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ABSTRACT:

The point cloud interpretation and reconstruction of 3d-buildings from point clouds has already been treated for a few decades. There
are many articles which consider the different methods and workows of the automatic detection and reconstruction of geometrical
objects from point clouds. Each method is suitable for the special geometry type of object or sensor. General approaches are rare. In
our work we present an algorithm which develops the optimal process sequence of the automatic search, detection and reconstruction
of buildings and building components from a point cloud. It can be used for the detection of the set of geometric objects to be
reconstructed, independent of its destruction. In a simulated example we reconstruct a complete Russian-orthodox church starting from
the set of detected structural components and reconstruct missing components with high probability.

1. INTRODUCTION

1.1 Motivation

The development of science, technology and equipment as well
as the human ability to invent new constructions has allowed for
the creation of different unique objects in the real world. In the
course of time, a lot of information about former cultural objects
got lost, some objects were strongly damaged or ruined. The dig-
ital reconstruction makes the understanding of building principles
easier, especially for partly destroyed or no more existing objects.

The reconstruction of lost historical and architectural objects is an
up-to-date topic in many researches. With 3D laserscanning we
are able to create the 3D construction plans of real scenes with
high precision and completeness. Complex geometry reconstruc-
tion from point clouds in the context of the big data problem is
not a trivial duty and needs methods and algorithms for the opti-
mization of data processing. Due to the large amount of data, the
choice of efcient methods is an important task.

As a standard rule, object reconstruction begins with feature de-
tection, in case of building reconstruction with geometrical fea-
tures. The existing methods are mostly appropriate for simple
objects such as recognition of planes or spheres. For complex
objects, combining different geometric entities, the choice of one
particular detection method is not always appropriate because
each method offers its own advantages for specic types of geo-
metric entities.

In this article, we develop the mathematical model of a new method,
which allows an optimized extraction of geometrical information
from laserscanning point clouds and its efcient interpretation for
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further reconstruction. This method is suitable for object recon-
struction from incomplete data which can be the result of missing
object parts.

This work is carried out in the context of recent research in virtual
reconstruction of destroyed orthodox churches, which are known
by their complex architecture.

1.2 Previous works

Considering previous work, we focus two aspects:

1. point cloud interpretation and

2. reconstruction from precision point clouds.

In our case, point cloud interpretation means extraction of analyt-
ical, geometrical and semantical information from point clouds.
Here, geometry extraction is relevant to our work. The most com-
mon techniques of geometry extraction from point clouds are:

• RANSAC and its variations ((Schnabel et al., 2007), (Al-
Durgham et al., 2013), (Rusu et al., 2009));

• Hough transformation ((Vosselman et al., 2004), (Overby
et al., 2004), (Rabbani and Heuvel, 2005), (Maltezos and
Ioannidis, 2016));

• least-squares fitting ((Ahn, 2004), resumed by (Liu and Wang,
2008), (Wang et al., 2004), (Fleischmann et al., 2005));

• methods of differential geometry ((Becker, 2005)).
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Even though these methods are quite robust, some of them are
dependent on the number of processing iterations, need start sam-
pling and are not always correct for complex objects, which can
be a combination of different geometries. In case of complex
architecture, which cannot be approximated only with geometri-
cal primitives, the detection method of one geometric object can
differ from others. Chosen method determines further reconstruc-
tion of the whole object.

There are different reconstruction approaches based on interpreted
information from point clouds. Some reconstruction methods use
a strict prototype model. In many articles about reconstruction
of cultural heritage objects a library of typological architectural
elements taking in account construction canons is used.

In (Quattrini et al., 2015) a destroyed architectural object has
been completely reconstructed from the TLS point cloud as well
as single classied archaeological samples according to practical
and theoretical canons of roman architecture. (Dore and Murphy,
2013) generated digital historical models using Historic Building
Information Modelling (HBIM) containing parametric library ob-
jects and procedural modelling techniques. Further on, ((Dore et
al., 2015)) have developed a set of rules and algorithms for the
automatic combination of parametric library objects and genera-
tion of HBIMs from survey data (historic surveys and recent laser
scan survey as segmented point cloud and cut sections). A con-
ceptual framework is based on the denition of shape grammar,
which allows for the automatic generation of 2D and 3D geome-
tries from a basic vocabulary of shapes. The reconstruction is
supported by architectural rules and proportions. There are some
program applications allowing for a semi-automatic modeling of
architectural forms according to library of structural elements, in
which the model parameters of structure element are estimated
from user dened keypoints ((Kivilcim and Duran, 2016)).

(Huang et al., 2011) developed roof decomposition rules for re-
construction of LoD2 buildings. Based on a predefined library
of primitives a generative modeling has been conducted to con-
struct the target roof that fits the data. Extracted primitives from
a point cloud were composed and merged. (Nguatem et al., 2013)
extracted a ridgeline from the highest points of the point cloud,
which was bounded with ground plan, for roof model tting using
likelihood principle.

The reconstruction of single architectural models is considered
in (Canciani et al., 2013). The method is based on the extrusion
path modeling of architectural elements from point cloud section,
which have been compared with a knowledge based model.

In many articles, a building reconstruction is based on integration
of extracted geometrical information about single object parts ac-
cording to different composition rules.

Extracted straight lines and planes (e.g. using RANSAC, Hough
transform) solve often for planar object reconstruction and de-
composition of its elements (e.g. roofs - (Nizar et al., 2006),
(Arefi et al., 2010), buildings - (Rusu et al., 2009)). (Verma et al.,
2006) detected planes and rectangular outlines for roof composi-
tion using Roof Topology Graph. (Kada and Wichmann, 2013)
generated complex building shapes using Boolean intersection of
half-spaces, which dene convex building components. (Xiong et
al., 2015) represented roofs with topological graphs and applied
the Minimum Cycles Method for roof decomposition using ex-
tracted geometrical primitives from airborne LiDAR data.

In the last years, probabilistic approaches are widely used in recog-
nition processes. Probabilistic graphical models (PGM), devel-
oped by (Koller and Friedman, 2009), integrate schematic graph-
ical object representation (e.g. as graph) with different stochastic

statistic models, like Hidden Markov Model (HMM), Conditional
Random Field (CRF) and Bayesian nets, allowing for probabilis-
tic decision-making.

(Ruiz-Sarmiento et al., 2015) integrated PGMs as Conditional
Random Fields (CRF) with Semantical Knowledges (SK) for rep-
resentation of object relations in context of input scene.

(Xiong and Huber, 2010) extracted and classied planar regions
for further object recognition using CRF. In (Anand et al., 2013)
used an isomorphic to MRF (Markov Random Fields) model for
object recognition and classication in certain scene (e.g. ofce,
house).

(Förstner, 2013)showed the efciency of object parameter estima-
tion and classication, which are optimized through implementa-
tion of Bayesian nets and MRF in context of exible construction
of graphical models.

In all cases, a big data problem is relevant for point cloud pro-
cessing. The role of high mechanism complexity and the creation
of self-reproducing intelligent automates for acceleration of tech-
nological processes has been discussed already for many years
(e.g. (v. Neumann, 1966)). An additional example from such
automates is a cellular automaton (CA), which can be based on
varies rules (using for example Bayes theory and Bayesian net-
works ((Wolfram, 1983), (Neapolitan, 2004))).

This way is favored in our actual work.

2. NEW METHOD

2.1 Outline of algorithm

The developed method is based on a probabilistic approach and
discrete mathematics methods, namely Bayesian networks and
cellular automata theory. Let us consider an algorithm which
makes an automatic choice of an acceptable method for detec-
tion of different geometrical entities in a complex object and its
further automatic reconstruction from incomplete data. Thus, we
consider a-priori known object conguration with its pre-dened se-
mantic information, which is organized like a graph. A combina-
tion of Bayesian nets with cellular automata allows to dene an
optimal

• geometric candidate for object detection,

• recognition way,

• decision-making for reconstruction from incomplete data.

2.2 Research object

Our research objects are stone orthodox churches. There is the
large number of such churches in the territory of Russia, Belarus
and Ukraine. Several churches have been destroyed and are not
used as religious institution any more. There is a huge interest in
the restoration of these objects.

It is necessary to observe the number of canons, determined by
religion at the churches construction. These canons resulted in
the evolution of the culture in that territory (and that time), in
which we observe this or that church. Nevertheless it is possi-
ble to claim that each church has exactly the certain topological
structure of some elements determined by canons. Each of these
elements are geometrically characterized by its properties.
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Figure 1: Church representation with colored graph.

2.3 Knowledge representation

We model our objects - orthodox churches - with colored-oriented
topological graphs G = (V, E). The vertices V are the struc-
tural components of the church, like a cupola or a crucix with
arbitrary geometries. The edges E are the neighboring relations
between the elements of V, which are attributed by conditional
probabilities to the edges. The objects differ in their complexity
(cf. Fig. 1).

We take in account the following encoding for the representation
of some components:

• The letters in the vertices are the specic structural compo-
nents with a specic geometry and localization.

• The edges, coded with a line, show the topological and prob-
abilistic connection or the probabilistic inuence of the com-
ponents on each other (for example: if one component was
detected, then we can claim, with a dened probability, that
another component must be detected or reconstructed and
vice versa).

• For the visual comfort we represent the different geometry
types with different colors, i.e. each class of detected geom-
etry type has its own color.

A database of certain amount of churches with classication of
structural elements was built for derivation of probabilistic rela-
tions between elements and solves as a base for further construc-
tion of Bayesian network. In our case, the abbreviations of the
church parts are: Kr - crucifix, HK - main cupola, Tr - cylin-
der, St - prop, D - roof, X - nave, OAr - sacrifice altar right, Dr
- sacrifice altar roof (right), HA - main altar; D - main altar roof,
OAl - sacrifice altar left, Dl - sacrifice altar roof (left).

2.4 Mathematical background

Let us consider a mathematical method solving a correct decision
problem. This means in the context of our research, that we have

checked the information about some parts of our object, we can
apply the arbitrary method of recognition and search an object in
a certain place. Consider a method based on the use of Bayesian
networks as one method to guide this search process.

We use the basic formula (Bayesian Theorem)

P (θ|I) =
P (θ)P (I|θ)

P (I)
, (1)

where

• Iis the information about those parts of object, which were
detected;

• P (I) is the probability of I, dened as the frequency of ob-
jects occurs as identied as I in all the set of the churches;

• θ are the identiers of those geometrical objects, which we
want to detect;

• P (I|θ) is the posterior probability: the distribution element
of objects identiers under the assumption of already detected
objects;

• P (θ)is the prior probability: it is the formalization of our
intuition about the possibility of the detection of an object.
In our case the value of this probability is dened statistically
after the quantitative data analysis, after the supervision of
such parts in orthodox churches.

All conditional probabilities are learned from training datasets.

The expression P (I|θ) is called likelihood; it is a probability of a
known data supervision by the xation of certain identiers. Thus,
our task is to nd the maximum a posterior hypothesis θ, by which
arg maxθ P (θ|I).
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If we set P (I|θ) of likelihood functions according to equation
( 1), the decision problem will be solved correctly. However, the
establishment process of these functions is not a trivial procedure.
These distributions can be rather difcult.

If we add some additional restrictions, the problem of P (I|θ) -
function calculation can be simplied. By the conditional indepen-
dence a1, a2, . . ., an of the objects identiers, which dene I , we
have:

P (a1, a2, . . . , an|θ = θk) =

= P (a1|θk)P (a2|θk) . . . P (an|θk) (2)

If I contains information in our case that X = X1 (an event
a1), HK − St = HK − St1 (an event a2), and θ = θk means
that D = Dk, then P (I|θ = θk) is the multiplication of the
two probabilities of P (a1|θ = θk) and P (a2|θ = θk). Each of
these probabilities will be defined from the set of those churches,
at which X1, HK − St1 respectively among those churches, at
which D = Dk.

In our example, we can find the subgraphs shown in Fig. 2. The

Figure 2: Subgraphs of the probability connections.

pointers on the graph edges are suspended in most of the cases of
this article.

The graph of Fig. 2a corresponds to the expression in eq. (2):

P (a1, θ, a2) = P (a1)P (θ|a1)P (a2|θ).

From this follows

P (I|θ) = P (a1, a2|θ) =
P (a1, θ, a2)

P (θ)

=
P (a1)P (θ|a1)P (a2|θ)

P (θ)

= P (a1|θ)P (a2|θ),

because

P (a1)P (θ|a1)

P (θ)
= P (a1|θ)

according to the Bayes Theorem (cf. eq. 1).

The graph of Fig. 2b defines the following equality:

P (θ, a1, a2) = P (θ)P (a1|θ)P (a2|θ),

resulting in

P (I|θ) = P (a1, a2|θ) =
P (θ, a1, a2)

P (θ)

=
P (θ)P (a1|θ)P (a2|θ)

P (θ)

= P (a1|θ)P (a2|θ)

This simplifies the likelihood functions.

When a1 and a2 influence on θ at the same time (fig. 2c) it is
possible to express it as

P (a1, a2, θ) = P (a1)P (a2)P (θ|a1, a2)

In this case we receive a likelihood function which depends on
the intended value, that, obviously, does not yield the correct de-
cision. In this case the likelihood- function will be directly calcu-
lated directly.

A similar approach will allow us to optimize the procedure of
method choice for object extrapolation.

2.5 Processing principles

Let us consider the graph which describes an input church as a
special type of a cellular automaton. This graph is a lattice of
cellular automaton, in which vertices are the automata cells. The
cellular automaton can be defined as a set of final automatas with
concrete state in discrete time t:

σ ∈ Σ = {0, 1, 2 . . . k − 1, k}

A detection of component geometries changes the automaton states
of each cell in the neighborhood according to the transition rule:

σi,j(t+ 1) = φ(σk,l(t)|σk,l(t) ∈ N )

N is the set of automatas that constitute a neighborhood. At time
t we have 3 kinds of cells:

1. cells with unambiguously defined state (e.g. detected geom-
etry);

2. “pending” cells which incident (but do not belong) to de-
fined cells;

3. “empty” cells which do not incident and do not belong to
defined cells.

In our case, we set an initial state randomly. It is reasonable to
set the most probable state as initial state: it means, the search is
statistical driven starting with the most likely geometry for each
component.

The transition function will be defined: if the vertex B does not
belong to N , there are edges from the vertex B incidental to the
vertices from N (“pending cells”):

The state of the vertex is

B =


B1, p1 = P (B1|N)
B2, p2 = P (B2|N)
. . .
Bk, pk = P (Bk|N)

If the vertex B belongs to N , the state of a vertex remains the
same with the probability of 1 (almost sure event).

If the vertex B has no edge with any vertex from N , the state of
a vertex remains the same with the probability of 1.
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Applying the Maximum-Likelihood method, we choose the state
in the pending vertices respectively to the maximum of the cor-
responding probabilities Bk = {Bi,max(pi) = pk} and check
for the correctness. It denes appropriate processes in all pending
vertices, in which we detect the geometry of church structural el-
ement by the method chosen according to a state. The following
results are possible:

1. The geometry in the pending vertex has been detected. In
this case we attach a vertex to the N-set.

2. The geometry in the pending vertex has not been detected
with the method chosen according to a state (we define this
state as B1 without loss of generality).

Let us transform the transition function: If the vertex B does not
belong to N , there are edges from the vertex B incidental to ver-
tices from N (“pending vertices”) and on the previous step this
vertex was not a pending vertex:

The state of the vertex is

B =


B1, p1 = P (B1|N)
B2, p2 = P (B2|N)
· · ·
Bk, pk = P (Bk|N)

If the vertex B does not belong to N , there are edges from the
vertex B incidental to the vertices from N (“pending vertices”)
and on the previous step this vertex was a pending vertex:

The state of the vertex is

B =

{
B2, p2 = P (B2|N,notB1)
· · ·
Bk, pk = P (Bk|N,notB1)

If the vertex B belongs to N , the state of a vertex remains the
same with the probability of 1.

If the vertex B has no edge with any vertex from N , the state of
a vertex remains the same with the probability of 1.

This iterative process yields to a distinct solution since all cells
will nally change its state to “unambiguously dened”. In our case
it is convenient to visualize the state of a vertex with a color. To
each state of Bk a specic color is assigned. Thus, the presented
probabilistic automaton presents the process of vertex coloring in
the graph.

3. EXAMPLE

Let us consider the example of algorithm realization. In this sec-
tion we will present the workow of the version of our probabilistic
automaton. At the moment our probabilistic automaton is single-
step. Unlike classical probabilistic automatas we make actions on
the correctness control of the automaton state changes between
processing steps. We check, whether the offered extrapolation
method is correct (in other words, whether the vertex is painted
in the correct color on a processing step). The task of the au-
tomaton is to paint all vertices in a correct color. We will dene
transition functions according to the Bayesian network rules.

It will be taken into account, that the topology and geometry of
some vertices is already known. The vertices Kr, HK, Tr, St,
D, X , OAr , Dr are painted in the color that corresponds to

their certain geometry. The vertices HA, D, OAl,Dl have not
been detected yet. Therefore the lack of color (or the lack of any
knowledge about the geometry of this object) is represented with
the gray color of the vertices (cf. Fig. 3).

The operation principle of the cellular automaton in our case is as
follows: we start the parallel operation of nal automaton for each
gray vertex. But only for two vertices the automatic functions,
which transforms a vertex color, will be uncommon. In our case
we have two such gray tops: HA and OAl. There are no inci-
dental edges for them, which connect gray and colored vertices.
Other gray vertices actions of automatic functions will lead to the
coloring of those vertices in the same gray color.

Let us consider the case when we need to dene the HA-vertex
geometry. We will describe the operation of the corresponding
automaton by identifying the color of this vertex. There are three
approaches or three ways of extrapolation for its identication. It
means that it is necessary to dene which of the three colors - e.g.
red, blue or green - will correspond to the real existing geometry.
In our algorithm we will apply the Bayesian rules.

Let us define the following variations: θ1 - is the event (or inci-
dent), which determines the red color of HA - vertex, the color
of θ2 - blue or the color of θ3 - green.

Vertex
X

type

Vertex
OAr
type

Vertex
HA
type

Number
of

churches
X OAr HA 14

not red
X

OAr HA 13

X
not red
AOr

HA 7

not red
X

not red
AOr

HA 0

X OAr HA 7
not red
X

OAr HA 6

X
not red
AOr

HA 5

not red
X

not red
AOr

HA 18

X OAr HA 11
not red
X

OAr HA 17

X
not red
AOr

HA 2

not red
X

not red
AOr

HA 0

100

Table 1: Simulated statistical data: each line of the table contains
the number of examples to generate the conditional probabilities.

The choice of i-vertex will be conditioned by the maximum of
the expression P (θ|I), i = 1, 2, 3. The I - event means in our
case that incidental to HA-vertex detected vertices X and OAr
are painted in red color. ProbabilitiesP (θ1), P (θ2), P (θ3), P (I)
can be found using the statistical data presented in Table 1. Then
it is necessary to find the likelihood functions P (I|θi), i = 1, 2, 3
using the properties of Bayesian networks, which we have de-
scribed in section 2. It is important to notice that P (I|θ) is equal
to P (X|θ)× P (OAr|θ) in our case.

The maximum of likelihood function P (θ|I) is reached at θ =
θ1. Therefore the vertexHA has to be painted in red color. Thus,
we have defined the transition function for a new state.
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Figure 3: Processing principle.

likelihood
function

θ P (θ) X|θ P (X|θ) OAr|θ P (OAr|θ) P (I|θ) P (θ|I)

θ1 HA 34 34/100 21 21/34 27 27/34 0,490 0,521
θ1 HA 36 36/100 12 12/36 13 13/36 0,120 0,135
θ1 HA 30 30/100 13 13/30 28 28/30 0,404 0,379

P (I)

X +OAr 34 34/100

Table 2: Deduction of the Likelihood function.

Further the following cases are possible.

1. The color has defined a correct object extrapolation and we
have received a geometry as the red color of HA-vertex by
the detection process. The quantity of vertices (not detected
objects) has been decreased and the next cycle of detection
process have to been started.

2. It was a mistake and the offered extrapolation method was
incorrect. It leads to the recalculation of Tab. 1 (the amount
of sequences decreases because we do not consider a wrong
steps), values in the Table 2 will be recalculated conditioned
by the refusal of a line with an incorrect color. The further
searching procedure of the P (θ|I) - maximum proceeds.

The quantity of lines in the Table 2 is final. Therefore, this pro-
cess is final by the cycle iteration and will lead to the final detec-
tion of the object.

The second nal parallel started automaton will dene the color of
OAl-vertex. Let us state that a1 is an event that OAl-vertex is
“red”, a2 - OAl-vertex is “blue”, a3 - “green”. As there is only
one vertex - X , painted in red color is incidental to OAl vertex,
we will consider three conditional probabilities

P (OAl = a1|X = red) =
P (a1, X)

P (X)
,

P (OAl = a2|X = red) =
P (a2, X)

P (X)
,

P (OAl = a3|X = red) =
P (a3, X)

P (X)
,

P (X = red) means the selection of those churches, which are
described in our knowledge base, with the attribute X = red. In
our case of P (X = red) = 0, 46.

P (OAl = ai, X = red) with i = 1, 2, 3 is the selection of those
churches from the knowledge base, which have OAl = ai and
X = red at the same time.

From P (OAl = a1, X = red) = 0, 413, P (OAl = a2, X =
red) = 0, 282, and P (OAl = a3, X = red) = 0, 305 follows
P (OAl = a1|X = red) = max Therefore, we identify the
color of OAl as red, and further, we apply the corresponding
way of extrapolation. If the way corresponding to red color is
confirmed, the vertex is recolored in a red color, if not, then in
the following step the number of alternatives decreases by one
and the process repeats. The process is final (Fig. 4).

4. CONCLUSION

The presented method allows an automatic reconstruction of the
whole complex object with missed components on the basis of it-
erative detected geometries of its components. The method prin-
ciples are universal and applicable for other types of objects (it
needs other library of structural components and component rela-
tion in graph). We developed the mathematical theory and showed
the feasibility of the approach for simulated data of stone Russian-
orthodox churches.
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Figure 4: Automatical object reconstruction after automaton steps.

Further work will concentrate in two directions. On the one hand,
the empirical work on the analysis of the historical development
of the churches will be continued. On the other hand, the cellular
automaton will be realized for larger and more complex building
models.
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Geodätischen Instituts der Rheinisch-Westfälischen Tech-
nischen Hochschule Aachen, N63, https://www.deutsche-
digitale-bibliothek.de/binary/WI6IH566CY75KXJY3QX JBTG-
MXWKJI5TS/full/1.pdf.

Canciani, M., Falcolini, C., Saccone, M. and Spadafora, G., 2013.
From point clouds to architectural models: algorithms for shape
reconstruction. International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, XL (5/W1):
27 - 34.

Dore, C. and Murphy, M., 2013. Semi-automatic modeling of
building facades with shape grammars using historic building in-
formation modeling. International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, XL
(5/W1): 57-64.

Dore, C., Murphy, M., McCarthy, S., Brechin, F., Casidy, C. and
Dirix, E., 2015. Structural simulations and conservation analysis
-historic building information model (hbim). The International
Archives of the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences XL (5/W4): 351 - 357.

Fleischmann, S., Cohen-Or, D. and Silva, C., 2005. Robust mov-
ing least-squares fitting with sharp features. Proceedings of ACM
SIGGRAPH, 24(3): 544-552.

Förstner, W., 2013. Graphical models in geodasy and photogram-
metry. PFG Photogrammetrie, Fernerkundung, Geoinformation,
4: 255-267.

Huang, H., Brenner, C. and Sester, M., 2011. 3d building roof
reconstruction from point clouds via generative models. Proceed-
ings of the 19th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems: 16 - 24.

Kada, M. and Wichmann, A., 2013. Feature-driven 3d build-
ing modeling using planar. International Annals of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences,
II-3/W3: 37-42.

Kivilcim, C. and Duran, Z., 2016. A semi-automated point cloud
processing methodology for 3d cultural heritage documentation.
The International Archives of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, XLI (B5): 293 - 296.

Koller, D. and Friedman, N., 2009. Probabilistic Graphical Mod-
els: Principles and Techniques. MIT Press, Massachusetts.

Liu, Y. and Wang, W., 2008. Advances in Geometric Modeling
and Processing. Springer Berlin Heidelberg, chapter A Revisit to
Least Squares Orthogonal Distance Fitting of Parametric Curves
and Surfaces (pp. 384 - 397).

Maltezos, E. and Ioannidis, C., 2016. Automatic extraction of
building roof planes from airborne lidar data applying an ex-
tended 3d randomized hough transform. International Annals of
Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, III(3): 209 - 216.

Neapolitan, R. E., 2004. Learning Bayesian Networks. Pearson
Prentice Hall, 2004.

Nguatem, W., Drauschke, M. and Mayer, H., 2013. Roof recon-
struction from point clouds using importance sampling. In: Inter-
national Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences, II (3/W3): 73 - 78.

Nizar, A. A., Filin, S. and Doytsher, Y., 2006. Reconstruction
of buildings from airborne laserscanning. In: ASPRS Annual
Conference Reno: 106-115.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W3, 2017 
3D Virtual Reconstruction and Visualization of Complex Architectures, 1–3 March 2017, Nafplio, Greece

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W3-187-2017

 
193



Overby, J., Bodum, L., Kjems, E. and Ilsoe, P. M., 2004. Auto-
matic 3d building reconstruction from airborne laserscanning and
cadastral data using hough transform. International Archives of
Photogrammetry and Remote Sensing, XXXV(B3): 296-301.

Quattrini, R., Malinverni, E. S., Clini, P., Nespeca, R. and Orlietti,
E., 2015. From tls to hbim. high quality semantically-aware 3d
modelling of complex architecture. The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information
Sciences XL (5/W4), pp. 367 – 374.

Rabbani, T. and Heuvel, F., 2005. Efficient hough transform for
automatic detection of cylinders in point clouds. International
Archives of the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, XXXVI (3/W19): 60-65.

Ruiz-Sarmiento, J., Galindo, C. and Gonzalez-Jimenez, J., 2015.
Scene object recognition for mobile robots through semantic
knowledge and probabilistic graphical models. Expert Systems
with Applications, 42(22): 8805 - 8816.

Rusu, R., Blodow, N., Marton, Z. C. and Beetz, M., 2009. Close-
range scene segmentation and reconstruction of 3d point cloud
maps for mobile manipulation in domestic environments. Proc-
ceding of the International Conference on Intelligent Robots and
Systems in St. Louis: 1-6.

Schnabel, R., Wahl, R. and Klein, R., 2007. Efficient ransac for
point-cloud shape detection. Computer Graphics Forum, 26 (2):
214 - 226.

v. Neumann, J., 1966. Theory of self-reproducing Automata.
University of Illinois Press Champaign, IL, USA, 1966.

Verma, V., Kumar, R. and Hsu, S., 2006. 3d building detction and
modeling from aerial lidar data. Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, 2: 2213-2220.

Vosselman, G., Gorte, B., Sithole, G. and Rabbani, T., 2004.
Recognising structure in laser scanner point clouds. International
Archives of Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, XXXVI (8/W2): 33 - 38.

Wang, W., Pottmann, H. and Liu, Y., 2004. Fitting b-
spline curves to point clouds by squared distance minimiza-
tion. Technical report, HKU CS Tech Report TR-2004-
11, http://www.cs.hku.hk/research/techreps/ document/TR-2004-
11.pdf.

Wolfram, S., 1983. Statistical mechanics of cellular automata.
Reviews of Modern Physics, 55 (3): 601 - 644.

Xiong, B., Jancosek, M., Elberink, S. O. and Vosselman, G.,
2015. Flexible building primitives for 3d building modeling. IS-
PRS Journal of Photogrammetry and Remote Sensing, 101: 275
- 290.

Xiong, X. and Huber, D., 2010. Using context to create semantic
3d models of indoor environments. In: Proceedings of the British
Machine Vision Conference (BMVC): 1 - 11.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W3, 2017 
3D Virtual Reconstruction and Visualization of Complex Architectures, 1–3 March 2017, Nafplio, Greece

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W3-187-2017

 
194




