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ABSTRACT: 

 

Because the Infra-Red (IR) Kinect sensor only provides accurate depths up to 5 m for a limited field of view (60), the problem of 

registration error accumulation becomes inevitable in indoor mapping. Therefore, in this paper, a global registration method is proposed 

based on augmented extended Information Filter (AEIF). The point cloud registration is regarded as a stochastic system so that AEIF 

is used to produces the accurate estimates of rigid transformation parameters through eliminating the error accumulation suffered by 

the pair-wise registration. Moreover, because the indoor scene normally contains planar primitives, they can be employed to control 

the registration of multiple scans. Therefore, the planar primitives are first fitted based on optimized BaySAC algorithm and 

simplification algorithm preserving the feature points. Besides the constraint of corresponding points, we then derive the plane normal 

vector constraint as an additional observation model of AEIF to optimize the registration parameters between each pair of adjacent 

scans. The proposed approach is tested on point clouds acquired by a Kinect camera from an indoor environment. The experimental 

results show that our proposed algorithm is proven to be capable of improving the accuracy of multiple scans aligning by 90%. 

 

 

 

1. INTRODUCTION 

3D scene modeling for indoor environments has stirred 

significant interest in the last few years. Recently, the Microsoft 

Kinect sensors, originally developed as a gaming interface, have 

received a great deal of attention as being able to produce high 

quality depth maps. These RGB-D cameras capture visual data 

along with per-pixel depth information in real time. However, 

one of the biggest problems encountered while processing the 

Kinect point clouds is the registration in which rigid 

transformation parameters (RTPs) are determined in order to 

bring one dataset into alignment with the other. Because the 

Infra-Red (IR) Kinect sensor provides accurate depths only up to 

a limited distance (typically less than 5 m) for a limited field of 

view (60), the problem of registration error accumulation 

becomes inevitable when multiple scans registration is required.  

Global registration has been a well-discussed issue in terrestrial 

laser scanning data processing. Bergevin et al. (1996) presented 

an algorithm that considers the network of views as a whole and 

minimises the registration errors of all views simultaneously. 

Stoddart and Hilton (1996) identify pair-wise correspondences 

between points in all views and then iteratively minimise 

correspondence errors over all views using a descent algorithm. 

This basic technique was extended by Neugebauer (1997) and 

Eggert et al. (1998) using a multiresolution framework, surface 

normal processing, and boundary point processing. Williams and 

Bennamoun (2000) suggested a further refinement by including 

individual covariance weights for each point. There is currently 

no consensus as to the best approach for solving the global 

registration problem. Kang et al. (2009) proposed a global 

registration method which minimizes the self-closure errors 

across all scans through simultaneous least-squares adjustment. 

Majdi et al.(2013) realized a spatial alignment of consecutive 3D 

data under the supervision of a parallel loop-closure detection 

thread.  

In recent years, the optimization algorithms using a series of 

measurements observed over time have been introduced in point 

cloud registration. Ma and Ellis(2004) proposed the Unscented 

Particle Filter (UPF) algorithm  to register two point data sets in 

the presence of isotropic Gaussian noise. In this paper, we regard 

the point cloud registration as a stochastic system and the global 

registration as the process that recursively estimates the rigid 

transformation parameters of each scans, so that augmented 

extended Information Filter (AEIF) is utilized to produces the 

accurate estimates of rigid transformation parameters through 

eliminating the error accumulation suffered by the pair-wise 

registration. 

 

2. GLOBAL REGISTRATION USING AUGMENTED 

EXTENDED INFORMATION FILTER 

 Kang et al. proposed a global registration algorithm using the 

augmented extended Kalman filter (AEKF), which also derived 

a constraint of the central axis of a subway tunnel to control the 

registration of multiple scans. Because the canonical form of 

extended Information Filter (EIF) (1999)completely describes 

the Gaussian by the information (inverse covariance) matrix 

information vector rather than a dense covariance matrix and 

mean vector of EKF, to improve the efficiency we utilize the EIF 

to estimate the six rigid transformation parameters (three for the 

translation and three for the rotation). EIF is normally employed 

in robotic motion planning and control, and indoor navigation. 

However, as a global registration process, the RTPs that are 

acquired by pair-wise registrations should be globally optimized. 

Therefore, in this paper the system state is augmented to contain 

the RTPs of all pair-wise registrations that have been completed, 

so the optimized RTPs in the global reference frame are 

estimated in terms of the RTPs of the new registration and its 

preceding registration. This paper presents a design for an 

augmented Extended Information Filter (AEIF) for the global 

registration of Kinect point clouds. 

Suppose that N scans of 3D point cloud data are expressed 

as: {V1, V2, ..., VN}. The i-th scan Vi is represented as {vij 

= (xij, yij, zij) | j = 1,2, ... Mi}, and Mi represents the point 

number of the i-th scan. 
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For a scale factor of 1, the rigid transformation between 

adjacent scans is parameterized as follows:  

𝑋′ = 𝑅𝑋 + 𝑇                             （1） 

where 𝑋 ‘ and Xare the coordinates of the corresponding points in 

the analyzed and fixed scans, respectively, R is the rotation 

matrix computed by three rotations around the coordinate axes 

φ,ω, κ, T is the translation vector. 

Therefore, each transformation has six degrees of freedom 

(6DOF):𝑇𝑋, 𝑇𝑌, 𝑇𝑍, 𝜑, ω, κ. 
The detailed description of EIF can be found in 1999. The system 

proposed in this paper is an augmented one and moreover the 

observation model is derived from multiple features. Therefore, 

this section focuses on the augmented part of the system and 

multiple-features observation model. 

 

2.1 State space and system models 

 The augmented system state comprises the RTPs of all 

pair-wised registration completed. The system state at time tk is 

defined as X(k):  

X(k) = [𝑋1(𝑘) … 𝑋𝑛(k)]
𝑇              (2) 

where, n represents the number of pair-wised registration 

completed. Xi(k) denotes the RTPs of the i-th pair-wis 

 

2.2 System Status Model 

As the RTPs of each pair-wised registration are static, the system 

state transition equation becomes: 

X(k + 1) = f(X(k)) = X(k)           (3) 

where, f (.) is the state-transition model. As we can see, the state-

transition model is a unit matrix I, which can be ignored. 

 

2.3 System augmented model 

During the global registration process, when a new pair-

wised registration is considered at time k, its RTPs are added into 

the system state vector. The RTPs in the global reference frame 

are estimated in terms of the RTPs of the new registration and its 

preceding registration using Equation (4).  

𝑋𝑛𝑒𝑤(𝑘) = g(𝑋𝑟(k − 1, 𝑇𝑀) + ω(k)           (4) 
where 𝑋𝑛𝑒𝑤(𝑘) represents the augmented RTPs of the currently 

considered registration, 𝑋𝑟(k − 1) denotes the RTPs of the 

preceding registration, g(.) is a system-augmented function, the 

RTPs of the new pair-wise registration are 

𝑇𝑀 = [Δ𝑇𝑋, Δ𝑇𝑌 , Δ𝑇𝑍 , Δ𝜑, Δ𝜔, Δ𝜅, ] 
and ω(k) describes a variety of uncertainties in the pair-wise 

registration and modeling process, which is assumed to comply 

with the Gaussian distribution and is thus expressed as a white 

noise vector Ν (0,  ). 
 

2.4 Observation model 

An observation model is established to optimize the RTPs of all 

pair-wised registration by minimizing the differences between 

the 3D corresponding feature pairs transformed into the common 

reference frame. Besides point features, since the indoor scene 

normally contains a plenty of planar primitives, planar features 

are employed to control the registration of multiple scans. 

Therefore, the observation model derived from multiple features 

is as follow: 

 

2.4.1 Point-feature models 

 

The observation model of point feature is established to 

minimize the differences between the 3D corresponding point 

pairs transformed into the common reference frame.  

𝑍p = ℎp(𝑋𝑚(𝑘), … 𝑋𝑛(𝑘)) + 𝑣(𝑘)                  

= [

𝑋𝑖𝑓

𝑌𝑖𝑓

𝑍𝑖𝑓

] − [

𝑋𝑖𝑎′

𝑌𝑖𝑎′

𝑍𝑖𝑎′

] + 𝑣(𝑘)                   （5） 

where ( 𝑋𝑖𝑓, 𝑌𝑖𝑓, 𝑍𝑖𝑓) and (𝑋𝑖𝑎′, 𝑌𝑖𝑎′, 𝑍𝑖𝑎′) are respectively the 

coordinates of the corresponding point pair i in the fixed and 

analyzed scans, respectively, transformed into the common 

reference frame. h(. ) is the observation model, v(k) denotes a 

variety of uncertainties in the scanning measurement and the 

transformation of coordinates, which is supposed to comply with 

the Gaussian distribution. 

The coordinates  (𝑋𝑖𝑎′, 𝑌𝑖𝑎′, 𝑍𝑖𝑎′)  are computed as follows:       
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 (6) 

where (𝑋𝑖𝑎′, 𝑌𝑖𝑎′, 𝑍𝑖𝑎′) are the coordinates of the point in the 

analyzed scan; (𝑇𝑖,𝑋 , 𝑇𝑖,𝑌 , 𝑇𝑖,𝑍 ) represent the translation from 

scan i+1 to i; and Ri is the rotation from i+1 to i. 

Equation (5) is linearized as: 

𝑍𝑝 = ℎ𝑝(𝑋𝑚(𝑘), … , 𝑋𝑛(𝑘)) + ∇ℎ𝑝 ∗ [
∆𝑋𝑚(𝑘)

⋮
∆𝑋𝑛(𝑘)

] + 𝑣(𝑘)  

(7) 

where, ∇ℎ𝑝is the Jacobian matrix derived from Equation 

(5) and (6). 

 

∆𝑋𝑚(𝑘)
= [∆𝑇𝑋𝑚

(𝑘), ∆𝑇𝑌𝑚
(𝑘), ∆𝑇𝑍𝑚

(𝑘), ∆𝜑𝑚(𝑘), ∆𝜔𝑚(𝑘), ∆𝜅𝑚(𝑘)] 

∆𝑋𝑛(𝑘)
= [∆𝑇𝑋𝑛

(𝑘), ∆𝑇𝑌𝑛
(𝑘), ∆𝑇𝑍𝑛

(𝑘), ∆𝜑𝑛(𝑘), ∆𝜔𝑛(𝑘), ∆𝜅𝑛(𝑘)] 

 (8) 
 

2.4.2 Planar feature model 

A singularity-free representation of a plane (2014) that 

describes a plane using the normal vector 𝑛⃗ = [𝑛𝑥, 𝑛𝑦 , 𝑛𝑧]
𝑇   

and the perpendicular distance from the origin was employed. 

This representation is also known as the Hesse form of the plane. 

Equation (9) is the full expression for the parameterization.  

X𝑛𝑥 + Y𝑛𝑦 + Z𝑛𝑧 − 𝜌 = 0               (9) 

Because there can be only three degrees of freedom in a plane, 

we impose a constraint on the length of the normal vector 𝑛⃗ :  

√𝑛𝑥
2 + 𝑛𝑦

2+𝑛𝑧
2 = 1                     (10) 

It is not expected that there are enough triple perpendicular 

planes in the indoor environment, so the planar feature constraint 

is only derived to control the rotation deviation in the registration 

process. 

For each plane, three following equations are used to 

compute the difference in normal vector . 𝑛Δ. 

𝑛Δ = 𝑛𝑖 − (𝑅𝑛𝑗) 

where ni and nj are the normal vectors of corresponding planes i 

and j, R is the rotation. 

The observation model is derived as 

𝑍𝐹 = ℎ𝐹(𝑛𝑖, 𝑛𝑗) + 𝑣(𝑘)                                    

= 𝑅𝑖 ∗ [

𝑛𝑖𝑥

𝑛𝑖𝑦

𝑛𝑖𝑧

] − 𝑅𝑗 ∗ [

𝑛𝑗𝑥

𝑛𝑗𝑦

𝑛𝑗𝑧

] + 𝑣(𝑘)       （11） 

where (𝑛𝑖𝑥, 𝑛𝑖𝑦 , 𝑛𝑖𝑧) ,  (𝑛𝑗𝑥, 𝑛𝑗𝑦 , 𝑛𝑗𝑧)  are the corresponding 

normal vectors of a plane in the coordinate frames of scan i and 

j, 𝑅𝐺𝑖
and 𝑅𝐺𝑗

denote the rotations respectively from the 
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coordinate frames of scan i and j to the global coordinate, h(. ) 

is the observation model, and  𝑣(𝑘)  denotes a variety of 

uncertainties in the scanning measurement and the 

transformation of coordinates, which is assumed to comply with 

the Gaussian distribution. 

Equation (11) is linearized as: 

𝑍𝐹 = ℎ𝐹(𝑛𝑖, 𝑛𝑗) + ∇ℎ𝐹 ∗ [
∆𝑛𝑖

∆𝑛𝑗
] + 𝑣(𝑘)     (12) 

 

where, ∇ℎ𝐹is the Jacobian matrix derived from Equation (11), 

∆𝑛𝑖  and ∆𝑛𝑗  respectively denote (∆𝑛𝑖𝑥 , ∆𝑛𝑖𝑦 , ∆𝑛𝑖𝑧) and 

(∆𝑛𝑗𝑥 , ∆𝑛𝑗𝑦 , ∆𝑛𝑗𝑧) 

The more observation equations of planar features that are added 

to the AEIF system, the greater the contribution that the 

constraint has on the registration. 

 

2.4.3 Fitting of planar primitives 

 

To ensure the efficiency and robustness of fitting, the optimized 

BaySAC algorithm (2014) is employed to estimate the 

parameters of planar primitives. 

Moreover, a simplification algorithm preserving the feature 

points is employed to simplify of the point cloud while ensuring 

the fitting accuracy. We begin with the discrete 3D laser scanned 

data and derive the feature points of the point clouds through the 

analysis of point cloud smoothness and boundary features. We 

then perform the thinning of non-feature points to achieve point 

cloud simplification while retaining the feature points. Since 

feature points are of great importance for further processing, they 

are kept as many as possible. Even though a few false feature 

points may be remained, their influences on the fitting process 

can be ignored. 

Therefore, the observation model derived from multiple features 

is as follows: 

           Z = [
𝑍𝑃

𝑍𝐹
]                                (13) 

The RTPs of all of the pair-wise registrations are then optimized 

by minimizing both the differences between the corresponding 

3D point pairs and the corresponding normal vectors of planar 

features, which is expected to improve the robustness and 

accuracy of the proposed global registration approach.  

 

2.5 Status augmented 

When a new pair-wised registration is completed, its  𝑋𝑛𝑒𝑤(k) 

is added to the system state. The information vector and the 

information matrix are then augmented as follows: 

 

Λ−(𝑘 + 1) = [
Ψ 𝑄−1∇𝑔Ω−1

Ω−1∇𝑔𝑇𝑄−1 Ω−1 ]             

η−(𝑘 + 1) = [
𝑄−1∇𝑔Ω−1𝑢 + Ψη+(𝑘)

Ω−1∇𝑔𝑇𝑄−1η+(𝑘) + Ω−1𝑢
]    (14) 

Ψ = (∇𝑔Λ−1
𝑘∇𝑔𝑇）

−1
                         

Ω = （Λ𝑘 + ∇𝑔𝑇𝑄−1∇𝑔）                       

u = ∇𝑔𝑇𝑄−1(𝑔 − ∇𝑔𝑋𝑛𝑒𝑤(𝑘))                    

Λ−(𝑘 + 1)denotes the priori information matrix and 

η−(𝑘 + 1)represents the priori information vector, ∇𝑔 is 

the Jacobian matrix of system augmented model, Q  is 

covariance matrix. 
 

2.6 Observations Updates  

  Λ+(𝑘 + 1) = Λ−(𝑘 + 1) + ∇ℎ𝑇(𝑘)𝑄−1(𝑘)∇ℎ(𝑘)   (15) 

η+(𝑘 + 1) = η−(𝑘 + 1) + ∇ℎ𝑇(𝑘)𝑄−1(𝑘)∆𝑍       (16) 

∆Z = Z(k) − ℎ(Z(k)) + ∇ℎ|𝑧𝑍(𝑘)               (17) 

 

where  Λ+(k + 1) is a posteriori information matrix,∇hdenotes 

the Jacobian matrix, η+(k + 1)  represents the priori 

information vector, ∆Z is the observation innovation. 

 

3. EXPERIMENTAL RESULT 

 The proposed approach was tested on real datasets (Figure 1) 

that were acquired by Kinect 2.0 in a room. Sixty-one scans were 

captured with an average shift of 0.4m between the scanning 

centers.  

           a. Point cloud                      b. RGB image 

Figure 1.  The experimental dataset 

 

3.1 Pair-wised registration 

a. the corresponding points between consecutive scans 

.  

. b. the registered point clouds 

Figure 2. The pair-wised registration result 
Pair-wised registrations were implemented by the SIFT-based 

image matching method proposed by Kang et al.(2009). Figure 

2(a) shows the corresponding points between consecutive scans, 

based on which the pair-wised registration result was acquired 

(Figure 2(b)). Table 1 lists the accuracies of the pair-wised 

registrations, which average value is 0.012m. 

Table 1. The accuracies of pair-wised registrations 

Regist-

ration 

Number 

of tie 

points 

Accur-

acy/m 

Regist-

ration 

Number 

of tie 

points 

Accura-

cy/m 

1-2 742 0.015  31-32 389 0.014  

2-3 187 0.027  32-33 406 0.000  

3-4 745 0.013  33-34 443 0.007  

4-5 168 0.035  34-35 399 0.007  

5-6 663 0.022  35-36 394 0.019  
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6-7 630 0.023  36-37 399 0.013  

7-8 707 0.010  37-38 349 0.008  

8-9 572 0.014  38-39 389 0.011  

9-10 682 0.008  39-40 443 0.010  

10-11 635 0.003  40-41 523 0.005  

11-12 613 0.005  41-42 576 0.005  

12-13 618 0.008  42-43 643 0.008  

13-14 684 0.009  43-44 716 0.007  

14-15 612 0.014  44-45 686 0.008  

15-16 679 0.022  45-46 701 0.015  

16-17 515 0.018  46-47 679 0.020  

17-18 550 0.005  47-48 589 0.007  

18-19 495 0.013  48-49 666 0.016  

19-20 427 0.002  49-50 622 0.018  

20-21 506 0.023  50-51 653 0.016  

21-22 487 0.008  51-52 560 0.013  

22-23 493 0.006  52-53 521 0.021  

23-24 480 0.012  53-54 499 0.004  

24-25 489 0.008  54-55 501 0.009  

25-26 473 0.005  55-56 509 0.012  

26-27 501 0.017  56-57 575 0.003  

27-28 457 0.007  57-58 566 0.006  

28-29 532 0.006  58-59 559 0.005  

29-30 400 0.013  59-60 96 0.021  

30-31 336 0.034  60-61 568 0.005  

Figure 3 shows obvious registration error accumulation. To 

estimate the error accumulation, Figure 3 b~d respectively 

illustrates the cross sections extracted at the same position from 

multiple scans, which were transformed into the same coordinate 

system using pair-wised registration results. Distinct deviations 

among the cross sections in Figure 3 b~d present owing to the 

accumulation of pair-wised registration errors. 

 
(a) 

     
 (b)                      (c)              (d) 

Figure 3. The error accumulation of pair-wised registration.   

(a) Overview; (b) Position A; (c) Position B; (d) Position C 

 

Table 2 lists the numeric differences between the corresponding 

points, which were transformed into the same coordinate system 

using pair-wised registration results. The average deviation is 

0.1770m, which is much larger than the average value 0.012 m 

of Table 1. The difference proves the existence of the error 

accumulation of pair-wised registration. 

Table 2 Deviations between corresponding point pairs 

Regist-

ration 

Number 

of tie 

points 

Accur

-

acy/m 

Regist

-ration 

Number of 

tie points 

Accura

-cy/m 

1-2 742 0.015 31-32 389 0.086 

2-3 187 0.015 32-33 406 0.112 

3-4 745 0.021 33-34 443 0.132 

4-5 168 0.020 34-35 399 0.149 

5-6 663 0.012 35-36 394 0.159 

6-7 630 0.033 36-37 399 0.172 

7-8 707 0.045 37-38 349 0.185 

8-9 572 0.057 38-39 389 0.197 

9-10 682 0.066 39-40 443 0.223 

10-11 635 0.067 40-41 523 0.243 

11-12 613 0.068 41-42 576 0.264 

12-13 618 0.061 42-43 643 0.287 

13-14 684 0.062 43-44 716 0.308 

14-15 612 0.066 44-45 686 0.321 

15-16 679 0.066 45-46 701 0.319 

16-17 515 0.084 46-47 679 0.343 

17-18 550 0.089 47-48 589 0.377 

18-19 495 0.088 48-49 666 0.381 

19-20 427 0.087 49-50 622 0.380 

20-21 506 0.078 50-51 653 0.370 

21-22 487 0.071 51-52 560 0.373 

22-23 493 0.074 52-53 521 0.377 

23-24 480 0.071 53-54 499 0.380 

24-25 489 0.078 54-55 501 0.376 

25-26 473 0.079 55-56 509 0.381 

26-27 501 0.083 56-57 575 0.369 

27-28 457 0.084 57-58 566 0.368 

28-29 532 0.090 58-59 559 0.366 

29-30 400 0.084 59-60 96 0.370 

30-31 336 0.075 60-61 568 0.363 

 

As proposed in Section 2, we implemented augmented extended 

Information Filter to eliminate the error accumulation suffered 

by the pair-wise registration for the purpose of producing the 

accurate estimates of rigid transformation parameters. 

3.2 Global registration using augmented extended 

Information filter 

The pair-wised registration results were used to construct the 

augmented extended Information Filter system from which the 

global registration was implemented. Besides the corresponding 

points shown in Figure 2, plannar features were extracted and 

added into the observation model (Figure 4) 

   

Figure 4 Corresponding plannar features extracted from 

consecutive scans 

 For the comparison of registration accuracies, cross sections 

were also extracted at the same position as shown in Figure 5. 

Figure 5 illustrates that the deviations between the cross sections 

decrease comparing with the deviations shown in Figure 3. The 

average deviation computed from the results in Table 3 

accordingly reduces to 0.023m. 
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(a) 

     

               (b)              (c)                        (d) 

Figure 5. Global registration results (AEIF). 

(a) Overview; (b) Position A; (c) Position B; (d) Position C 

Table 3 Deviations between corresponding point pairs 

Regist-

ration 

Number 

of tie 

points 

Accur-

acy/m 

Regist-

ration 

Number 

of tie 

points 

Accura

-cy/m 

1-2 742 0.032 31-32 389 0.008 

2-3 187 0.031 32-33 406 0.009 

3-4 745 0.032 33-34 443 0.008 

4-5 168 0.031 34-35 399 0.008 

5-6 663 0.034 35-36 394 0.009 

6-7 630 0.033 36-37 399 0.009 

7-8 707 0.032 37-38 349 0.01 

8-9 572 0.029 38-39 389 0.018 

9-10 682 0.027 39-40 443 0.01 

10-11 635 0.027 40-41 523 0.023 

11-12 613 0.028 41-42 576 0.015 

12-13 618 0.029 42-43 643 0.015 

13-14 684 0.028 43-44 716 0.018 

14-15 612 0.03 44-45 686 0.02 

15-16 679 0.031 45-46 701 0.019 

16-17 515 0.031 46-47 679 0.024 

17-18 550 0.026 47-48 589 0.024 

18-19 495 0.023 48-49 666 0.031 

19-20 427 0.025 49-50 622 0.028 

20-21 506 0.022 50-51 653 0.026 

21-22 487 0.019 51-52 560 0.029 

22-23 493 0.018 52-53 521 0.031 

23-24 480 0.016 53-54 499 0.034 

24-25 489 0.017 54-55 501 0.034 

25-26 473 0.017 55-56 509 0.031 

26-27 501 0.015 56-57 575 0.032 

27-28 457 0.015 57-58 566 0.032 

28-29 532 0.01 58-59 559 0.031 

29-30 400 0.011 59-60 96 0.035 

30-31 336 0.009 60-61 568 0.033 

 

4. CONCLUSIONS 

In this paper, we proposed a global registration approach based 

on augmented extended Information Filter. The point cloud 

registration was regarded as a stochastic system so that we 

utilized AEIF to produce the accurate estimates of rigid 

transformation parameters through eliminating the error 

accumulation suffered by the pair-wise registration.  

The proposed algorithm was implemented using Kinect point 

clouds that was acquired in an indoor environment. The 

experimental results show that, when aligning multiple scans 

into a common coordinate frame, the consecutively 

implementation of pair-wised registration leads to error 

accumulation (from 0.012m to 0.1770m). The results also 

illustrate that the application of the global registration based on 

AEIF can reduce the error accumulation (from 0.1770m to 

0.023m), which improves the accuracy of aligning multiple 

scans by 90%.  

As the indoor environment normally contains plenty of curve 

and linear primitives besides planar ones, future work will focus 

on incorporating such primitives with points to improve the 

robustness and applicability of our registration algorithm. 
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