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ABSTRACT: 

Today 3D models and point clouds are very popular being currently used in several fields, shared through the internet and even accessed 

on mobile phones. Despite their broad availability, there is still a relevant need of methods, preferably automatic, to provide 3D data 

with meaningful attributes that characterize and provide significance to the objects represented in 3D. Segmentation is the process of 

grouping point clouds into multiple homogeneous regions with similar properties whereas classification is the step that labels these 

regions. The main goal of this paper is to analyse the most popular methodologies and algorithms to segment and classify 3D point 

clouds. Strong and weak points of the different solutions presented in literature or implemented in commercial software will be listed 

and shortly explained. For some algorithms, the results of the segmentation and classification is shown using real examples at different 

scale in the Cultural Heritage field. Finally, open issues and research topics will be discussed. 

 

1. INTRODUCTION 

We are recently witnessing an increasing availability of not-

interpreted point clouds and 3D models, often shared online using 

point-based rendering solutions (e.g. PoTree) of mesh-based 

portals (e.g. Sketchfab). If we focus on point clouds, there is a 

growing need of innovative methods for the treatment and 

analysis of these data and for their classification, aimed 

ultimately to exploit in-depth the informative value of these 

surveys and representations. 3D point clouds are the simplest but 

at the same time powerful collection of elementary geometrical 

primitives able to represent shape, size, position and orientation 

of objects in space. This information may be augmented with 

additional contents obtained from other sensors or sources, such 

as colours, multispectral or thermal information, etc. For a 

successful exploitation of point clouds and to better understand 

them, we must first proceed with segmentation and classification 

procedures. The former refers to group points in subsets 

(normally called segments) characterized by having one or more 

characteristics in common (geometric, radiometric, etc.) whereas 

classification means the definition and assignment of points to 

specific classes (“labels”) according to different criteria.  

Due to the complexity and variety of point clouds caused by 

irregular sampling, varying density, different types of objects, 

etc., point cloud classification and segmentation are very active 

research topics. There are multiple research studies related to 

these two topics, many driven by specific needs provided by the 

field of application (building modelling, Heritage documentation 

and preservation, robotics, etc.). 

Most of the segmentation algorithms are tailored to work with a 

2.5D surface model assumption, coming for example from a 

LiDAR-based survey. Many algorithms require a fine-tuning of 

different parameters depending upon the nature of data and 

applications. Supervised methods are the majority with a training 

phase mandatory and fundamental to guide the successive 

machine learning classification solution. Some of the techniques 

developed for segmenting point clouds generated from airborne 

laser scanning can be applied or easily adapted to terrestrial point 

clouds. The results are generally affected by noise and density of 

the cloud as well as by the quality of the training data. 

Different benchmarks were proposed in the research community, 

the most comprehensive study being carried out by the previous 

ISPRS Working Group III/3 “3D Reconstruction from Airborne 

Laser Scanner and InSAR Data”’ with the aim to segment and 

classify points in bare earth and object classes (Sithole & 

Vosselman, 2003; Sithole & Vosselman, 2004). The study was 

initiated to compare the performance of various automatic filters 

with the purpose of (i) determining the comparative performance 

of existing filters, (ii) understanding the influence of point 

density on the filter performance and (iii) identifying directions 

for future research on point clouds filtering algorithms. A more 

recent benchmark is the “Large-Scale Point Cloud Classification 

Benchmark” (www.semantic3d.net) that provides labelled 

terrestrial 3D point cloud data on which people can test and 

validate their algorithms (Fig. 1).  

 

 

Figure 1: Example of a segmented and classified point cloud 
(www.semantic3d.net). 

 

 

2. SEGMENTATION 

 

A first attempt to group segmentation methods follows the works 

of Sapkota (2008) and Nguyen (2013) and a schematic 

representation is shown in Figure 2.  

 

2.1 Edge-based segmentation 

As described by Rabbani et al. (2006), edge-based segmentation 

algorithms have two main stages: (i) edge detection to outlines 

the borders of different regions and (2) grouping of points inside 

the boundaries to deliver the final segments. Edges in a given 

depth map are defined by the points where changes in the local 

surface properties exceed a given threshold. The mostly used 

local surface properties are normals, gradients, principal 

curvatures or higher order derivatives. Methods based on edge-
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http://www.semantic3d.net/


 

based segmentation techniques are reported by Bhanu et al. 

(1986), Sappa and Devy (2001), Wani and Arabnia (2003). 

Although such methods allow a fast segmentation, they may 

produce not accurate results in case of noise and uneven density 

of point clouds, situations that commonly occur in point cloud 

data.  In 3D space, such methods often detect disconnected edges 

making the identification of  closed segments difficult without a 

filling or interpretation procedure (Castillo et al., 2013). 

 

 
Figure 2: Synthetic representation of the segmentation methods. 

 

2.2 Region growing segmentation  

These methods start from one or more points (seed points) 

featuring specific characteristics and then grow around 

neighbouring points with similar characteristics, such as surface 

orientation, curvature, etc. (Rabbani et al., 2006; Jagannathan and 

Miller, 2007). Region-based methods can be divided into:   

 Bottom-up approaches:  they start from some seed points and 

grow the segments on the basis of given similarity criteria. 

Seeded region approaches are highly dependent on selected 

seed points. Inaccurate selection of seed points will affect the 

segmentation process and can cause under- or over- 

segmentation results.  

 Top-down approaches: they start by assigning all points to 

one group and then fit a single surface to it. Where and how 

to subdivide unseeded-region remain the main difficulty of 

these methods. 

Region-based algorithms includes two steps: identification of the 

seed points based on the curvature of each point and growing 

them based on predefined criteria such as proximity of points and 

planarity of surfaces. The initial algorithm was introduced by 

Besl et al. (1988) and then several variations were presented in 

the literature. The region growing method proposed by 

Vosselman et al. (2004) has introduced the use of colour 

properties beside geometrical criteria. Surface normal and 

curvatures constraints were widely used to find the smoothly 

connected areas (Klasing et al., 2009; Belton and Lichti, 2006) 

whereas Xiao et al. (2013) proposed to use sub window as the 

growth unit. Ackermann and Troisi (2010) used a region growing 

approach to segment planar pitched roofs in 3D point clouds for 

automatic 3D modelling of buildings. Anh-Vu Vo et al. (2015) 

presented an octree-based region growing approach for a fast 

surface patch segmentation of urban environment 3D point 

clouds. 

A collection of region growing algorithms is available in the 

Point Cloud Library (http://pointclouds.org). Figure 2 shows the 

results of a segmentation done by a region growing algorithm 

implemented in the pcl::RegionGrowing class. The purpose of 

the algorithm is to merge/join similar points and deliver a set of 

clusters with points belonging to the same smooth surface.  

 

 
Figure 3: Point cloud segmented with a region growing algorithm 

available in the Point Cloud Library (PCL). 

 

In general, the region growing methods are more robust to noise 

than the edge-based ones because of the using of global 

information (Liu and Xiong, 2008). However, these methods are 

sensitive to (i) the location of initial seed regions and (ii) 

inaccurate estimations of the normals and curvatures of points 

near region boundaries.  

 

2.3 Segmentation by model fitting 

This approach is based on the observation that many man-made 

objects can be decomposed into geometric primitives like planes, 

cylinders and spheres (Fig. 3). Therefore, primitive shapes are 

fitted onto point cloud data and the points that conform to the 

mathematical representation of the primitive shape are labelled 

as one segment. As part of the model fitting-based category, two 

widely employed algorithms are the Hough Transform (HT) 

(Ballard, 1981) and the Random Sample Consensus (RANSAC) 

approach (Fischer and Bolles, 1981). In case the primitives have 

some semantic meaning, then such approach is also performing a 

classification. 

 

 

Figure 4: Segmentation of 3D point cloud by geometric primitive 

fitting.  

 

The HT is used to detect planes (Vosselman et al., 2004), 

cylinders and spheres (Rabbani et al., 2006). The RANSAC 

method is used to extract shapes by randomly drawing minimal 

data points to construct candidate shape primitives. The 

candidate shapes are checked against all points in the dataset to 

determine a value for the number of the points that represents the 

best fit.  

Tarsha-Kurdi et al. (2007) compared RANSAC and 3D Hough 

transform for automatically detect roof planes from LiDAR-

based point clouds. Despite the limitation encountered in both 

methods, RANSAC resulted the more efficient considering 

segmented results and running time. It can process a large amount 

of input data in negligible time. On the other hand, 3D HT 

resulted slower and more sensitive to the segmentation 

parameters values.  

A popular strategy in reverse engineering involves locally fitting 

primitives like planes, cylinders, cones using RANSAC based 

methods (Schnabel et al. 2009).  
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Chen et al (2014) has proposed a modified RANSAC 

segmentation algorithm that is less sensitive to noise, maintains 

topological consistency, and avoids over and under-segmentation 

of building primitives, through the localized sampling to segment 

the polyhedral rooftop primitives and then through the 

application of a region growing based triangulated irregular 

network (TIN) to separate the coplanar primitives.  

Several extensions are available within the Point Cloud Library: 

 MLESAC (Maximum Likelihood Estimation SAmple and 

Consensus) 

 MSAC (M-estimator SAmple and Consensus) 

 PROSAC (Progressive Sample and Consensus)  

Model fitting methods are fast and robust with outliers.  Their 

efficiency for the 3D detection of geometrically simple 

parameterized shape such as cylinders, spheres, cones, torus, 

planes and cubes has been proven, providing an efficient shape 

descriptor with insight over the geometrical properties of a point 

cloud sample. As it falls short for complex shapes or fully 

automated implementations, the use of the richness of surface 

geometry through local descriptors provide a better solution 

(Poux et al., 2016). In the architectural field, details cannot 

always be modelled into easily recognisable geometrical shapes. 

Thus if some entities can be characterized by geometric 

properties, others are more readily distinguished by their colour 

content (Barnea and Filin, 2013).  

 

2.4 Hybrid segmentation technique  

In kind of approach, more than one method is combined, e.g. to 

detect planar segments, in order to exploit the strength a method 

and bypass the weakness of other methods (Vieira and Shimada, 

2005; Lavoue ́ et al., 2005; Benko and Varady, 2004). The 

success of these hybrid methods depends on the success of the 

underlying methods. 
 
2.5 Machine learning segmentation  

Some segmentation algorithms are based on machine learning 

methods, such as hierarchical clustering, K-means or mean shift. 

Machine learning (including deep learning, neural network, etc.) 

is a scientific discipline concerned with the design and 

development of Artificial Intelligence algorithms that allow 

computers to take decisions based on empirical and training data. 

A learner can take advantage of examples (data) to capture and 

infer characteristics of interest of their unknown underlying 

probability distribution. Data can be seen as examples that 

illustrate relations between observed variables. In machine 

learning, unsupervised learning is a class of problems in which 

one seeks to determine how the data are organized. It is 

distinguished from supervised learning (and reinforcement 

learning) as they rely on a set of provided training examples 

(features) to learn how to correctly perform a task. Features play 

a fairly important role in these problems and their definition is 

one of the bottleneck of machine learning methods. Features with 

high quality can simplify learning models to interpret the models 

more easily and enhance algorithm performance with respect to 

both the speed and the accuracy. Weinmann et al. (2015) 

discusses the suitability of features that should privilege quality 

over quantity. This shows a need to prioritize and find robust and 

relevant features to address the heterogeneity in a point cloud. 

Machine learning methods are quite robust and flexible, however 

they rely on the point cloud density and normally feature very 

long computational time.  

 

2.5.1 Segmentation based on K-means clustering 

It is a method based on an algorithm able to classify or to group 

set of (3D) points into K groups using attributes/features. The 

grouping is done by minimizing the sum of squares of distances 

between point and the corresponding cluster centroid. The 

original K-means algorithm presented by MacQueen et al. (1967) 

was then exploited for point clouds by various researchers 

(Comaniciu and Meer, 2002; Lavoue ́ et al., 2005; Yamauchi et 

al., 2005, Zhang et al., 2008; LeCun et al., 2015).  

 

2.5.2 Segmentation based on hierarchical clustering  
These methods compute representative measures (features) for 

each (3D) point, based e.g. on geometrical and radiometric 

characteristics: point position, locally estimated surface normals, 

residuals of best fitting surface procedures, points reflectance, 

etc. They usually create a hierarchical decomposition of a dataset 

by iteratively splitting the dataset into smaller subsets until each 

subset consists of only one object (Ng and Han, 1994). Xiaohu 

Lu et al. (2016) recently presented a novel hierarchical clustering 

algorithm which clusters any dimensional data and can be applied 

to mobile mapping, aerial and terrestrial point clouds. 

 

 

3. CLASSIFICATION 

Once a point cloud has been segmented, each segment (group) of 

points can be labelled with a class thus to give some semantic to 

the segment (hence point cloud classification is often called 

semantic segmentation or point labelling). Point cloud (or mesh) 

classification is gaining interest and becoming a very active field 

of research (Weinmann et al., 2013; Guo et al., 2014; Niemeyer 

et al., 2014; Schmidt et al., 2014; Weinmann et al., 2014; Xu et 

al., 2014; Hackel et al., 2016). The class labelling procedure is 

normally achieved following three different approaches:  

 a supervised approach, where semantic categories are 

learned from a dataset of annotated data and the trained 

model is used to provide a semantic classification of the 

entire dataset. A large amount of annotated data is normally 

mandatory to train the model. 

 an unsupervised approach, where the data is automatically 

partitioned into segments based on a user-provided 

parameterization of the algorithm. No annotations are 

requested but the outcome might not be aligned with the 

user’s intention. 

 an interactive approach, where the user is actively involved 

in the segmentation/classification loop by guiding the 

extraction of segments via feedback signals. This requires a 

large effort from the user side but it could adapt and improve 

the segmentation result based on the user’s feedback.  

As suggested in Weinmann et al. (2015) most of the approaches 

for point cloud classification consider the different components 

of the classification process (i.e. neighbourhood selection, 

feature extraction and classification) independently from each 

other. However, it would be desirable to connect these 

components by sharing the results of crucial tasks across all of 

them. Such a connection would not only be relevant for the 

interrelated problems of neighbourhood selection and feature 

extraction, but also for the question of how to involve spatial 

context in the classification task.  

 

 

4. APPLICATIONS IN THE CULTURAL HERITAGE 

FIELD 

Processes like segmentation and classification can be apply at 

different scales in the field of Cultural Heritage, from an entire 

archaeological sites to a small artefact. In the following sections 

some examples are reported and commented. 
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Figure 5: 3D point cloud of the archaeological site of Paestum (left) and segmentation to separate bare earth and man-made structures (right). 

 

  
Figure 6: The digitized and textured Neptune temple in Paestum and the classification of its archaeological elements (Fiorillo et al., 2013). 

 

4.1 Segmentation with a Prismatic Buffered TIN method 

The Prismatic Buffered Triangular Irregular Network (PBTIN) 

method presented in Menna & Troisi (2007) was applied to 

separate man-made structures from bare earth in the UAV-based 

dense point cloud of the entire archaeological site of Paestum 

(Italy). The method is based on an iterative densification of a TIN 

built on some initial seed points belonging to the class bare earth. 

As shown in Figure 5 the algorithm was used to separate the 

terrain from any man made structure and vegetation standing off 

the bare earth. This segmentation method is better suited for 

structured point clouds while for unstructured point clouds it 

suffers of noise, outliers and inhomogeneous point densities. 

 

4.2 Segmentation with primitive fitting 

Digital copies of large and complex monuments could be hardly 

accessible and manageable by non-experts and policy makers. 

Segmentation and classification procedures could facilitate 

understanding, interpretation, management and access to 

complex information. In Fiorillo et al. (2013) semantic 

knowledge was manually added to a 3D model of a Greek-Roman 

temple to allow a better understanding and management of the 

heritage object (Fig. 6). 

 

4.3 Machine learning segmentation 

The Canupo segmentation algorithm (Brodu and Lague, 2012) 

implemented in CloudCompare was used to separate vegetation 

and stones on the Seiano’s gate – the imperial entrance to the 

archaeological site of Pausilypon (Naples, Italy) (Fig. 7). The 

Canupo plug-in allows to create own classes as well as to use 

existing classifiers for segmenting point clouds into subsets (e.g. 

vegetation, ground, etc.). This supervised method is based on 3D 

geometrical properties of the point cloud across multiple scales 

and, employing a probabilistic approach, the points with high 

uncertainty can be removed from the wrong class.  

Farella (2016) used the same classification algorithm for the 

separating man-made structures from natural elements (trees, 

bushes, etc.) in point clouds of military fortifications built during 

the First World War (WWI) on the hills around Trento, Italy (Fig. 

8).  

 

5. CONCLUSIONS 

The paper presented a review of point clouds segmentation and 

classification algorithms. The review is probably not fully 

exhaustive but it reports many approaches suitable for the 

geospatial and heritage communities. The key difference among 

most segmentation approaches is the method or criterion used to 

measure the similarity between a given set of points and hence 

for making the grouping decisions. All methods were grouped in 

five categories based on their core approach.   

According to what the user’s needs and data type, the correct 

algorithm must be chosen. Many segmentation algorithms, for 

example, are tailored to work with structured or LiDAR data and 

thus are simply not applicable to other types of point clouds. 

Other methods work with RGB information, but not every point 

cloud is always coloured. Many solutions rely on a large set of 

parameters which need to be fine-tuning for every processed 

dataset. Therefore it’s impossible to make a generalization and 

decide which approach is the best as each dataset is distinct and 

needs to be treated as such. Although advances are being made 

in the field of segmentation and classification, particularly with 

machine learning methods, most of the processing steps still 

requires human intervention to achieve satisfactory results.  
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Figure 7: Supervised point cloud segmentation of the Seiano’s Gate point cloud (red: vegetation; light blue: stone). 

 

 
Figure 8: Point cloud classification to distinguish man-made military structures (red) from vegetation areas (grey) (Farella, 2016). 
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