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ABSTRACT: 
 
The demand for 3D models of various scales and precisions is strong for a wide range of applications, among which cultural heritage 
recording is particularly important and challenging. In this context, dense image matching is a fundamental task for processes which 
involve image-based reconstruction of 3D models. Despite the existence of commercial software, the need for complete and accurate 
results under different conditions, as well as for computational efficiency under a variety of hardware, has kept image-matching al-
gorithms as one of the most active research topics. Semi-global matching (SGM) is among the most popular optimization algorithms 
due to its accuracy, computational efficiency, and simplicity. A challenging aspect in SGM implementation is the determination of 
smoothness constraints, i.e. penalties P1, P2 for disparity changes and discontinuities. In fact, penalty adjustment is needed for every 
particular stereo-pair and cost computation. In this work, a novel formulation of self-adjusting penalties is proposed: SGM penalties 
can be estimated solely from the statistical properties of the initial disparity space image. The proposed method of self-adjusting pe-
nalties (SGM-SAP) is evaluated using typical cost functions on stereo-pairs from the recent Middlebury dataset of interior scenes, as 
well as from the EPFL Herz-Jesu architectural scenes. Results are competitive against the original SGM estimates. The significant 
aspects of self-adjusting penalties are: (i) the time-consuming tuning process is avoided; (ii) SGM can be used in image collections 
with limited number of stereo-pairs; and (iii) no heuristic user intervention is needed. 
 
 

                                                                 
*  Corresponding author. 
 

1. INTRODUCTION 

The extraction of dense 3D information and the accurate visual 
recording from a set of images is a core part in various Cultural 
Heritage applications. Typically, accurate visual and geometric 
recording supports documentation, restoration and preservation 
activities ranging from large scale monuments to small artifacts. 
Lately, cultural heritage has benefited from new emerging tech-
nologies, based on 3D information, and the impressive increase 
in available smart mobile devices. Gamification of guided tours 
and story-telling approaches for the public presentation of cul-
tural heritage are based on augmented and virtual reality tools, 
which all share the extraction of 3D information as a key enabl-
ing technology. As an active research topic, extraction of dense 
3D information is bundled with many intermediate products and 
application fields in the areas of photogrammetry, computer vi-
sion and image processing. 3D reconstruction, ortho-projection, 
pose estimation, simultaneous localization and mapping, image 
stitching, recognition and novel view synthesis are but a few of 
the topics of interest. In this context, dense image matching is a 
fundamental task for every application undertaking automated 
3D reconstruction from images. 3D model generation concerns 
an ever-growing list of diverse applications, which includes cul-
tural heritage recording, precision agriculture and farming, au-
tomation in construction, large-scale city modeling, 3D GIS, 
automotive industry, industrial robotics, infrastructure inspec-
tion, and security. 
 
While several related software has been commercially introduc-
ed, the varying application conditions, the demand for complete 
and accurate measuring products, as well as for computational 

efficiency in a variety of hardware, keep image-matching algo-
rithms as one of the most active research topics. Stereo-match-
ing, or multiple view stereo-matching, is indeed a challenging 
task when compared to multi-view matching, as it addresses the 
question with limited number of observations. This said, it re-
presents an indispensable tool for case scenarios where multiple 
views are limited, such as in the cases of historical images, ae-
rial images, robot vision, autonomous vehicles, mobile devices. 
 
Scene reconstruction usually falls under two distinct processes: 
sparse matching for retrieving correspondences among images 
for camera extrinsic and intrinsic calibration, and dense match-
ing for full 3D surface reconstruction. Dense stereo-matching, 
i.e. the estimation of a homology in the matching (right) image 
for each pixel in the base (left) image, is typically performed on 
rectified (epipolar) stereo pairs, and it is an essential element in 
both multi-view stereo or stereo-view reconstruction processes. 
A well-established approach in analysing and classifying ste-
reo-matching algorithms is to typically decompose them in four 
basic components: matching cost computation, support aggre-
gation, disparity optimization and disparity refinement (Szeli-
ski, 2011). An evaluation of stereo-matching methods based on 
their actual results and usefulness in real life applications is 
quite difficult and depends on several diverging criteria. This is 
particularly true if one considers the variety of both applications 
and arising issues, e.g. depth variability, lighting conditions, re-
flecting surfaces, scene occlusions, image acquisition geometry, 
and illumination changes, just to name a few. 
 
In the matching cost computation step a dissimilarity measure is 
given to each pixel for every value in the disparity range. The 
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matching measures may be simple (for instance, absolute pixel 
differences) but they could also involve image transformations 
such as the non-parametric Census transformation and its varia-
tions to produce robust results based on binary relationships of 
pixels with their vicinity. One of the most recent reviews evalu-
ates an extensive collection of matching cost functions (Hu & 
Mordohai, 2012). Computed cost volumes need to be smoothed 
against noise, while usually exploiting the ‘fronto-parallel’ as-
sumption, thus the pixel-wise cost is aggregated within a sup-
port neighbourhood. A thorough review is presented in Tombari 
et al. (2008). A common distinction is between local and global 
methods; disparity selection in local methods is typically car-
ried out in the winner-takes-all (WTA) mode, while global me-
thods rely on energy minimization systems to optimize disparity 
over all image pixels against the need to keep continuous surfa-
ces and satisfy pixel-wise matching criteria. Between local and 
global methods a class of algorithms for semi-global matching 
(SGM) has been presented by Hirschmüller (2005). In addition, 
the class of non-local methods attempt to extend the kernel of 
the local ones onto the whole image (Huang et al., 2016; Yang, 
2012). Zhang et al. (2015) combine the information from diffe-
rent scale spaces to efficiently exploit the image pyramid in ad-
dressing issues in texture-less regions and restricting the dispa-
rity search space. Li et al. (2016) reduce the ‘fronto-parallel’ ef-
fect in disparity estimation over support aggregation neighbour-
hoods by proposing the formation of slanted support windows 
which greatly improve the results for non-frontal surfaces. Fol-
lowing the most recent trend in computer vision research and 
state-of-the-art applications, deep learning approaches, i.e. con-
volutional neural network (CNNs) schemes, are constructed for 
the purposes of stereo-matching in the matching cost computa-
tion step. Some of the top-ranking algorithms in the evaluation 
platforms are based on such formulations. Thus, Zbontar & Le 
Cun (2015) train a convolutional neural network on small image 
patches of known disparity, and the result is used as an initial 
cost volume. On the other hand, Luo et al. (2016) estimate a 
product layer from the inner product of the two representations 
of the typical Siamese network in order to simplify the process 
and exponentially speed up the process to real-time applica-
tions. The promising idea of exploiting the strengths and avoid-
ing the weaknesses of different matching functions is proposed 
in Spyropoulos & Mordohai (2015), where an ensemble classi-
fier is trained to decide the appropriate cost functions on a cer-
tain pixel. Lately, it has been discussed that the cost aggrega-
tion process is the key process for most local methods and an 
important component for many global ones (Yang et al., 2009; 
Wang & Zheng, 2008). In Georgousis et al. (2016) such a hyb-
rid method refining the global estimations by local support win-
dows has been presented.  
 
One of the most cited, publicly available databases of stereo 
images, which at the same time serves as an online evaluation 
platform, is that of Middlebury College*. The images used here 
have been taken from the Middlebury 2006 stereo-pairs and the 
newest Middlebury 3 high resolution dataset, which has sepa-
rate training and testing stereo-pairs. Furthermore, stereo-pairs 
from the EPFL multi-view datasets of external architectural sce-
nes† were chosen for evaluating the proposed approach. Finally, 
it is noted that the KITTI datasets‡ provide a series of images of 
urban driving scenes. On the evaluation sites new stereo-match-
ing algorithms are being constantly reported. 

                                                                 
*http://vision.middlebury.edu/stereo/data/ 
†http://cvlabwww.epfl.ch/data/multiview/denseMVS.html 
‡http://www.cvlibs.net/datasets/kitti/eval_stereo.php 

In this paper, an improved approach of the Semi-Global Match-
ing (SGM) algorithm is presented, which eliminates the need 
for scenario-specific tuning of the SGM penalty parameters. 
Thus, its main contribution is that it introduces a method for au-
tomatically estimating penalties P1 and P2 of SGM and methods 
derived from it. This is achieved after computing certain stati-
stical properties of the Disparity Space Image (DSI), which is 
estimated during the matching cost computation. The presented 
method of self-adjusting penalties (SGM-SAP) was evaluated 
using internal stereo-images from the Middlebury online evalu-
ation platform datasets, as well as images from external archi-
tectural scenes selected from the EPFL multi-view datasets. 
 
Next, Section 2 reviews the specifics of SGM and penalty defi-
nitions; Section 3 analyses the process of self-adjusting of the 
penalty values; Section 4 evaluates the results of our tests; the 
paper is concluded with final remarks and possible future tasks. 
 

2. SEMI-GLOBAL MATCHING AND PENALTIES 

Semi-global matching (Hirschmüller, 2005, 2008) is among the 
top-ranking dense matching algorithms. Its main advantages are 
accuracy, computational efficiency and simplicity in implemen-
tation when compared to high performance global and local me-
thods. Consequently, it is used in stereo as well in multi-view 
stereo scenarios from real-time to large-scale satellite applica-
tions. In this Section, the SGM algorithm is briefly reviewed for 
the purposes of completeness, and some variations relevant to 
this work are presented. 
 
SGM is employed in the optimization step, as it defines a global 
2D energy function E that depends on the disparity map D: 
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The global function contains a data term C(p, D(p)) as well as a 
smoothness term for each pixel p. The latter adds a penalty P1 
or P2 to each pixel q in the neighbourhood Np of p, if the dispa-
rity of q differs by 1 or more pixels from the disparity of p, re-
spectively. SGM suggests approximating the global function by 
following 1D paths L in several directions r through the image: 
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In each of the r = 8 paths, the optimized cost Lr(p,d) for every 
pixel p(x,y) and every x-disparity d is estimated from the sum of  
three terms. The first two are the matching cost C(p,d) and the 
minimum path cost of the preceding pixel (p-r); the latter is 
computed after comparison of the path costs of the previous pi-
xel in the same (d), the lower (d-1), the higher (d+1) or all the 
disparity range (i), while taking into consideration penalties P1 
and P2. Finally, the minimum path cost of the preceding pixel is 
subtracted. P1 penalizes slightly slanted surfaces, P2 penalizes 
discontinuities. The costs from all paths Lr(p,d) are summed up 
to each pixel for all possible disparities, resulting in the aggre-
gated cost S(p,d): 

( ) ( )r
r

S ,d = L ,d∑p p  (3) 
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The optimal disparity for each pixel is chosen by the WTA stra-
tegy on S, thus creating the final disparity map DL(p): 
 

( ) ( )( )L
d

D = S ,dargminp p  (4) 

 
Since the introduction of SGM several variations or extensions 
have emerged, aiming at improving its performance, computa-
tional efficiency, or both. SGM is also implemented in real-time 
on a variety of platforms, i.e. FPGA or GPU. Moreover, thanks 
to its implementation in OpenCV, many algorithms use SGM as 
part of their stereo matching procedure. Recently, non-local me-
thods (Huang et al., 2016) have also introduced cost-aggrega-
tion approaches similar to that of SGM; two iterations are need-
ed for the image-guided non-local matching cost computation, 
and afterwards the estimated cost is optimized via SGM. 
 
Regarding the definition of cost penalties, a class of SGM varia-
tions is dedicated to the development of functions for the ad-
justment of penalty P2, which is imposed on disparity changes 
between neighbouring pixels larger than 1 pixel; they have been 
reviewed in detail by Stentoumis et al. (2015). These penalty 
functions are based on the fact that, if the intensity change be-
tween pixel p and the preceding one in path L is high and the 
disparity change between them is larger than 1, the existence of 
actual edges or object boundaries is highly probable. Hirsch-
müller (2005) has firstly introduced an adaptive penalty func-
tion. The function was created by dividing P2 with the intensity 
gradient of neighbouring pixels in the reference image for each 
path, while checking that P2≥ P1. Besides, Banz et al. (2012) 
evaluated the performance of three more penalty functions for 
P2 and the case of constant penalty, which is fixed to an empiri-
cally defined value. The proposed penalty functions were: ne-
gatively (P2n) and inversely (P2i) proportional to the absolute in-
tensity gradient of the currently processed pixels along the path; 
and negatively proportional (P2v) to the variance of intensity in 
a local window. A lower bound P2min was introduced to guaran-
tee that P2≥ P1. 
 
A challenging aspect of SGM implementation is obviously the 
selection of values for the penalties. If parameters have not 
been properly tuned, the performance of the algorithm may not 
be as efficient as expected. In fact, penalty adjustment is needed 
for every different pair of images or, if a different matching cost 
method is used, even for the same stereo-pair. In this paper, we 
introduce a method for automatically estimating penalties P1 

and P2. This follows the computation of certain simple statisti-
cal properties from the DSI volume which is created in the pre-
vious step of cost calculation. Therefore, penalties are consider-
ed as being self-adjusted to the particular stereo-pair, in relation 
to the cost function used. 
 
To our knowledge, no method for the automatic estimation of 
penalties of SGM has been proposed up to now – with the ex-
ception of Chuang et al. (2016), where however a specific cost 
function was used, the penalties were extracted after the cre-
ation of an initial disparity map from only two costs of each pi-
xel (the lowest and the second lowest), and the evaluation was 
based on only four image pairs. 
 

3. SELF-ADJUSTING PENALTY VALUES 

The idea behind extracting the values for the SGM penalties 
from the DSI itself originates from the fact that penalties P1, P2 
are actually costs that influence the pixel-wise matching cost C. 

Cost penalties are added to each pixel’s initial cost C(p,d) de-
pending on the disparity d, so their values should be related to 
this initial cost. In the proposed method penalties are derived 
from the DSI S(x,y,l) representation of the initial cost C(p,d); 
(x,y) are the image coordinates of a pixel p and l is the label 
that maps a disparity d to the DSI, l = l(d):  
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In the above equations, W and H are the width and height of the 
base image; Nd is the number of disparity labels; and N is the 
number of image pixels. The minimum matching cost Smin(x,y) 
of a pixel over all labels l is subtracted from all potential costs 
S(x,y,l) in order to normalize the DSI values per pixel. Finally, 
the mean value cost per all pixels corresponds to penalty P1, 
while the maximum value cost per all pixels corresponds to pe-
nalty P2. Of course, in this way it is ensured that P2>P1. The 
importance of such a definition for the penalties is that they are 
estimated, without user intervention, from the DSI itself; thus, 
the self-adjusting penalties remove the need for the convention-
al, time-consuming tuning step. Appropriate penalty values will 
be automatically derived, regardless of the stereo-pair, or the 
matching cost used. Furthermore, no training datasets of stereo-
pairs will be needed for penalties estimated from them to be ap-
plied to testing stereo-pairs under an assumed scenario of many 
similar images. Moreover, these self-adjusting penalties are not 
computationally expensive. In conclusion, for every stereo-pair 
the penalties for SGM, or every SGM-like method, can be esti-
mated solely from the DSI, regardless of the matching cost em-
ployed and the existence of a ground truth disparity map or of 
multiple data for training. 
 
In the cost calculation step, common cost functions such as Ab-
solute Difference (AD) of intensities, or Census transform with 
a 7x7 window were used. Next, SGM was used for cost optimi-
zation. The WTA strategy is adopted during the disparity opti-
mization step for acquiring the initial disparity map. Finally, 
disparity refinement is possible, e.g. with the use of photo-con-
sistency, sub-pixel disparity interpolation, or median filtering. 
 

4. RESULTS 

The presented algorithm has been evaluated on the 15 training 
stereo image pairs of quarter-size resolution from Middlebury 
Stereo Evaluation – Version 3 (Scharstein et al., 2014), and also 
on the 21 quarter-size stereo image pairs of 2006 datasets from 
Middlebury College. The algorithm has also been tested using 
an EPFL multi-view dataset with external architectural scenes 
(Strecha et al., 2008). All processes have been implemented in 
the Matlab programming environment. 

4.1 Middlebury 2014 datasets 

The Hamming distance on Census transformed images was used 
as the initial matching cost. Next, penalties P1 and P2 for SGM 
were estimated via the suggested method and were employed to 
the SGM algorithm. In Table 1 the computed penalties for each 
stereo-pair are shown. 
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Stereo-pairs 
Penalties 

P1 P2 
Adirondack 15.2 47 

ArtL 15.0 47 
Jadeplant 15.2 47 

Motorcycle 16.0 47 
MotorcycleE 16.1 47 

Piano 14.2 47 
PianoL 14.2 47 
Pipes 15.5 47 

Playroom 15.8 47 
Playtable 15.6 47 

PlaytableP 16.0 47 
Recycle 15.7 47 
Shelves 13.2 47 
Teddy 15.0 47 

Vintage 15.7 47 

Table 1. Penalties estimated by the SGM-SAP method for each 
stereo-pair of the Middlebury 2014 dataset. 

 
The initial disparity map was derived by the WTA strategy. Fi-
nally, sub-pixel disparities are estimated by a sequential dispa-
rity interpolation and 7x7 median filtering for smoothing with 
outlier tolerance. The error percentage is computed by compar-
ing each resulting disparity value of non-occluded pixels with 
the corresponding ground truth value, while applying an error 
threshold of 0.5 pixel. This threshold value was chosen because 
the default value used in Middlebury online evaluation platform 
 

is 2.0 pixels for full image resolution, which corresponds to a 
threshold of 0.5 pixel for quarter-size images. 
 
In Fig. 1 some results of the method are seen for three represen-
tative stereo pairs as far as the size of matching error is con-
cerned. The strong impact of sub-pixel interpolation on the dis-
parity map can be noted, which is mainly due to the fact that the 
raw algorithm estimates integer disparities, whereas a 0.5 pixel 
error threshold is used. A considerable effect is also achieved 
by denoising via a median filter with large kernel. 
 
The estimated disparity maps of training images were submitted 
to the Middlebury benchmark evaluation page (Fig. 2), resulting 
in an error of 22.8% and the 34th position for non-occluded pi-
xels and a 2.0 pixel error threshold (date of evaluation: January 
22, 2017). The image pairs displaying the best performance we-
re Playtable (28th position) and Vintage (32th position), whereas 
those of poorest performance were ArtL (43th position), Pipes 
and PlaytableP (42th position). 
 
Compared to the original SGM algorithm (Hirschmüller, 2008) 
and its results submitted in the Middlebury platform, our me-
thod presents an error higher only by 1.8%, and it is only 3 po-
sitions lower in the evaluation list. Playtable and Vintage show 
lower errors (35% to 38.8% and 40.6% to 41.1%, respectively), 
whereas Jadeplant and ArtL show the highest errors compared 
to those of Hirschmüller (31.9% to 26.4% and 18.8% to 15%, 
respectively). The errors of stereo the pairs for both methods as 
well as their ranking are presented in Fig. 3.  

 

 

  

   

 
   

 
Figure 1. Estimated disparity maps using SGM-SAP. Left: disparity maps without any refinement; centre: sub-pixel interpolation; 

right: median filtering. Differences above 0.5 pixel from the ground truth are highlighted in green. Top to bottom: Motorcycle, 
PlaytableP and Jadeplant stereo-pairs. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W3, 2017 
3D Virtual Reconstruction and Visualization of Complex Architectures, 1–3 March 2017, Nafplio, Greece

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W3-353-2017

 
356



 

 
Figure 2. Results from the Middlebury evaluation platform for the training images of the 2014 dataset. The results of the self-

adjusting penalty method (SGM-SAP) are highlighted in red. 

 

  
Figure 3. Errors for all stereo-pairs (left) and ranking in Middlebury benchmark (right) for SGM and our method (SGM-SAP). 

 
Finally, it is noted that, compared to our method, in the original 
SGM algorithm additional refinements are being used, such as 
left-right consistency or removal of disparity segments smaller 
than 100 pixels, whereas median filtering is not applied. 
 
In Fig. 4 disparity maps are seen, in which differences in errors 
when compared to ground truth between the original SGM and 
our method are highlighted. Pixels whose disparity difference 
against ground truth is larger than 0.5 pixel if original SGM is 
applied but less than 0.5 if our method is used are highlighted in 
blue. Pixels whose disparity difference compared with ground 
truth is above 0.5 pixel if our method is applied but below 0.5 if 
the original SGM is used are highlighted in red. It is observed 
that, ignoring small artifacts produced by either method, our 
method outperforms SGM in slightly slanted surfaces (e.g. floor 
of Playtable or Motorcycle), but performs less well in areas of 
low texture (e.g. in the background of the Jadeplant stereo-

pair). 
 
Finally, additional experiments regarding the suggested method 
were conducted and evaluated on the Middlebury 2014 datasets. 
In particular, the median instead of the mean value was used as 
far as the estimation of penalty P1 is concerned. The differences 
in the total error of 15 pairs regarding the initial method were 
negligible (0.01%). Furthermore, when a 9x7 window is used 
for Census transform (as in the original SGM algorithm) before 
the penalty adjustment, the error is the same regarding the ini-
tial disparity maps and by 0.4% higher after refinements. 
Besides, after the automatic estimation of both penalties by our 
method, a penalty function proposed by Hirschmüller (2005) 
was tested for the adjustment of penalty P2 to the intensity gra-
dient. The estimated disparity map appeared as noisier and ini-
tially showed an error higher by 2%, which after disparity re-
finement was reduced to 0.8%. 

 

  

Figure 4. Disparity maps of the suggested method (from left to right: Playtable, Motorcycle and Jadeplant stereo pairs). Pixels in 
blue indicate errors of SGM algorithm which do not exist in our method; pixels in red depict errors of our method not present in 

SGM.
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4.2 Middlebury 2006 datasets 

For this case, Absolute Differences of intensities and Hamming 
distance on Census-transformed images were used as cost me-
trics. Subsequently, penalties P1 and P2 for SGM were compu-
ted from the proposed method and were applied to the SGM al-
gorithm. The initial disparity map has been created in the WTA 
mode.  
 
The overall error for the 21 pairs was compared against the er-
rors obtained from the same method without automatic penalty 
estimation, namely by using the optimal parameters of a tuning 
process (Stentoumis et al., 2015). The error percentage is calcu-
lated after the comparison of each resulting disparity value in 
non-occluded areas with the corresponding ground truth value, 
while an error threshold of 1 pixel is applied. The error of our 
method was higher by only 0.87% (11.89% to 11.02%) when 
the Census metric served as cost function and by 2.27% higher 
(25.72% to 23.45%) when Absolute Differences were applied. 
Therefore, it is concluded that the proposed method is expected 
to work well for any matching cost function. 
 
In Table 2 the estimated (SGM-SAP) penalty values for two 
matching costs are seen against the values derived by the tuning 
process for each individual stereo-pair. Optimal penalties [P1, 
P2] which lead to the minimum of the mean errors over all ste-
reo-pairs are [10,100] from the tuning of AD-SGM method, 
while for Census-SGM method these are [25,100]. 
 

Stereo-pair 
AD Census 

SGM-SAP Tuning SGM-SAP Tuning 
P1 P2 P1 P2 P1 P2 P1 P2 

Aloe 40 243 15 70 17 47 10 50 
Baby1 21 203 10 100 15 47 10 50 
Baby2 24 242 20 250 15 47 25 100 
Baby3 20 203 20 130 15 47 10 50 

Bowling1 32 250 20 70 14 47 25 100 
Bowling2 31 224 10 250 15 47 10 100 

Cloth1 32 220 15 100 18 47 25 250 
Cloth2 32 251 15 70 17 47 10 50 
Cloth3 37 246 15 70 17 47 10 50 
Cloth4 43 246 20 100 17 47 10 50 

Flowerpots 28 181 20 250 14 47 10 50 
Lampshade1 25 236 10 70 13 47 40 150 
Lampshade2 24 243 5 70 13 47 55 150 

Midd1 28 234 15 70 12 47 70 150 
Midd2 27 228 15 100 12 47 70 150 

Monopoly 29 229 35 220 13 47 25 100 
Plastic 21 207 15 220 11 47 25 150 
Rocks1 26 189 15 100 16 47 10 50 
Rocks2 31 227 25 160 17 47 10 50 
Wood1 21 180 10 160 16 47 5 200 
Wood2 19 219 30 70 14 47 10 50 

Table 2. Penalty values extracted from the tuning process and 
the values estimated by the suggested SGM-SAP method for 
each stereo-pair of Middlebury 2006 (using two cost metrics). 

    
    

    

Figure 5. Disparity maps derived from a tuning process (top row) and the suggested method (bottom row). From left to right: stereo-
pairs Monopoly, Flowerpots, Lampshade1, Lampshade2. In the first two our method (with the use of AD and Census as matching 
costs) has the best performance; in the other two the optimal parameters of tuning perform best concerning the estimated errors. 

 
In Fig. 5 representative results are seen. In particular, the dispa-
rity maps of pairs in which lower errors are obtained with the 
penalties of our method and the corresponding disparity maps 
which use the optimal parameters of tuning are shown. On the 
other hand, the disparity maps of pairs in which lower errors are 
achieved with the estimated parameters of tuning and the cor-
responding disparity maps which use the penalties of the propo-
sed method are displayed. Both methods employ Absolute Dif-
ferences and Census as matching costs. As it may be observed, 
our method performs better in slanted surfaces with adequate 
texture (e.g. the Monopoly board or the surface of a flowerpot 
in the corresponding pair). However, its performance lags be-
hind SGM when matching surfaces are of low texture (e.g. the 

magazine box and the foreground object in the Lampshade1 and 
Lampshade2 pairs). 
 
4.3 Herz-Jesu-K7 dataset 

The Herz-Jesu-K7 pair (6 Mpixel images: 0006.png, 0007.png) 
in quarter-size resolution was used as a scenario of an architec-
tural scene. In the cost calculation step the Hamming distance 
on Census-transformed images was computed. Penalties P1 and 
P2 for SGM were then estimated with the proposed method and 
were used for the SGM algorithm. In Table 3 the computed pe-
nalties for each pair are seen. The initial disparity map was deri-
ved by WTA strategy. Finally, erroneous disparities are identi-
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fied via the left-right consistency check. Fig. 6 shows the epipo-
lar images of Herz-Jesu-K7 and the estimated disparity map. 
 

Stereo-pair Penalties 
 P1 P2 
Left-to-right 12.6 47 
Right-to-left 13.1 47 

Table 3. Penalty values for the stereo-pair of Herz-Jesu-K7 
estimated by the suggested method.  

 

 

 

 

 

Figure 6. Results of SGM-SAP on the Herz-Jesus stereo-pair. 
Top: epipolar images of the stereo-pair; 2nd row: estimated 
disparity map of the base image; 3rd row: registration of the 

reconstructed point cloud onto the ground truth data; bottom: 
detail of the registration between the laser scanner point cloud 

and the image-based reconstructed model. 
 

The accuracy of reconstruction can be estimated after registra-
tion of the generated point cloud onto the ground truth data (ob-
tained by laser scanning) via the ICP algorithm. It is noted that 
first some minor pre-processing of the point cloud was conduc-
ted (only the object of interest was kept). The overall mismatch 
is represented by an average distance of 25 mm and a standard 
deviation of 20 mm. If reduced to mean image scale, these va-
lues correspond to ~1.1 and ~1.1 pixel, which are considered as 
satisfactory. In Fig. 6 an image of the result of the registration is 
shown, while a detail of the reconstruction is also illustrated. 
 

5. CONCLUSIONS 

This work has presented a novel approach (SGM-SAP) aiming 
at the self-adjustment of penalty values of Semi-Global Match-
ing for any image pair for any matching cost method. This is 
achieved by the automatic estimation of the penalties through a 
simple process with low computational requirements, relying on 
the Disparity Space Image (DSI) volume, which has been al-
ready computed in the previous step of the matching process. 
Therefore, no tuning of penalties is needed and no dataset of 
similar images with corresponding ground truth disparity maps 
has to be available. The proposed method has been evaluated on 
the challenging Middlebury-Version 3 stereo-pairs, as well as 
on Middlebury 2006 datasets. Results show that the percentages 
of errors of the estimated disparity maps from SGM-SAP are 
competitive to the results from the typical SGM approach (in 
essence they differ by only ~2%). The significance of the pro-
posed method of self-adjusting penalties is that in existing ap-
plications of SGM the values of these penalties are generally 
being estimated after a time-consuming tuning process. 
 
Future work includes attempts for further improvements of the 
method and testing it with the use of other matching cost me-
thods or SGM-like approaches. Furthermore, evaluation of the 
suggested method on more complex or outdoor scenes, e.g. on 
the KITTI dataset, will be conducted in the near future. 
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