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ABSTRACT:

The demand for 3D models of various scales and precisions is strong for a wide range of applications, among which cultural heritage
recording is particularly important and challenging. In this context, dense image matching is a fundamental task for processes which
involve image-based reconstruction of 3D models. Despite the existence of commercial software, the need for complete and accurate
results under different conditions, as well as for computational efficiency under a variety of hardware, has kept image-matching al-
gorithms as one of the most active research topics. Semi-global matching (SGM) is among the most popular optimization algorithms
due to its accuracy, computational efficiency, and simplicity. A challenging aspect in SGM implementation is the determination of
smoothness constraints, i.e. penaltigsFPfor disparity changes and discontinuities. In fact, penalty adjustment is needed for every
particular stereo-pair and cost computation. In this work, a novel formulatestf-afijusting penalties is proposedSGM penalties

can be estimated solely from the statistical properties of the initial disparity space image. The proposed method of self-adjusting pe-

nalties (SGM-SAP) is evaluated using typical cost functions on stereo-pairs from the recent Middlebury dataset of interior scenes, as
well as from the EPFL Herz-Jesu architectural scenes. Results are competitive against the original SGM estimates. The significant
aspects of self-adjusting penalties are: (i) the time-consuming tuning process is avoided; (i) SGM can be used in image collections
with limited number of stereo-pairs; and (iii) no heuristic user intervention is needed.

1. INTRODUCTION efficiency in a variety of hardware, keep image-matching algo-
rithms as one of the most active research topics. Stereo-match-
The extraction of dense 3D information and the accurate visud@hg, or multiple view stereo-matching, is indeed a challenging
recording from a set of images is a core part in various Culturahsk when compared to multi-view matching, as it addresses the
Heritage applications. Typically, accurate visual and geometriquestion with limited number of observations. This said, it re-
recording supports documentation, restoration and preservatigmesents an indispensable tool for case scenarios where multiple
activities ranging from large scale monuments to small artifactssiews are limited, such as in the cases of historical images, ae-
Lately, cultural heritage has benefited from new emerging techdal images, robot vision, autonomous vehicles, mobile devices.
nologies, based on 3D information, and the impressive increase
in available smart mobile devices. Gamification of guided toursScene reconstruction usually falls under two distinct processes:
and story-telling approaches for the public presentation of culsparse matching for retrieving correspondences among images
tural heritage are based on augmented and virtual reality tool&r camera extrinsic and intrinsic calibration, adetise match-
which all share the extraction of 3D information as a key enabling for full 3D surface reconstruction. Dense stereo-matching,
ing technology. As an active research topic, extraction of dendee. the estimation of a homology in the matching (right) image
3D information is bundled with many intermediate products andor each pixel in the base (left) image, is typically performed on
application fields in the areas of photogrammetry, computer virectified (epipolar) stereo pairs, and it is an essential element in
sion and image processing. 3D reconstruction, ortho-projectiomoth multi-view stereo or stereo-view reconstruction processes.
pose estimation, simultaneous localization and mapping, image well-established approach in analysing and classifying ste-
stitching, recognition and novel view synthesis are but a few afeo-matching algorithms is to typically decompose them in four
the topics of interest. In this context, dense image matching istzasic components: matching cost computation, suppagyre-
fundamental task for every application undertaking automatedation, disparity optimization and disparityrefinement (Szeli-
3D reconstruction from images. 3D model generation concernski, 2011). An evaluation of stereo-matching methods based on
an ever-growing list of diverse applications, which includes cultheir actual results and usefulness in real life applications is
tural heritage recording, precision agriculture and farming, auguite difficult and depends on several diverging criteria. This is
tomation in construction, large-scale city modeling, 3D GIS particularly true if one considers the variety of both applications
automotive industry, industrial robotics, infrastructure inspec-and arising issues, e.g. depth variability, lighting conditions, re-
tion, and security. flecting surfaces, scene occlusions, image acquisition geometry,
and illumination changes, just to name a few.

While several related software has been commercially introduc-
ed, the varying application conditions, the demand for completin the matchingost computation step a dissimilarity measure is
and accurate measuring products, as well as for computationgiven to each pixel for every value in the disparity range. The
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matching measures may be simple (for instance, absolute pixkd this paper, an improved approach of the Semi-Global Match-
differences) but they could also involve image transformationing (SGM) algorithm is presented, which eliminates the need
such as the non-parametric Census transformation and its varfar scenario-specific tuning of the SGM penalty parameters.
tions to produce robust results based on binary relationships @hus, its main contribution is that it introduces a method for au-
pixels with their vicinity. One of the most recent reviews evalu-tomatically estimating penalties Bnd B of SGM and methods
ates an extensive collection of matching cost functions (Hu &lerived from it. This is achieved after computing certain stati-
Mordohai, 2012). Computed cost volumes need to be smoothestical properties of the Disparity Space Image (DSI), which is
against noise, while usually exploiting the ‘fronto-parallel’ as-estimated during the matching cost computation. The presented
sumption, thus the pixel-wise costaggregated within a sup- method of self-adjusting penalties (SGM-SAP) was evaluated
port neighbourhood. A thorough review is presented in Tombauising internal stereo-images from the Middlebury online evalu-
et al. (2008). A common distinction is between local and globaation platform datasets, as well as images from external archi-
methods; disparity selection Imcal methods is typically car- tectural scenes selected from the EPFL multi-view datasets.

ried out in the winner-takes-all (WTA) mode, whgmbal me-

thods rely on energy minimization systems to optimize disparitfNext, Section 2 reviews the specifics of SGM and penalty defi-
over all image pixels against the need to keep continuous surfaitions; Section 3 analyses the process of self-adjusting of the
ces and satisfy pixel-wise matching criteria. Between local angenalty values; Section 4 evaluates the results of our tests; the
global methods a class of algorithms for semi-global matchingaper is concluded with final remarks and possible future tasks.
(SGM) has been presented by Hirschmdiller (2005). In addition,

the class of non-local methods attempt to extend the kernel of 2. SEMI-GLOBAL MATCHING AND PENALTIES

the local ones onto the whole image (Huang et al., 2016; Yang,

2012). Zhang et al. (2015) combine the information from diffe-Semi-global matching (Hirschmuiller, 2005, 2008) is among the
rent scale spaces to efficiently exploit the image pyramid in adop-ranking dense matching algorithms. Its main advantages are
dressing issues in texture-less regions and restricting the dispaecuracy, computational efficiency and simplicity in implemen-
rity search space. Li et al. (2016) reduce the ‘fronto-parallel’ eftation when compared to high performance global and local me-
fect in disparity estimation over support aggregation neighboutthods. Consequently, it is used in stereo as well in multi-view
hoods by proposing the formation of slanted support windows§tereo scenarios from real-time to large-scale satellite applica-
which greatly improve the results for non-frontal surfaces. Foltions. In this Section, the SGM algorithm is briefly reviewed for
lowing the most recent trend in computer vision research anidie purposes of completeness, and some variations relevant to
state-of-the-art applications, deep learning approaches, i.e. coiftis work are presented.

volutional neural network (CNNs) schemes, are constructed for

the purposes of stereo-matching in the matching cost comput&GM is employed in the optimization step, as it defines a global
tion step. Some of the top-ranking algorithms in the evaluatio?D energy functior that depends on the disparity nap

platforms are based on such formulations. Thus, Zbontar & Le
Cun (2015) train a cpnvollunonal neural netwprk on small image C(p, D(p))+ 3 (FiTUD(p)—D(q)\ :1})+
patches of known disparity, and the result is used as an initial

cost volume. On the other hand, Luo et al. (2016) estimate a E(D)=2

product layer from the inner product of the two representations P Z(
of the typical Siamese network in order to simplify the process
and exponentially speed up the process to real-time applica-
tions. The promising idea of exploiting the strengths and avoidT he global function contains a data te@fp, D(p)) as well as a

ing the weaknesses of different matching functions is proposegmoothness term for each pixel The latter adds a penalty P

in Spyropoulos & Mordohai (2015), where an ensemble classier P2 to each pixety in the neighbourhool, of p, if the dispa-

fier is trained to decide the appropriate cost functions on a cefity of q differs by 1 or more pixels from the disparity mfre-

tain pixel. Lately, it has been discussed that the cost aggregapectively. SGM suggests approximating the global function by
tion process is the key process for most local methods and &pllowing 1D pathsl in several directionsthrough the image:
important component for many global ones (Yang et al., 2009;

&N,

D)
RT[|D(p)-D(a) >1])

geN,

Wang & Zheng, 2008). In Georgousis et al. (2016) such a hyb- L (p.d)=C(p.d)+

rid method refining the global estimations by local support win- . (L, (p-r.d),L, (p—-r,d-1)+ PR, 2

dows has been presented. ML (p—r,d+ 1)+ Pmin(L, (p—r.i))+ P, @
I

One of the most cited, publicly available databases of stereo —mkin(Lr (p—r,k))

images, which at the same time serves as an online evaluatify aach of the = 8 paths, the optimized cosi(p,d) for every

platform, is that of Middlebury College*. The images used here;y o n(x v) and every-disparityd is estimated from the sum of
have been taken from the Middlebury 2006 stereo-pairs and thfee terms. The first two are the matching @@td) and the

newest Middlebury 3 high resolution dataset, which has SePinimum path cost of the preceding pixgHt: the latter is

rate training and testing stereo-pairs. Furthermore, stereo-paiéﬁmputed after comparison of the path costs of the previous pi-
from the EPFL multi-view datasets of external architectural SC&q in the same (d), the lower (d-1), the higher (d+1) or all the

nes were chosen for evaluating the proposed approach. Finalligparity range (i), while taking into consideration penalties P

it is noted that the KITTI datasétgrovide a series of images of 5pq p. Finally, the minimum path cost of the preceding pixel is

_urban dri_ving scenes. On the evaluation sites new stereo-matc|jptracted. Ppenalizes slightly slanted surfaces, fenalizes

ing algorithms are being constantly reported. discontinuities. The costs from all pathgp,d) are summed up

to each pixel for all possible disparities, resulting in the aggre-
gated cos§(p,d):

*http://vision.middlebury.edu/stereo/data/
Thttp://cviabwww.epfl.ch/data/multiview/denseMVS.html S(p.d)=>'L, (p.d) 3)
*http://www.cvlibs.net/datasets/kitti/eval_stereo.php r
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The optimal disparity for each pixel is chosen by the WTA straCost penalties are added to each pixel’s initial costd}(ge-
tegy onS thus creating the final disparity m&p(p): pending on the disparitgt, so their values should be related to
this initial cost. In the proposed method penalties are derived
) from the DSI S(x,y,l) representation of the initial cost @jp
D.(p)= argmn(S(p,d)) (4) (x,y) are the image coordinates of a pipeand| is the label
d that maps a disparityto the DSIJ =1(d):

Since the introduction of SGM several variations or extensions

have emerged, aiming at improving its performance, computa- S, (% y)=minS(x,yl) (5)
tional efficiency, or both. SGM is also implemented in real-time 1=LNg

on a variety of platforms, i.e. FPGA or GPU. Moreover, thanks How N

to its implementation in OpenCV, many algorithms use SGM as ZZ (S(%,Y,1) = Sy (X,Y)) (6)
part of their stereo matching procedure. Recently, non-local me- P= y=1x=11=1

thods (Huang et al., 2016) have also introduced cost-aggrega- N - N,

tion approaches similar to that of SGM; two iterations are need-

ed for the image-guided non-local matching cost computation, > = max  (S(x,y,1)=S,, (X)) (7)

. . .. . y=1H x=1W | =1Ny
and afterwards the estimated cost is optimized via SGM.

Regarding the definition of cost penalties, a class of SGM vari In the above equation/ andH are the width and height of the

tions is dedicated to the development of functions for the a pase imageNd is the number of disparity labels; ahulis the

. L . . number of image pixels. The minimum matching casi($y)
justment of penalty £ which is imposed on disparity changes of a pixel over all label$ is subtracted from all potential costs

between neighbouring pixels larger than 1 pixel; they have beeg(x y,|) in order to normalize the DSI values per pixel. Finally

reviewed in detail by Stentoumis et al. (2015). These penal%e mean value cost per all pixels corresponds to peRalty
functions are based on the fact that, if the intensity change be-

tween pixelp and the preceding one in pattis high and the While the maximum value cost per all pixels corresponds to pe-

. . . . Ity P2. Of course, in this way it is ensured that-P1. The
disparity change between them is larger than 1, the existence s _— .
actual edges or object boundaries is highly probable. HirSCH_mportance of such a definition for the penalties is that they are

muller (2005) has firstly introduced an adaptive penalty func-%tI mated, without user intervention, from the DS itsdlf; thus,

tion. The function was created by dividing With the intensity tf:etgnt;,’ g:?g:quss“nqgnpinﬁ!ﬁ:essigmoxe trk;e rr.lgt% d fgrr];:]te cglrl\;inth)l?-
gradient of neighbouring pixels in the reference image for each’ : uming tuning step. Appropriate p y values wi

) . ) e automatically derived, regardless of the stereo-pair, or the
23;%;2’:(';%?e(e:l:;g?mtgr?éfgl'th?gzl?r?sr’eBa;;aﬁt ?&'néﬁgﬁ? fOmatching cost used. Furthermore, no training datasets of stereo-
P re penaity . pairs will be needed for penalties estimated from them to be ap-

P2 and the case of constant penalty, which is fixed to an empirl

cally defined value. The pronosed penalty functions were: neQlied to testing stereo-pairs under an assumed scenario of many
Y el Prop Pe ty - similar images. Moreover, these self-adjusting penalties are not
gatively (Rn) and inversely (i) proportional to the absolute in-

tensity gradient of the currently processed pixels along the pat omputationally expensive. In conclusion, for every stereo-pair

and negatively proportional £f} to the variance of intensity in e penalties for SGM, or every SGM-like method, can be esti-
9a y prop : ty mated solely from the DSI, regardless of the matching cost em-
a local window. A lower boundzRinwas introduced to guaran-

ployed and the existence of a ground truth disparity map or of
tee that B Pu. multiple data for training.

A ::ha:]lengl?g alspectf of ;GM |mpllt9mel::at|on IS ?bonst theIn the cost calculation step, common cost functions such as Ab-
selection of values for the penafties. 1 parameters have r'%tolute Difference (AD) of intensities, or Census transform with
been prqurly tuned, the performance of the glgonthm.may n% x7 window were used. Next, SGM was used for cost optimi-
be as efﬁqent as expectgd. In fact, p.enalt.y adjustment IS need?QZion. The WTA strategy is adopted during the disparity opti-
for every different pair of images or, if a different matching COSt i-ation step for acquiring the initial disparity map. Finally,

method is used, even for the same stereo-'palr: In this paper, \H%parity refinement is possible, e.g. with the use of photo-con-
introduce a method for automatically estimating penalties P,

and R. This follows the computation of certain simple statisti-SIStenCy’ sub-pixel disparity interpolation, or median filtering.
cal properties from the DSI volume which is created in the pre- 4 RESULTS
vious step of cost calculation. Therefore, penalties are consider- )
ed as beingelf-adjusted to the particular stereo-pair, in relation The presented algorithm has been evaluated on the 15 training
to the cost function used. stereo image pairs of quarter-size resolution from Middlebury

) o Stereo Evaluation — Version 3 (Scharstein et al., 2014), and also
To our knowledge, no method for the automatic estimation ofy, the 21 quarter-size stereo image pairs of 2006 datasets from
penalties of SGM has been proposed up to now — with the eziddiebury College. The algorithm has also been tested using
ception of Chuang et al. (2016), where however a specific cogly EPFL multi-view dataset with external architectural scenes

function was used, the penalties were extracted after the Crgsirecha et al., 2008). All processes have been implemented in
ation of an initial disparity map from only two costs of each pi-the Matlab programming environment.

xel (the lowest and the second lowest), and the evaluation was _
based on only four image pairs. 4.1 Middlebury 2014 datasets

3. SELF-ADJUSTING PENALTY VALUES The Hamming distance on Census transformed images was used
as the initial matching cost. Next, penaltiasaRd B for SGM
The idea behind extracting the values for the SGM penaltieere estimated via the suggested method and were employed to
from the DSl itself originates from the fact that penalesP, ~ the SGM algorithm. In Table 1 the computed penalties for each
are actually costs that influence the pixel-wise matching@ost Stereo-pair are shown.
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. Penalties is 2.0 pixels for full image resolution, which corresponds to a
Stereo-pairs P P2 threshold of 0.5 pixel for quarter-size images.
Adirondack 15.2 47
ArtL 15.0 47 In Fig. 1 some results of the method are seen for three represen-
Jadeplant 15.2 47 tative stereo pairs as far as the size of matching error is con-
Motorcycle 16.0 47 cerned. The strong impact of sub-pixel interpolation on the dis-
MotorcycleE 16.1 47 parity map can be noted, which is mainly due to the fact that the
Piano 14.2 47 raw algorithm estimates integer disparities, whereas a 0.5 pixel
PianoL 14.2 47 error threshold is used. A considerable effect is also achieved
Pipes 15.5 47 by denoising via a median filter with large kernel.
Playroom 15.8 a7 . ) ) L )
Playtable 15.6 47 The estlmated disparity maps of traln_lng images were submlFted
PlaytableP 16.0 47 to the Middlebury benchmark evaluation page (Fig. 2), resulting
Recycle 15.7 47 in an error of 22.8% and the B4osition for non-occluded pi-
Shelves 13.2 47 xels and a 2.0 pixel error threshold (date of evaluation: January
Teddy 15.0 47 22, 2017). The image pairs displaying the best performance we-
Vintage 15.7 47 re Playtable (28" position) andvintage (32" position), whereas

) - those of poorest performance weketL (43" position), Pipes
Table 1. Penalties estimated by the SGM-SAP method for eachndplaytableP (42" position).

stereo-pair of the Middlebury 2014 dataset.

Compared to the original SGM algorithm (Hirschmdiller, 2008)
The initial disparity map was derived by the WTA strategy. Fi-and its results submitted in the Middlebury platform, our me-
nally, sub-pixel disparities are estimated by a sequential dispgod presents an error higher only by 1.8%, and it is only 3 po-
rity interpolation and 7x7 median filtering for smoothing with sitions lower in the evaluation ligelaytable andVintage show
outlier tolerance. The error percentage is computed by compaeswer errors (35% to 38.8% and 40.6% to 41.1%, respectively),
ing each resulting disparity value of non-occluded pixels withyhereasladeplant andArtL show the highest errors compared
the corresponding ground truth value, while applying an errofo those of Hirschmiiller (31.9% to 26.4% and 18.8% to 15%,
threshold of 0.5 pixel. This threshold value was chosen becaugespectively). The errors of stereo the pairs for both methods as
the default value used in Middlebury online evaluation platformwell as their ranking are presented in Fig. 3.

Figure 1. Estimated disparity maps using SGM-SAdi: disparity maps without any refinemeoéntre: sub-pixel interpolation;
right: median filtering. Differences above 0.5 pixel from the ground truth are highlighted in Gopen.bottom: Motorcycle,
PlaytableP and Jadeplantstereo-pairs.
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Figure 2. Results from the Middlebury evaluation platform for the training images of the 2014 dataset. The results of the self-
adjusting penalty method (SGM-SAP) are highlighted in red.
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Figure 3. Errors for all stereo-pairs (left) and ranking in Middlebury benchmark (right) for SGM and our method (SGM-SAP).

Finally, it is noted that, compared to our method, in the originapair).
SGM algorithm additional refinements are being used, such as
left-right consistency or removal of disparity segments smalleFinally, additional experiments regarding the suggested method
than 100 pixels, whereas median filtering is not applied. were conducted and evaluated on the Middlebury 2014 datasets.
In particular, the median instead of the mean value was used as
In Fig. 4 disparity maps are seen, in which differences in errorfar as the estimation of penalty B concerned. The differences
when compared to ground truth between the original SGM anih the total error of 15 pairs regarding the initial method were
our method are highlighted. Pixels whose disparity differencaegligible (0.01%). Furthermore, when a 9x7 window is used
against ground truth is larger than 0.5 pixel if original SGM isfor Census transform (as in the original SGM algorithm) before
applied but less than 0.5 if our method is used are highlighted ithe penalty adjustment, the error is the same regarding the ini-
blue. Pixels whose disparity difference compared with groundial disparity maps and by 0.4% higher after refinements.
truth is above 0.5 pixel if our method is applied but below 0.5 iBesides, after the automatic estimation of both penalties by our
the original SGM is used are highlighted in red. It is observednethod, a penalty function proposed by Hirschmuller (2005)
that, ignoring small artifacts produced by either method, ouwas tested for the adjustment of penalijtd’the intensity gra-
method outperforms SGM in slightly slanted surfaces (e.g. floodient. The estimated disparity map appeared as noisier and ini-
of Playtable or Motorcycle), but performs less well in areas of tially showed an error higher by 2%, which after disparity re-
low texture (e.g. in the background of thadeplant stereo- finement was reduced to 0.8%.

Figure 4. Disparity maps of the suggested method (from left to Rigattable, Motorcycle andJadeplant stereo pairs). Pixels in
blue indicate errors of SGM algorithm which do not exist in our method; pixels in red depict errors of our method not present in
SGM.
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4.2 Middlebury 2006 datasets AD Census
Stereo-pair| SGM-SAP| Tuning| SGM-SAR  Tuning
For this case, Absolute Differences of intensities and Hamming P PP P P (=N =Y =Y
distance on Census-transformed images were used as cost|Me- 5[5 40 | 243] 15| 70 17 471 100 50
trics. Subsequently, penalties &d B for SGM were compu- Babyl 21 | 203l 10 | 100 15 47| 10| 50
ted from the proposed method and were applied to the SGM al- Baby2 24 | 242| 20 | 250 15 47| 25| 104
gorithm. The initial disparity map has been created in the WTA Baby3 20 | 203 20 | 130| 15 47| 10! s0
mode. Bowlingl | 32 [250| 20| 70| 14 | 47| 25 100
. . Bowling2 31 | 224| 10 | 250| 15 | 47| 10| 10Q
The overall error for the 21 pairs was compared against the er- ojoin1 32 | 220 15| 100/ 18 47| 25| 250
rors obtained from the same method without automatic penajty cjqth2 32 | 251] 15 | 70 17 | 471 10 50
estimation, namely by using the optimal parameters of a tuning cjoth3 37 | 246l 15| 70 17 47 10 50
process (Stentoumis et al., 2015). The error percentage is calcu-cjgtha 43 | 246| 20| 100] 17 47| 10| 50
lated after the comparison of each resulting disparity value irFIowerpots 28 | 181l 20| 250] 14 | 47| 10! 50
norj-occluded areas with the cprres_pondmg ground truth val fampshadel | 25 | 236| 10 | 70 13 471 20 150
while an error threshold of 1 pixel is applied. The error of o Lampshade2 | 24 | 243| 5 | 70 13 47| 55 150
method was higher by only 0.87% (11.89% to 11.02%) when pigd1 28 | 234l 15| 70 12 47 70 150
the Census metric served as cost function and by 2.27% higher \siqd2 27 | 228| 15 | 100 12 47| 70! 154
(2572% to 2345%) when Absolute Differences were applle . MOﬂOpO'y 29 229| 35 | 220 13 a7 251 100
Therefore, it is concluded that the proposed method is expected pjagic 21 | 207] 15 | 220 11 47| 25| 154
to work well for any matching cost function. Rocksl 26 | 189| 15 | 100! 16 47| 10| s0
. Rocks2 31 | 227| 25| 160| 17 | 47| 10| 50
In Table 2 the estimated (SGM-SAP) penalty values for tWo \yood1 21 | 180! 10 | 160! 16 471 5| 204
matching costs are seen against the values derived by the tuningyaq2 19 | 219! 30| 70 14 47 10 50

process for each individual stereo-pair. Optimal penalties [

P2] which lead to the minimum of the mean errors over all ste- Table 2. Penalty values extracted from the tuning process and
reo-pairs are [10,100] from the tuning of AD-SGM method, the values estimated by the suggested SGM-SAP method for
while for Census-SGM method these are [25,100].

each stereo-pair of Middlebury 2006 (using two cost metrics).

Figure 5. Disparity maps derived from a tuning process (top row) and the suggested method (bottom row). From left to right: stereo-

pairsMonopoly, Flower pots, Lampshadel, Lampshade2. In the first two our method (with the use of AD and Census as matching
costs) has the best performance; in the other two the optimal parameters of tuning perform best concerning the estimated errors.

In Fig. 5 representative results are seen. In particular, the dispaagazine box and the foreground object inlthepshadel and

rity maps of pairs in which lower errors are obtained with thd_ampshade? pairs).

penalties of our method and the corresponding disparity maps

which use the optimal parameters of tuning are shown. On th&3 HerzJesu-K7 dataset

other hand, the disparity maps of pairs in which lower errors are

achieved with the estimated parameters of tuning and the coFhe Herz-Jesu-K7 pair (6 Mpixel images: 0006.png, 0007.png)
responding disparity maps which use the penalties of the prop&? quarter-size resolution was used as a scenario of an architec-
sed method are displayed. Both methods employ Absolute Difural scene. In the cost calculation step the Hamming distance
ferences and Census as matching costs. As it may be observetl, Census-transformed images was computed. PenaitesdP

our method performs better in slanted surfaces with adequaf® for SGM were then estimated with the proposed method and
texture (e.g. thévlonopoly board or the surface of a flowerpot Were used for the SGM algorithm. In Table 3 the computed pe-
in the corresponding pair). However, its performance lags paialties for each pair are seen. The initial disparity map was deri-
hind SGM when matching surfaces are of low texture (e.g. thged by WTA strategy. Finally, erroneous disparities are identi-
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fied via the left-right consistency check. Fig. 6 shows the epipothe accuracy of reconstruction can be estimated after registra-
lar images oHerz-Jesu-K7 and the estimated disparity map. tion of the generated point cloud onto the ground truth data (ob-
tained by laser scanning) via the ICP algorithm. It is noted that

Stereo-pair Penalties first some minor pre-processing of the point cloud was conduc-
P: P ted (only the object of interest was kept). The overall mismatch

Left-to-right 12.6 47 is represented by an average distance of 25 mm and a standard

Right-to-left 13.1 47 deviation of 20 mm. If reduced to mean image scale, these va-

lues correspond to ~1.1 and ~1.1 pixel, which are considered as
satisfactory. In Fig. 6 an image of the result of the registration is
shown, while a detail of the reconstruction is also illustrated.

Table 3. Penalty values for the stereo-pairefz-Jesu-K7
estimated by the suggested method.

5. CONCLUSIONS

This work has presented a novel approach (SGM-SAP) aiming
at the self-adjustment of penalty values of Semi-Global Match-
ing for any image pair for any matching cost method. This is
achieved by the automatic estimation of the penalties through a
simple process with low computational requirements, relying on
the Disparity Space Image (DSI) volume, which has been al-
ready computed in the previous step of the matching process.
Therefore, no tuning of penalties is needed and no dataset of
similar images with corresponding ground truth disparity maps
has to be available. The proposed method has been evaluated on
the challenging Middlebury-Version 3 stereo-pairs, as well as
on Middlebury 2006 datasets. Results show that the percentages
of errors of the estimated disparity maps from SGM-SAP are
competitive to the results from the typical SGM approach (in
essence they differ by only ~2%). The significance of the pro-
posed method of self-adjusting penalties is that in existing ap-
plications of SGM the values of these penalties are generally
being estimated after a time-consuming tuning process.

Future work includes attempts for further improvements of the
method and testing it with the use of other matching cost me-
thods or SGM-like approaches. Furthermore, evaluation of the
suggested method on more complex or outdoor scenes, e.g. on
the KITTI dataset, will be conducted in the near future.
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