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ABSTRACT:

In-situ calibration of structured light scanners in underwater environments is time-consuming and complicated. This paper presents

a self-calibrating line laser scanning system, which enables the creation of dense 3D models with a single fixed camera and a freely

moving hand-held cross line laser projector. The proposed approach exploits geometric constraints, such as coplanarities, to recover the

depth information and is applicable without any prior knowledge of the position and orientation of the laser projector. By employing an

off-the-shelf underwater camera and a waterproof housing with high power line lasers an affordable 3D scanning solution can be built.

In experiments the performance of the proposed technique is studied and compared with 3D reconstruction using explicit calibration.

We demonstrate that the scanning system can be applied to above-the-water as well as underwater scenes.

1 INTRODUCTION

The sea is becoming an increasingly important resource for the

energy production industry and for mining of raw materials. In

order to ensure the safe and efficient operation of structures, such

as offshore wind turbines, oil platforms, or generators frequent

inspections are necessary. High-resolution 3D scanners enable

low-cost monitoring of submerged structures. Moreover, marine

biologists have a strong interest in underwater 3D data acquisi-

tion for the exploration of ocean habitats. For example, the de-

velopment of coral reefs is an important indicator of the well-

being of the marine ecosystem. Having accurate measurements

of the structural complexity of corals gives scientiests an indica-

tor of the genetic diversity and spreading of diseases (Burns et

al., 2015). Simple, low-cost 3D underwater sensors can have a

significant impact on our ability to study the oceans.

For many underwater mapping applications sonar technology is

still the primary solution because of its large sensor range and

its robustness to turbidity. However, certain measurement tasks

require a higher accuracy and resolution. For example, geolo-

gists are interested in monitoring changes in lake bed sediments

of small areas in flat water zones with sub-centimeter resolu-

tion to create and verify detailed geotechnical models. Such re-

quirements make optical scanners interesting despite their lack

of range due to the high absorption of light in water. Today,

low-cost action cameras provide easy access to suitable technol-

ogy for acquiring underwater images and videos. Subsequently,

photogrammetry has become a popular technique for creating 3D

models of submerged environments and has been applied to di-

verse scientific and industrial applications, such as marine ecosys-

tem monitoring (Burns et al., 2015), non-destructive documenta-

tion of archaeological sites (Drap et al., 2007), or surveys of ship

accidents (Menna et al., 2013).

In this paper we propose a line laser scanning system consisting

of a single camera and a hand-held cross line laser projector as

depicted in Fig. 1. We employ a green and a blue line laser since

absorption in water is significantly lower for these wavelengths

than, for example, a red laser. Two different colors are employed

to facilitate separation of the two laser lines in the camera image.

Figure 1: Cross line laser projector in a waterproof housing for

underwater scanning.

The proposed approach is self-calibrating and is applicable with-

out knowledge of the position of the projector in 3D space. Our

method is based on self-calibration techniques proposed by Fu-

rukawa and Kawasaki (2009), which exploit coplanarity and or-

thogonality constraints between multiple laser planes to recover

the depth information. We show that these results can be also

adapted to underwater imaging.

The proposed system can be seen as a trade-off between pho-

togrammetry and calibrated line laser scanning. Compared to

photogrammetry the advantage is that operation in darkness and

scanning of texture-less objects is possible. The restriction is that

the self-calibration method is not applicable to completely planar

scenes. However, in practice this is rarely a limitation because

the approach can be applied to scenes with small depth variation.

Similar to photogrammetry the scale of the 3D point cloud cannot

be recovered using only two laser lines due to the perspective

projection of the camera. We typically infer scale from a known

distance of the scanned object or place scale references in the

scene. Moreover, scale can be transfered by co-registration of the

scans with data captured using other sensor modalities, e.g., sonar

or time-of-flight laser scanning.
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The main drawback of explicit calibration is that the process has

to be repeated every time a parameter is changed. This is chal-

lenging in underwater environments, because it is difficult to work

with calibration targets in water, e.g., divers can become neces-

sary to move the calibration fixture or the scanner. This means

that it takes a long time to capture a sufficient amount of low noise

data that is suitable to perform system calibration. Therefore, au-

tomatic parameter estimation techniques are of particular interest

for being able to adapt the system to the environment without the

need to re-calibrate.

In general, uncalibrated scanning with the projector moving with-

out restrictions makes it more difficult to obtain accurate scans

due to noisy estimates of the laser plane parameters. However,

the accuracy of triangulation based depth estimation is also de-

pendent on the baseline. Uncalibrated Structured Light has the

advantage that we are not limited to a fixed distance and scanning

with very large baselines becomes possible. A suitable baseline

which depends on the depth range of the scene can be chosen by

simply moving further away from the camera. This allows one to

record details that would otherwise not show up in scans with a

fixed small baseline.

2 RELATED WORK

In air conditions various techniques for inexpensive 3D scanning

are available. Especially consumer RGB-D cameras, such as the

Microsoft Kinect, had an important impact on low-cost 3D data

acquisition. Coded structured light scanners using off-the-shelf

digital projectors are capable of scanning small to medium size

scenes with sub-millimeter precision (Salvi et al., 2004). Line

laser scanning based on online calibration using markers or struc-

tures in the scene, such as known reference planes (Winkelbach et

al., 2006) or frames (Zagorchev and Goshtasby, 2006), is a pop-

ular technique for scanning small objects. For larger distances

a low-cost alternative to terrestrial 3D laser scanning based on

a time-of-flight laser distance meter and a pan-and-tilt unit ex-

ists (Eitel et al., 2013). For underwater applications the situation

is different since most commercially available 3D range sensors

are designed for atmospheric operation and do not work underwa-

ter. Moreover, many industrial grade underwater sensing equip-

ment is designed for subsea operation and water depths of more

than 2000 m, which adds significantly to the costs. A comprehen-

sive survey of optical underwater 3D data acquisition technolo-

gies can be found in (Massot-Campos and Oliver-Codina, 2015).

2.1 Underwater Laser Scanning

The popularity of RGB-D cameras also inspired researchers to

apply them to underwater imaging (Digumarti et al., 2016). How-

ever, due to the infrared wavelength of the laser pattern projector

the achievable range is limited to less than 30 cm (Dancu et al.,

2014). Fringe projection has been applied successfully to acquire

very detailed scans with high precision of small underwater ob-

jects (Törnblom, 2010; Bräuer-Burchardt et al., 2015). Despite

the limited illuminating power of a standard digital projectors,

working distances of more than 1 m have been reported in clear

water (Bruno et al., 2011).

Commercial underwater laser scanning systems with larger mea-

surement range often employ high-power line laser projectors.

For example, scanners from “2G Robotics” offer a range of up

to 10 m depending on the water conditions (2G Robotics, 2016).

3D scans are typically created by rotating the scanner and mea-

suring the movement using rotational encoders or mounting the

scanner to a moving platform and recording the vehicle trajectory

data from inertial navigation systems and GNSS.

Recently, researchers employed diffractive optical elements and

more powerful laser sources to project multiple lines or a grid

for one shot 3D reconstruction (Morinaga et al., 2015; Massot-

Campos and Oliver-Codina, 2014). In this work we choose delib-

erately a more simple cross laser pattern because in the presence

of water turbidity or reflections we expect that the laser lines can

be segmented more robustly compared to grid patterns. More-

over, with multi line or grid projectors the laser light is spread

over a large surface area which requires a higher illuminating

power to achieve the same depth range.

Most of the commercially available underwater laser range sen-

sors are based on laser stripe projection or other forms of struc-

tured light. More recently companies started development of

time-of-flight underwater laser scanners. For example, the com-

pany “3D at Depth” developed a commercial underwater LiDAR,

which can be mounted on a pan-an-tilt unit to create 3D scans of

underwater environments similar to terrestrial laser scanning (3D

at Depth, 2016). A recently proposed scanning system by Mit-

subishi uses a dome port with the scanner aligned in the optical

center to achieve a wider field of view (Imaki et al., 2017).

2.2 Self-calibrating Line Laser Scanning

Exploiting the projection of planar curves on surfaces for recov-

ering 3D shape has been studied for diverse applications, such

as automatic calibration of structured light scanners (Furukawa

et al., 2008), single image 3D reconstruction (Van den Heuvel,

1998) and shape estimation from cast shadows (Bouguet et al.,

1999). In this section we focus on uncalibrated line laser scan-

ning. Typically, these methods either employ a fixed camera and

try to estimate the plane parameters of the laser planes or work

with a setup where camera and laser are mounted rigidly relative

to each other and their relative transformation needs to be esti-

mated for calibration.

Some methods solve the online calibration problem by placing

markers or known reference planes in the scene (Winkelbach et

al., 2006; Zagorchev and Goshtasby, 2006). In contrast, Furukawa

and Kawasaki (2006) proposed a self-calibration method for mov-

able laser planes observed by a static camera that does not require

placing any specific objects in the scene. The approach exploits

coplanarity constraints from intersection points and additional

metric constraints, e.g., the angle between laser planes, to per-

form 3D reconstruction. It was demonstrated that 3D laser scan-

ning is possible with a simple cross line laser pattern. Later, Fu-

rukawa and Kawasaki (2009) extended the approach and showed

how additional unknowns, such as, the parameters of a pinhole

model (without distortion), can be estimated if a suitable initial

guess is provided.

The plane parameter estimation problem leads to a linear sys-

tem of coplanarity constraints for which a direct least-squares ap-

proach does not necessarily yield a unique solution. For example,

projecting all points of all planes in the same common plane ful-

fills the coplanarity constraints. However, this does not reflect the

real scene geometry. Ecker et al. (2007) showed how additional

constraints on the distance of the points from the best fitting plane

can be incorporated to avoid such unmeaningful solutions.

Jokinen (1999) demonstrated an approach for calibrating a line

laser scanning system where camera and line laser are mounted

fixed relative to each other without requiring a special target.

Given an initial estimate the relative transformation parameters

between the laser plane and the image plane are refined by match-

ing multiple profiles taken from different view points.
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Figure 2: Cross line laser projector with a single fixed camera.

3 METHODOLOGY

The scanning setup for creating a 3D scan is visualized in Fig. 2.

We scan the scene with a fixed camera and move the hand-held

laser projector in order to project laser crosses in the scene from

different 6 degrees of freedom poses. We explicitly calibrate the

camera parameters, because this allows one to acquire robust esti-

mates of the distortion parameters which are especially necessary

for underwater imaging and uncorrected optics.

By aggregating a sequence of images over time, we can extract

many different laser curves on the image plane. Since the camera

is fixed we can find intersection points between the laser curves

which correspond to the same 3D point. By extracting many laser

curves, we will obtain many more intersection points than the

number of laser planes. This allows us to exploit the intersections

to estimate the plane parameters. However, from the intersection

points alone we cannot solve all degrees of freedom (DOF) of the

plane parameters. Using the additional orthogonality constraint

between two laser planes in the cross configuration we can find

the plane parameters up to an arbitrary scale. The 3D point posi-

tions of each laser curve can then be computed by intersecting the

camera rays with the laser plane. Outliers in this initial 3D recon-

struction from inaccurately estimated laser planes are rejected by

geometric consistency checks to create the final 3D point cloud.

Fig. 3 shows an image of the scene captured from the perspective

of the fixed camera used for scanning, a subset of the extracted

laser curves in white and the computed intersection points in red,

and the reconstructed 3D point cloud. This result was created

from 3 min of video recorded at 30 fps. A total of 7,817 valid

laser curves were extracted with 1,738,187 intersection points.

The 3D reconstruction was computed using a subset of 400 laser

planes. The final point cloud created from all valid laser curves

has a size of 11,613,200 points. The individual steps and em-

ployed models are explained in more detail in the following sec-

tions.

3.1 Camera Model

We approximate the camera projection function based on the pin-

hole model with distortion. Although in underwater conditions

this model does not explicitly model the physical properties of

refraction, it can provide a sufficient approximation for underwa-

ter imaging and low errors are achievable (Shortis, 2015).

The point X = (X,Y, Z)T in world coordinates is projected on

the image plane according to

(X,Y, Z)T 7−→ (fxX/Z+px, fyY/Z+py)
T = (x, y)T , (1)

where x = (x, y)T are the image coordinates of the projection,

p = (px, py)
T is the principal point and fx, fy are the respective

focal lengths. Using the normalized pinhole projection

xn =

(

xn

yn

)

=

(

X/Z
Y/Z

)

(2)

we include radial and tangential distortion defined as follows

x̃ = xn

(

1 + k1r
2 + k2r

4 + k5r
6)+

+

[

2k3xnyn + k4(r
2 + 2x2

n)
k3(r

2 + 2y2
n) + 2k4xnyn

]

,
(3)

where (k1, k2, k5) are the radial and (k3, k4) are the tangential

distortion parameters. Here, x̃ = (x̃, ỹ) are the real (distorted)

normalized point coordinates and r2 = x2
n + y2

n.

We calibrate the camera using Zhang’s method (Zhang, 2000)

with a 3D calibration fixture, see Fig. 1, with AprilTags (Olson,

2011) as fiducial markers. This has the advantage that calibra-

tion points can be extracted automatically even if only part of the

structure is visible in the image. In general, a larger calibration

structure is beneficial especially in water since it can be detected

over lager distances, which allows one to take calibration data in

the whole measurement range. Moreover, it is known from lit-

erature that 3D structures provide more consistent and accurate

calibration results (Shortis, 2015).

After low level laser line extraction we undistort the image co-

ordinates of the detected line points. Therefore, we do not have

to consider distortion effects during the 3D reconstruction step,

which simplifies the equations.

3.2 Laser Line Extraction

A simple approach to extracting laser lines from an image is to

use maximum detection along horizontal or vertical scanlines in

the image. In the case of uncalibrated scanning this does not work

in all cases since the orientation of the laser line in the image is

arbitrary and no clear predominant direction exists. Therefore,

we employ a ridge detector for the extraction of the laser lines in

the image. For this work we use Steger’s line algorithm (Steger,

1998).

The idea of the algorithm is to find curves in the image that have

in the direction perpendicular to the line a characteristic 1D line

profile, i.e., a vanishing gradient and high curvature. We apply

the line detector to a gray image created by averaging the color

channels. If scans are capture in strong ambient illumination,

we apply background subtraction to make the laser lines more

discriminable from the background.

The direction of the line in the two dimensional image is esti-

mated locally by computing the eigenvalues and eigenvectors of

the Hessian matrix

H(x, y) =

[

∂2gσ(x,y)

∂x2

∂2gσ(x,y)
∂x∂y

∂2gσ(x,y)
∂y∂x

∂2gσ(x,y)

∂y2

]

∗ I(x, y) =

[

rxx rxy
ryx ryy

]

,

(4)

where gσ(x, y) is the 2D gaussian kernel with standard devia-

tion σ, I(x, y) is the image and rxx, rxy, ryx, ryy are the partial

derivatives. The direction perpendicular to the line is the eigen-

vector (nx, ny)
T

with ‖(nx, ny)
T ‖2 = 1 corresponding to the

eigenvalue with the largest absolute value. For bright lines the

eigenvalue needs to be smaller than zero.

Instead of searching directly for the zero-crossing a second-order

Taylor expansion is employed to determine the location (qx, qy)
T
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Figure 3: Visualization of the scene, extracted laser curves, and 3D point cloud. Left: Image of the scene from the perspective of the

fixed camera used for scanning, Middle: Visualization of a subset of the extracted laser curves in white and intersection points in red,

Right: Colored 3D point cloud.

where the first derivative in the direction perpendicular to the line

vanishes with sub-pixel accuracy:

(qx, qy)
T = t (nx, ny)

T , (5)

where

t = −
rxnx + ryny

rxxn2
x + 2rxynxny + ryyn2

y

. (6)

Here, rx = ∂gσ(x,y)
∂x

and ry = ∂gσ(x,y)
∂y

are the first partial

derivatives.

For valid line points the position must lie within the current pixel.

Therefore, (qx, qy) ∈ [−0.5, 0.5]× [−0.5, 0.5] is required. Indi-

vidual points are then linked together to line segments based on a

directed search.

The response of the ridge detector given by the value of the max-

imum absolute eigenvalue is a good indicator for the saliency of

the extracted line points. Only line points with a sufficiently high

response are considered.

To distinguish between the two laser lines we use the color in-

formation and apply thresholds in the HSV color space. This is

implemented using look up tables to speed up color segmentation.

We apply only very low thresholds for saturation and brightness

of the laser line. Depending on the object surface the laser lines

can be barely visible and appear desaturated in the image.

3.3 3D Reconstruction Using Light Section

A line laser can be considered as a tool to extract points on the

image plane that are projections of object points that lie on the

same plane in 3D space. We describe the laser plane πi using the

general form

πi : aiX + biY + ciZ = 1 , (7)

where (ai, bi, ci) are the plane parameters and X = (X,Y, Z)T

is a point in world coordinates. Using the perspective camera

model described in Eq. 1 this can be expressed as

πi : ai
x− px
fx

+ bi
y − py
fy

+ ci =
1

Z
, (8)

where x = (x, y)T are the image coordinates of the projection of

X on the image plane, p = (px, py)
T is the principal point and

fx, fy are the respective focal lengths.

If we know the plane and camera parameters, we can compute

the coordinates of a 3D object point X = (X,Y, Z)T on the

plane from its projection on the image plane x = (x, y)T by

intersecting the camera ray with the laser plane:

Z =
1

ai
x−px
fx

+ bi
y−py
fy

+ ci

X = Z
x− px
fx

Y = Z
y − py
fy

.

(9)

3.4 Estimation of Plane Parameters Using Coplanarity and

Orthogonality Constraints

From the recorded sequence of images the laser curves are ex-

tracted as polygonal chains. We find the points that exist on mul-

tiple laser planes by intersecting the polylines. This computation

can be accelerated by spatial sorting, such that only line segments

that possibly intersect are tested for intersections. Moreover, we

can simplify the polylines to reduce the number of line segments.

However, we need to do this with a very low threshold (less than

half a pixel) in order not to degrade the accuracy of the extracted

intersection positions.

The plane parameters are estimated in a two step process based

on the approach described in (Furukawa and Kawasaki, 2009).

First, by solving a linear system of coplanarity constraints the

laser planes are reconstructed up to 4-DOF indeterminacy. Sec-

ond, further indeterminacies can be recovered from the orthogo-

nality constraints between laser planes in the cross configuration

in a non-linear optimization.

Using Eq. 8 the coplanarity constraint between two laser planes

πi and πj can be expressed in the perspective system of the cam-

era for an intersection point xij = (xij , yij)
T as

1

Zi(xij , yij)
−

1

Zj(xij , yij)
=

(ai − aj)
xij − px

fx
+ (bi − bj)

yij − py
fy

+ (ci − cj) = 0 .

(10)

We combine these linear equations in a homogeneous linear sys-

tem:

Av = 0 , (11)

where v = (a1, b1, c1, . . . , aN , bN , cN )T is the combined vector

of the planes’ parameters and A is a matrix whose rows contain

±(xij − px)fx
−1, ±(yij − px)fx

−1 and ±1 at the appropriate

columns to form the linear equations of Eq. 10.

This problem has a trivial solution for v, which is the zero vector.

Therefore, we solve the system under the constraint ‖v‖ = 1 us-

ing Singular Value Decomposition. If the system is solvable and

it is not a degenerate condition, we obtain the perspective solution

of the plane parameters (ap, bp, cp) with 4-DOF indeterminacy.
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A degenerate condition can be caused, e.g., by planes with only

collinear intersection points. The solution can be represented by

an arbitrary offset o and an arbitrary scale s:

(a, b, c) = s(ap, bp, cp) + o . (12)

With the cross line laser configuration we obtain an additional

perpendicularity constraints between each of the two cross laser

planes which can be used to recover the offset vector. The offset

is computed, such that the error of the orthogonality constraints

is minimized. We find the offset vector ô that minimizes the sum

of the inner product between planes in the set C = {(i, j)|(πi ⊥
πj)} of orthogonal laser planes:

ô = argmin
o

∑

(i,j)∈C

n(ai, bi, ci,o)
T
n(aj , bj , cj , o) , (13)

where n is the normal of the plane computed from the plane pa-

rameters and offset vector. The scale cannot be recovered with

only two laser planes and needs to be estimated from other mea-

surements, such as a known distance in the scene.

We only use a subset of the laser planes to solve for the plane

parameters. The other planes can then be reconstructed by fitting

a plane to the intersection points with planes of the already solved

subset of laser planes. Although it is possible to compute 3D

reconstruction with less planes we found empirically that 100 -

200 planes are necessary to find a robust solution.

In order to choose a solvable subset of planes we remove all

planes that have only collinear intersection points. Moreover, we

apply heuristics to select planes that have distinct orientations and

positions in the image. To do this we pick planes spread apart in

time. Consecutive frames can be very similar if we move the pro-

jector slowly. Additionally, we reject planes that have more than

one intersection with each other. There are situations where it

is valid that two planes have multiple intersections. However, in

practice this mostly happens for identical planes or due to erro-

neous or noisy intersection detections.

It is difficult to verify that a valid 3D reconstruction is found. We

cannot tell if the solution is valid by only looking at the residuals

of Eq. 11 and Eq. 13 since we are optimizing for these values and

they are expected to be small. Therefore, we look at the error of

the planes that we did not take in the plane parameter optimiza-

tion step. Specifically, we compute the root-mean-square angular

error for all orthogonal laser planes.

3.5 Outlier Rejection

In practice the estimated plane parameters are noisy. The ex-

tracted positions of the laser line points have some error or wrong

laser curves can be detected in the image due to reflections. This

leads to noisy positions of the intersection points or erroneous de-

tected intersections. Therefore, there will be some outliers in the

created 3D point cloud.

To reduce these effects we reject laser segments or the informa-

tion from the complete plane based on the following three crite-

ria: Firstly, we remove planes with a very small baseline (distance

to the optical center of the camera) because these measurements

can only provide a low accuracy. Planes with intersection points

that fulfill the coplanarity constraints only with a large error are

rejected as well. Secondly, we compare the 3D points recon-

structed from the current plane for geometric consistency with

the points from other planes. Planes that have many points with

a large distance from their neighbor points reconstructed from

other planes are removed. Thirdly, planes with points outside the

expected measurement range are rejected.

4 EXPERIMENTS

For the experiments in air a consumer digital camera with an

APS-C sized sensor and a wide angle lens with a focal length

of 16 mm is used. The underwater scans are captured using a

GoPro action camera. We record video at 30 fps in Full-HD res-

olution (1920 x 1080 pixels). A high shutter speed is beneficial

since we move the laser by hand. An exposure time in the range

of 5 ms to 10 ms was used in the experiments in order to reduce

motion blur. The projector is built from two 450 nm and 520 nm

line lasers with a fan angle of 90◦ and an adjustable output power

of up to 40 mW. Note that the fan angle is reduced in water to

approximately 64◦. We set the laser focus such that the line is

as thin as possible over the whole depth range of the scene. Al-

though this setup worked well in our experiments for scanning in

turbid water a higher laser power and smaller fan angle is desir-

able.

4.1 Comparison with Explicit Plane Parameter Estimation

To verify the plane parameter estimation we compare the pro-

posed approach with an explicit online calibration of the laser

plane parameters using known reference planes in the scene. The

setup is inspired by the David Laser Scanner (Winkelbach et al.,

2006). We place three planes around the object as shown in

Fig. 4(a). The plane equations of the three reference planes are

estimated from multiple images of chessboard patterns placed on

the plane surfaces. We find the laser points that lie on the refer-

ence planes using manually created mask images. If the laser line

is visible on two of the calibrated planes with a sufficient amount

of points, we can extract the plane parameters by fitting a plane

to the laser line points.

We use the same extracted line points and camera parameters as

an input for both methods. Moreover, the reference solution using

online calibration is also degraded by any inaccuracies of the per-

formed camera calibration. Therefore, both methods are affected

by the same errors of the input data. The only difference is the

plane parameter estimation. For comparison purposes we employ

the following two error metrics: Firstly, the angular error between

the estimated plane normal vector nest using the proposed self-

calibration technique and the reference plane normal vector nref

estimated using the known reference planes is computed by

eangular = arccos(nT
estnref) . (14)

Secondly, we compute the error of the distances of the planes

from the origin

edist = |dest − dref | , (15)

where dest is the distance of the estimated plane from the origin

and dref is the distance of the reference plane from the origin. In

this experiment the origin was chosen as the projection center of

the camera.

We report the root mean square (RMS) error for a total of 890

extracted laser curves. The RMS of the angular error between

the plane normals is 2.70◦ (mean error 0.34◦) and the RMS error

of the distances of the planes from the origin is 8.29 mm (mean

error 1.59 mm).

The reconstruction result of the proposed method, see Fig. 4(b),

compares very well to the result using the explicit online cali-

bration result, see Fig 4(c). However, the scans created by the

proposed method are visibly more noisy.

4.2 Measurement Results

Examples of an above-the-water and an underwater scan created

using the presented method can be found in Fig. 5. Fig. 5(b)
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(a) (b) (c)

Figure 4: Setup for comparison with explicit plane parameter estimation: (a) object with three known reference planes in the back-

ground, (b) top and detail view of the 3D reconstruction using the proposed method, (c) top and detail view of the 3D reconstruction

based on the calibrated reference planes.

shows a scan of a small scene with LEGO bricks, which is de-

picted in Fig. 5(a). Fine details of the bricks can be captured.

The underwater scan of the pipe structure in Fig. 5(d) was cap-

tured in a water tank shown in Fig. 5(c). For both scans we tried

to achieve a baseline in the range of 0.5 m to 1 m. The scan

was created using only the automatic white balance of the GoPro

camera. Therefore, in the underwater scan the color reproduction

is not accurate.

Scans of a chapel and a comparison with LiDAR data created

from multiple scans using a Riegl VZ-400 terrestrial laser scan-

ner are depicted in Fig. 6. The scan shown in Fig. 6(a) was cap-

tured at night. We used flash photography to capture the color

information. Measured surfaces in the scene are up to 20 m away

from the camera. Hence, we move the cross line laser projector

further away from the camera to scan with baselines in the range

of 2 m to 3 m. In Fig. 6(b) two scans created using the presented

approach are visualized in pink and turquoise. The data was reg-

istered with the LiDAR data, which is colored in yellow, using

the well known iterative closest point (ICP) algorithm.

Fig. 6(c) shows the point cloud created using the proposed method

colored with the point-to-point distance from the point cloud ac-

quired using the terrestrial laser scanner. The LiDAR data was ac-

quired multiple months before scanning the chapel with the cross

line laser system. Therefore, note that the points of the tree in the

right part of the image do not match the LiDAR data because the

vegetation has changed in the time that passed between the scans.

The error histogram is depicted in Fig. 6(d). 78% of the points in

the two scans created using the proposed method differ less than

10 cm from the scans captured using the Riegl VZ-400.

5 CONCLUSIONS

This paper presents a line laser scanning system for above-the-

water scanning as well as underwater scanning. We show how

self-calibration techniques for line laser scanning by Furukawa

and Kawasaki (2009) can be extended to apply to underwater

imaging. Moreover, we provide our implementation details to

recover robust 3D estimates and show how the geometric con-

straints employed in the self-calibration process can also be used

to remove outliers, e.g., erroneous detections from reflections in

the scene. In first experiments it was demonstrated that good

quality scans can be achieved and a similar performance to 3D

line laser scanning using online calibration based on known ref-

erence planes in the scene is possible. However, further work is

necessary to determine the achievable accuracy. For 3D scanning

using the proposed method only a single consumer video cam-

era and two line laser projectors are necessary, which makes the

system very cost efficient.
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Figure 5: Test scenes and examples of 3D point clouds created using the proposed method.
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Figure 6: Scans of a chapel and comparison with LiDAR data captured using a Riegl VZ-400: (a) three views of a scan created using

the proposed method, (b) LiDAR data in yellow and two scans using the proposed method in pink and turquoise, (c) visualization of

the result using the proposed method colored with the distance from the LiDAR point cloud, (d) histogram of the point-to-point errors.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W3, 2017 
3D Virtual Reconstruction and Visualization of Complex Architectures, 1–3 March 2017, Nafplio, Greece

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W3-105-2017

 
111



Ecker, A., Kutulakos, K. N. and Jepson, A. D., 2007. Shape
from planar curves: A linear escape from flatland. In: 2007
IEEE Conference on Computer Vision and Pattern Recogni-
tion, IEEE, pp. 1–8.

Eitel, J. U., Vierling, L. A. and Magney, T. S., 2013. A
lightweight, low cost autonomously operating terrestrial laser
scanner for quantifying and monitoring ecosystem structural
dynamics. Agricultural and Forest Meteorology 180, pp. 86–
96.

Furukawa, R. and Kawasaki, H., 2006. Self-calibration of multi-
ple laser planes for 3d scene reconstruction. In: Third Interna-
tional Symposium on 3D Data Processing, Visualization, and
Transmission, IEEE, pp. 200–207.

Furukawa, R. and Kawasaki, H., 2009. Laser range scanner
based on self-calibration techniques using coplanarities and
metric constraints. Computer Vision and Image Understand-
ing 113(11), pp. 1118–1129.

Furukawa, R., Viet, H. Q. H., Kawasaki, H., Sagawa, R. and
Yagi, Y., 2008. One-shot range scanner using coplanarity con-
straints. In: 2008 15th IEEE International Conference on Im-
age Processing (ICIP), IEEE, pp. 1524–1527.

Imaki, M., Ochimizu, H., Tsuji, H., Kameyama, S., Saito,
T., Ishibashi, S. and Yoshida, H., 2017. Underwater three-
dimensional imaging laser sensor with 120-deg wide-scanning
angle using the combination of a dome lens and coaxial optics.
Optical Engineering.

Jokinen, O., 1999. Self-calibration of a light striping system by
matching multiple 3-d profile maps. In: Proceedings of the
1999 Second International Conference on 3-D Digital Imaging
and Modeling, IEEE, pp. 180–190.

Massot-Campos, M. and Oliver-Codina, G., 2014. Underwater
laser-based structured light system for one-shot 3D reconstruc-
tion. In: Proceedings of IEEE Sensors 2014, IEEE, pp. 1138–
1141.

Massot-Campos, M. and Oliver-Codina, G., 2015. Optical sen-
sors and methods for underwater 3d reconstruction. Sensors
15(12), pp. 31525–31557.

Menna, F., Nocerino, E., Troisi, S. and Remondino, F., 2013.
A photogrammetric approach to survey floating and semi-
submerged objects. In: SPIE Optical Metrology 2013, Inter-
national Society for Optics and Photonics.

Morinaga, H., Baba, H., Visentini-Scarzanella, M., Kawasaki,
H., Furukawa, R. and Sagawa, R., 2015. Underwater active
oneshot scan with static wave pattern and bundle adjustment.
In: Pacific-Rim Symposium on Image and Video Technology,
Springer, pp. 404–418.

Olson, E., 2011. Apriltag: A robust and flexible visual fiducial
system. In: 2011 IEEE International Conference on Robotics
and Automation (ICRA), IEEE, pp. 3400–3407.

Salvi, J., Pages, J. and Batlle, J., 2004. Pattern codification strate-
gies in structured light systems. Pattern recognition 37(4),
pp. 827–849.

Shortis, M., 2015. Calibration techniques for accurate mea-
surements by underwater camera systems. Sensors 15(12),
pp. 30810–30826.

Steger, C., 1998. An unbiased detector of curvilinear structures.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 20(2), pp. 113–125.

Törnblom, N., 2010. Underwater 3D surface scanning using
structured light. Master’s thesis, Uppsala University.

Van den Heuvel, F. A., 1998. 3D reconstruction from a single im-
age using geometric constraints. ISPRS Journal of Photogram-
metry and Remote Sensing 53(6), pp. 354–368.

Winkelbach, S., Molkenstruck, S. and Wahl, F. M., 2006. Low-
cost laser range scanner and fast surface registration approach.
In: Joint Pattern Recognition Symposium, Springer, pp. 718–
728.

Zagorchev, L. and Goshtasby, A., 2006. A paintbrush laser range
scanner. Computer Vision and Image Understanding 101(2),
pp. 65–86.

Zhang, Z., 2000. A flexible new technique for camera calibra-
tion. IEEE Transactions on Pattern Analysis and Machine In-
telligence 22(11), pp. 1330–1334.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W3, 2017 
3D Virtual Reconstruction and Visualization of Complex Architectures, 1–3 March 2017, Nafplio, Greece

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W3-105-2017

 
112




