.00000517 a2t -0.00007570
a3c -0.00000178 a3t -0.00000178
a4c -0.00196251 a4t -0.00146680
a5c -0.00059759 a5t -0.00079429

The residuals on reference points after bundle adjustment pro-
cedure were at the level of 2.3 mm for the working space of
2m × 2m × 2m as for positive thermal contrast as for negative
thermal contrast.

2.2 UAV cameras calibration

The second color-thermal pair of cameras are mounted on DJI
Mavic Pro (Figure 4) unmanned aerial vehicle (UAV). It is equipped
with high resolution 12 Mpix CMOS camera with 80 degrees
field of view (FOV) lens. Long wave infra-red (8−14µm) camera
MH-SM567-6 is additionally mounted on DJI Mavic Pro quad-
copter. The MH-SM567-6 camera is of uncooled amorphous sil-
icon FPA type with the resolution of 640× 480 pixels.

Figure 4. Color and thermal cameras installed on DJI Mavic
quadcopter.

Main technical characteristics of MH-SM567-6 are given in Table
3.

For on-site calibration a modern building having regular struc-
tures (Figure 5) was used a test field for the calibration. Several
reference distances were measured independently by laser range
finder to provide metric characteristics.

For automated detection and identification of reference points an
original algorithms were developed for reference points of circu-
lar shape (laboratory test field) and for ”corner” reference points
(on-site test field).

The vector of estimated parameters

ve =(xp, yp,mx,my, a0, ..., a5,

x1r, y1r, z1r, ..., xnr, ynr, znr)T

Table 3. DJI Mavic Pro cameras specification

Thermal sensor
Type Uncooled FPA
FPA format 640*480
Pixel pitch 17µm
Sensitivity ≤ 150 mK at f/1.0 300K
Frame rate 50Hz
Spectral range 8 – 14µm
Lens 12.8 mm
Color sensor
Sensor Type: 1/2.3” CMOS
Effective Pixels: 12.35 million
Lens FOV: 78.8°
Focal Length: 28 mm
Aperture: f/2.2
Distortion: ≤ 1.5%
Focus Range: 0.5m to∞

Figure 5. Testfield used for on-site camera calibration.

for on-site calibration includes interior orientation parameters vie
and spatial coordinates of detected reference points Xr being es-
timating along with the parameters of interior orientation. Several
reference distances between reference points were measured in-
dependently by a laser rangefinder. They were used to determine
accurate scale of the test field.

The resulting residuals at the reference points after bundle adjust-
ment were at the level of 60 mm. This accuracy is quite enough
for the task of scene 3D reconstruction and photorealistic textur-
ing for creating multimodal dataset.

3. APPLYING CALIBRATION RESULTS FOR DATASET
CREATION

3.1 Scene 3D model reconstruction

To provide synchronization of collected color and thermal images
the technique based on scene 3D reconstruction (Knyaz, 2019)
was applied. Both color and thermal image sequences were used
for scene 3D reconstruction by structure from motion technique.

The algorithm for scene 3D model reconstruction (Knyaz and
Zheltov, 2017) includes the following steps. Firstly, a set of cor-
responding points are detected in a given image sequence. Then
initial stereo pair of images with a sufficient stereo basis and
overlapping of 60-70% is chosen, and its relative orientation is
estimated using detected corresponding points. The spatial coor-
dinates in the basis coordinate system for corresponding points
visible in these images are calculated using determined relative
orientation parameters of the images.
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Then for the next image in the sequence an exterior orientation
is performed using the image coordinates of the detected points
and the spatial coordinates of the points found at the previous
step. The spatial coordinates of new detected points visible in
the current image and in the previous image are calculated using
the determined parameters of the exterior orientation. The new
calculated 3D points are added to the 3D model. Also spatial co-
ordinates of previously calculated points are re-calculated using
corrected exterior orientation parameters. Then the procedure of
the exterior orientating of a next image and adding new points in
the 3D model is repeated.

After determining the exterior orientation for all images, a more
detailed model is generated using the correlation algorithm for
correspondence problem solving. Some reference distances be-
tween the distinctive features of the surveyed scene are measured
independently along with the image acquisition. They allow esti-
mating the real scale of the reconstructed 3D model.

Figure 6. Scene 3D model created using color and thermal
images

Such procedure is performed as for RGB as for LWIR image se-
quences resulting in two 3D models (RGB-based 3D model and
LWIR-based 3D model), which are determined in its own system
of coordinates.

Samples of resulting 3D models built from LWIR and RGB image
sequences are shown in Figure 6 .

3.2 Camera orientation

The technique of scene 3D model reconstruction provides ex-
ternal orientation parameters for all images used for 3D model
generation. These parameters are determined in the coordinate
system related to the resulting 3D model as for RGB-based as for
LWIR-based 3D models. So it is needed to transform them in one
common coordinate system for performing accurate 2D labelling
and establishing correspondence between color and thermal im-
ages.

To find the parameters of coordinate system transformation the
following technique was used. Firstly 3D coordinates of feature

descriptors were found using image coordinates of the descriptor
and image orientation parameters. This procedure results in two
3D coordinate arrays corresponding to RGB-based and to LWIR-
based scene 3D models. The parameters of system coordinates
transformation from LWIR-based 3D model to RGD-based 3D
model were found as least mean squares solution for the distances
between corresponding points.

Figure 7. Image orientation and synchronization

Non-linear minimization of the observation (re-projection) errors
by bundle adjustment (Knyaz, 2010) is used to determine cam-
era exterior orientation for images not used in 3D reconstruction
procedure. Redundant number of reference points is used in bun-
dle adjustment procedure of minimizing the squared re-projection
error for the 2D image coordinates of reference points xij in an
image j as a function of the unknown image exterior orientation
parameters (R,X) and known reference 3D point coordinates pi
using non-linear least squares. For the projection equations:

xij = f(pi, Rj , Xj), (4)

the iteratively minimized re-projection errors are

E =
∑
i,j

(
∂f

∂x
∆x+

∂f

∂R
∆R+

∂f

∂X
∆X − rij

)
, (5)

where rij = xij − x̂ij is the current residual vector (2D error
in the predicted position) and the partial derivatives are with re-
spect to the unknown orientation parameters (camera rotation and
translation).

After this procedure scene 3D model and image exterior orienta-
tion in this 3D scene are determined thus providing the conditions
for automatic image labeling for objects located in the 3D scene.
Also it allows to extend the dataset by creating new synthetic im-
ages of the scene by a virtual camera.

The multimodal dataset generated and augmented using this tech-
nique was used for CNN training for the tasks of object detection
and object re-identification (Knyaz, 2019), (Kniaz and Knyaz,
2019). The evaluation of CNN trained on the created multimodal
dataset showed improving of the CNN performance for consid-
ered tasks.
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4. CONCLUSION

The techniques for laboratory and on-site joint geometric calibra-
tion of color and long wave infra-red cameras were developed.
For laboratory calibration plane test field providing the possibil-
ity of acquiring thermal images of as positive as negative contrast
is used. The results of calibration in different conditions showed
that interior orientation parameters do not depend significantly
on contrast sign. A modern building having regular structures
served as a test field for on-site calibration, and its character fea-
tures (window corners) being used as reference points.

The results of joint color and long wave infra-red cameras cal-
ibration were used for processing of multimodal image dataset
collected for the developing and evaluating convolutional neural
network models. The developed technique for based on joint geo-
metric calibration allows aligning, synchronizing and annotating
multimodal images in automated mode.

Exploiting of the generated multimodal imagery dataset for CNN
models training allows to improve deep learning performance for
multimodal object recognition and re-identification.
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