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ABSTRACT: 

Central role in spatial econometric models of real estate data has the definition of the weight matrix by which we capture the spatial 
dependence between the observations. The weight matrices presented in literature so far, treats space in a two dimensional manner 

leaving out the effect of the third dimension or in our case the difference in height where the property resides. To overcome this, we 

propose a new definition of the weight matrix including the third dimens ional effect by using the Hadamard product. The results 

illustrated that the level effect can be absorbed into the new weight matrix. 

1. INTRODUCTION

The weights matrix is an important part of spatial modelling 

and is defined as the formal expression of spatial dependence 

between observations (Anselin, 1988). The weight matrices  

are used in spatial autocorrelation and spatial regression. 
Examples of different weights matrix definitions exist in the 

literature and are based on spatial contiguity, inverse distance 

and k nearest neighbours among others (Cliff and Ord, 1981). 

Despite the recent developments in the 3D city models  
(Biljecki et al., 2015), the spatial econometric models treat 

the space in a 2D manner, leaving the third dimension 

(height) incorporated, where needed, into covariates. 

Especially in the case of real estate data the level of the 

apartments has a clear and documented influence on the price 
of the property and is always present in the models with the 

form of dummies. Our approach tries to overcome this 

limitation by devising matrices that capture the weight of the 

3D space.  

This can be easily achieved by using distance weights based 

on the three coordinates. In our case this cannot be adopted 

and include the level of an apartment as the third dimension, 

since the space is  not isotropic i.e. the z dimension (height) 

has a different influence from the position (x,y). To solve 
that, two different weight matrices can be calculated; one in 

the usual manner and a new one based on the level of each 

apartment and then combine these two, by using the 

Hadamard matricial product. 

This approach is superior in that a) it captures the full 3D 

space in a weight matrix while at the same time b) eliminate 

totally the space effect from the independent variables and c) 

gives naturally defined models. In the next session, the 

methodology of evaluating the weight matrices in the 
particular case of real estate data will be described alongside 

a spatial error model, followed by the description of the 

dataset and the results.    

2. METHODOLOGY 

In order to explore the relation between house prices and 

their characteristics, one could start by  using a linear 

regression model given by: 

𝑦 = 𝑋𝛽 + 𝜀 (1) 

where y(nx1) is the vector of observation of the dependent 

variable, X(nxk) is the matrix of covariates, β(kx1) is the 

vector of parameters and ε is the error term. The assumption 

of independent observations adopted in the above model is  

not always appropriate leading us to biased or inconsistent 
estimators. 

This problem can be treated by applying spatial regression 

models, for example the spatial error model (SEM) were the 
spatial dependence appears in the error term, and is given by: 

𝑦 = 𝑋𝛽 + 𝑢
𝑢 = 𝜆𝑊𝑢 + 𝜀

(2) 

where λ is  the autoregressive parameter, W(nxn) is the 

weight matrix, u(nx1) and Wu are the vector and the spatially 

lagged errors term respectively and ε is the vector of 

idiosyncratic errors.  

A central role in the spatial regression models plays the 

weight matrix W, which captures the way one observation is 

related to the other observations in a typical 2D way . This 

matrix is usually defined exogenously based on contiguity, 
distance or k-nearest and has diagonal elements equal to zero. 

This approach is extended to 3D space by dividing the weight  

matrix W(nxn) into two components, the matrices S and H of 

the same dimension. The first matrix S describes the 
connection of the observations in the (x,y) space and is 

calculated in the usual manner, while the second matrix H  

describes the relation of the observations in the z dimension.  

So the elements hi,j of the matrix represent the different 
impact due to height difference (or level in our case), 

between observations i and j. It is therefore defined by : 

ℎ𝑖,𝑗 =

{

 

 
1, 𝑖𝑓 𝑙𝑖 = 𝑙𝑗 , ∀𝑖 ≠ 𝑗

0, 𝑖𝑓 𝑙𝑖 = 𝑙𝑗 , ∀𝑖 = 𝑗

1

𝑏|𝑙𝑖 − 𝑙𝑗|
𝑎 , 𝑖𝑓 𝑙𝑖 ≠ 𝑙𝑗

(3) 

where  𝑎, 𝑏 ≥ 0 are fixed parameters. 
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Finally, we combine both S and H spatial matrices into a 
general 3D matrix W, by multiplying them, element by 

element 

 

𝑊 = 𝑆⨂𝐻 = (

0 𝑠1,2 ∙ ℎ1,2 ⋯ 𝑠1,𝑛 ∙ ℎ1,𝑛
⋮ ⋱ ⋮

𝑠𝑛,1 ∙ ℎ𝑛,1 𝑠𝑛,2 ∙ ℎ𝑛,2 ⋯ 0
) 

 

where  is the Hadamard product (Dube and Legros, 2009). 
 

So, by using this novel approach, the elements of the weight 

matrix W are a fraction of the elements of the planar weight  

matrix S based on the level difference between the 

apartments. For example assume that two apartments i and j 
have a 2D distance smaller than a given threshold and that the 

one is on the 2nd and the other on the 3rd level. Then  𝑠𝑖,𝑗=1 

and ℎ𝑖,𝑗 = 1/(𝑏 ∙ 1𝑎) , resulting in a weight 𝑤𝑖,𝑗 = 1/𝑏. 

 

Similarly, one can use this approach to extend any other 

spatial model for example the spatial lag model (SAR) or 

more complex models such as the SAC model (Lesage and 
Pace, 2009). 

 

 

3. DATA 

The study region is the municipality of Piraeus with an area 
of 11.2 square kilometers, where the biggest port of Greece is  

located. We have collected 1328 observations of asking 

prices for apartments for the period of September 2015 (Map 

1). Various apartment characteristics were collected and 

those used in the models are the price, the year of 
construction, the area in square meters, the level (floor), the 

geo-location (x,y coordinates) and the availability of parking, 

view, air condition, fireplace and awning. The later covariates  

were incorporated into the models as dummies with value of 

1 if the amenity is present. The various attributes with their 
descriptive statistics are illustrated in Table 1. 

 

Variable mean stdev 

Price/square meter (€/m2) 1447.5 675.5 

age (years) 20.8 17.5 

area (m2) 79.6 27.9 

parking (dummy) 0.49  
view (dummy) 0.18  

fireplace (dummy) 0.15  

air condition (dummy) 0.26  

awning (dummy) 0.23  

level 0 (dummy) 0.11  
level 1(dummy) 0.25  

level 2 (dummy) 0.19  

level 3 (dummy) 0.14  

level 4 (dummy) 0.13  

level 5 or more (dummy) 0.18  

 

Table 1. Attributes of the apartments 

  
 

 
 

Map 1. Study area of Piraeus, Greece. 
 

4. RESULTS 

 

In order to assess the presence of spatial dependence Moran’s 

I as well as the Lagrange Multiplier (LM) test (Anselin, 
2005) have been used and the results are illustrated in Table 

2. 

 

Diagnostics Value1 

Moran’s I (error) 76.3** 

Lagrange Multiplier (lag) 100.3** 

Robust LM (lag) 82.9** 

Lagrange Multiplier (error) 4607.5** 

Robust LM (error) 4590.1** 

 
Table 2. Diagnostics for spatial dependence 

 

In Table 2, the z-value of Moran’s I (76.3) indicates that we 

can reject the null hypothesis of no spatial autocorrelation. 

Further, since both Lagrange Multiplier statistics are 
significant (LM-lag and LM-error), we proceed to the robust 

version of the Lagrange Multiplier. As both robust LM reject 

the null hypothesis of zero autoregressive parameter and the 

robust LM-error value is higher, we will adopt the spatial 

error model in our illustration. 
     

So, an Ordinary Least Squares (OLS) model along with a 

SEM has been run into two flavours. In the first one, the level 

of the apartments has been included and the S matrix has  

been used while in the second case the levels has been 
excluded and the W matrix has been used.  

 

For the data given, the S matrix is evaluated as a binary 

weights matrix based on a given distance cut-off of 700 

metres. Then the H matrix has been set up by using equation 
(3) for a=0.1 and b=1.1. Finally the W matrix is defined by 

the Hadamard product. Both S an W has been row-

normalized before used in the models. 

 

                                                                 
1 ** (*), statistically significant at 99% (95%) credible level. 
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So in the regression model used, the price per square meter is  
the dependent variable whereas the rest of the variables  

described in Table 1 are used as covariates. The results of the 

models can be seen in Table 3. 

 

Variable OLS SEM 3D SEM 

intercept 1229.6** 1464.7** 1548.7** 

area 3.4** 2.6** 3.0** 

age -17.3** -20.5** -21.2** 

parking 152.5** 202.6** 220.5** 

view 438.8** 401.0** 430.6** 

fireplace 152.1** 127.3** 137.6** 

air condition 71.2* 75.1** 71.1** 

awning -82.9* -77.2** -53.6 

level 1 74.1 83.1 - 

level 2 167.9** 157.0** - 

level 3 199.9** 225.2** - 
level 4 209.4** 232.4** - 

level 5 or more 121.8* 200.2** - 

λ - 0.935** 0.930** 

    

R2 0.526 0.643 0.633 
Log Likelihood -10035.4 -9861.5 -9879.8 

Akaike 20096.8 19749.1 19775.6 

 

Table 3. Estimation results for the prices per square meters 
using OLS and SEM versions  

 

From the results of all three models, we can see that the area, 

parking, view, fireplace, and air-condition variables have a 
significant positive impact on the price of the apartment. One 

the other hand, the age has a negative significant impact. 

Further the apartment levels, where included, increase the 

price of the property and further level 1 has a non-significant  

impact. Although all the findings  are in good agreement with 
literature, the existence of awning has a negative impact on 

the price, not always significant, but still not expected. 

 

As far as the marginal willingness-to-pay (MWTP) is 

concerned, in both the OLS and SEM models, the direct  
effect of a covariate is equal to the coefficient estimate of that 

covariate. So for example in the 3D SEM model (Table 3), 

the existence of a fireplace increases the price by 137 €/m2.  

So comparing the MWTP between the two SEM models, we 

can see that in most of the cases, the covariates of the 3D 
SEM have a bigger impact on the price than the ones of the 

classic SEM. 

 
The measures of fits used are the simple R2, the log-

likelihood value (a higher value is associated with a better 

model) and the Akaike info criterion which is  a function of 

log-likelihood adjusted for the number of covariates present 

(smallest value desired). The results for the two flavours of 
SEM indicate a better model fit in comparison with their OLS 

counterparts. The spatial error models provide similar results, 

despite the fact that when using W, the levels of the 

apartments are not included in the models, indicating that 

their effect has been completely absorbed by the weight 
matrix. 

 

5. CONCLUSIONS  

An effort has been made to include in the weight matrix, not 

only the flat two dimensional effect of the position but the 
third dimension i.e. height in the spatial econometric models. 

Our case study, illustrated promising results, where the 

different level effect of the apartments has been absorbed by 

the weight matrix.   

 
In the future the effect/tuning of the parameters a, b must be 

examined.   
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