
A LOW-COST MARKERLESS TRACKING SYSTEM FOR TRAJECTORY 

INTERPRETATION 
 

 

Apostolos Laggis, Nikolaos Doulamis *, Eftychios Protopapadakis, Andreas Georgopoulos 

 

Laboratory of Photogrammetry, School of Rural and Surveying Engineering, National Technical University of Athens - 

rs06056@mail.ntua.gr, ndoulam@cs.ntua.gr, eprotopapadakis@isc.tuc.gr, drag@central.ntua.gr 

 

Commission II 

 

 

KEY WORDS: Kinect sensor, Trajectory Estimation, Noise Removal 

 

 

ABSTRACT: 

 

The tracking abilities of 1st generation Kinect sensors have been tested over common trajectories of folk dances. Trajectories related 

errors, including offset, curve shape, noisy points are investigated and mitigated using well-known signal processing filters. Low cost 

depth trackers can contribute towards the remote tutoring of folk dances, by providing adequate data to instructors and explicit details 

to the trainees which segments of their dance trajectories need more work. 

 

1. INTRODUCTION 

 

According to UNESCO's 2003 'Convention for the Safeguarding 

of the Intangible Cultural Heritage, the Intangible Cultural 

Heritage (ICH) is the mainspring of cultural diversity and a 

guarantee of sustainable development. The Convention proposes 

five broad ‘domains’ in which intangible cultural heritage is 

manifested. One important domain is the domain of the 

performing arts which includes traditional music, theatre and 

dance. Availability of a digitized technological framework is a 

critical aspect for the preservation of the intangible cultural 

heritage content.  

 

Although, ICH content, especially traditional folklore 

performing arts, is commonly deemed worthy of preservation by 

UNESCO and by the EU Treaty, most of the current research 

efforts focus on tangible cultural assets. The primary difficulty 

stems from the complex structure of ICH, its dynamic nature, the 

interaction among the objects and the environment, as well as the 

emotional elements, i.e. the way of expression and dancers' style. 

For this reason, the European Union recently approved a research 

project, namely TERPSICHORE, with the main purpose of 

researching, implementing and testing an innovative framework 

for digitization, 3D modelling, and archiving, choreographic 

performing arts (“Terpsichore: Transforming Intangible 

Folkloric Performing Arts into Tangible Choreographic Digital 

Objects,” 2017). 

 

Currently, simple AV recordings have been used for digitizing 

folklore performances. However, such digitization technology 

offers no possibility to extract important symbolic characteristics 

that represent human creativity and the respective geometry. 

Therefore, it is difficult to preserve the way (styling) of a dance, 

the way of expression and the human feelings. The recent 

advances in hardware engineering have stimulated a boost in 

stereoscopic digitization technologies with the ability to capture 

stereo video data in real-time. Again, these methods fail to 

capture the complete structure and the geometry of a folklore 

performance. 

 

                                                                 
*  Corresponding author 
 

2. RELATED WORK 

 

The National Science Foundation of the USA supports a 

programme for developing a tele-immersive architecture 

(Nahrstedt et al., 2007) for capturing the intangible attributes of 

dances. The purpose of these works is to design a symbiotic 

creativity framework for choreography based on LMA-Laban 

Movement Analysis (Guest, 2014). However, the main research 

objective was the creation of a collaborative virtual environment 

instead of modelling, preserving and enriching human creativity 

in the framework of intangible cultural folklore performing arts.  

 

A 3D archiving system for traditional performance arts has been 

presented in (Hisatomi et al., 2011)  focusing on Japanese 

traditional performing arts. The system generates sequences of 

3D actor models of the performances from multi-view video by 

using a graph-cut algorithm. However, the work mainly focuses 

on the 3D digitization of folklore performance arts instead of 

transforming the captured visual signals into a set of symbolic 

representations.  

 

One of the first approaches for extracting symbolic information 

from a dance performance, i.e., transforming the dance into 

Laban movement attributes, is presented in (Smigel et al., 2006). 

However, this method is based on a manual annotation, making 

the whole process arduous. In the same context, the Labanwriter 

graphical user interface has been developed in (Wilke et al., 

1932). To address the limitations of the manual annotation, the 

work of (Hachimura and Nakamura, 2001) introduces an 

automatic generation of Laban notation, exploiting motion data 

properties, while the work of (Chen et al., 2005) proposes a 

scoring system using a marker-based motion capturing 

architecture.  

 

Recently, the work of (Chen et al., 2013) generates automatic 

Labanotation using hierarchical data presentations from the 

motion attributes of dances. A computer aided tool for 

automatically generating Labanotation scores has been proposed 

in (Choensawat et al., 2015), by analyzing body motions. The 

main limitation of the aforementioned approaches is that they are 

usually based on a marker-based motion capturing system which 
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is an expensive hardware sensing interface. Furthermore, such 

systems require an expert installation workflow procedure 

making their operation, calibration and setup a difficult and 

costly task.  

 

3. PROPOSED METHODOLOGY 

In this paper, low-cost sensors are considered based on the 

Microsoft Kinect device. The idea is that an easy to install and 

use sensor can provide adequate tracking abilities, allowing its 

utilization for remote sessions of folk dance lessons. The 

apprentice, without living home, will record his/her movements, 

providing adequate information to a distant instructor or 

appropriate software for comments, suggestions and advices. 

 

However, possible sensor limitations are related to inaccuracies 

regarding the coordinates of the captured 3D data, especially for 

short and long range distances (Yang et al., 2015). To address 

these difficulties, in this paper, we introduce a methodology 

which exploits the spatiotemporal coherency of a human 

movement in order to compensate the depth inaccuracies of the 

Kinect sensor. In order to achieve this, we exploit innovative 

methodologies from photogrammetry and computer vision. 

 

Initially, the 3D information extracted from the skeletal tracking 

(Shotton et al., 2011) is projected onto the 2D surface of the 

dancer’s movement. Since these 2D surface points are noisy, due 

to depth inaccuracies of Kinect, we compensate their coordinates 

assuming a smooth movement trajectory of the dancer. First, a 

low-pass filter is applied onto the projected 2D surface points 

with the aim of minimizing their spatial-temporal variations. In 

this way, the algorithm compensates the coordinates of a point in 

a way that: i) the captured 3D information from the Kinect sensor 

is trusted as much as possible, while simultaneously ii) the 

variations among consecutive points are minimized. Error 

performance scores are obtained from comparing the 

coordinates, estimated by the Kinect, as projected onto the 2D 

surface with ground truth data. The adopted methodology steps 

are shown in fig 2. 

 

3.1 Kinect sensor 

The Kinect sensor is a markerless motion tracking architecture 

capable of extracting human motion attributes under real-time 

constraints. It also provides skeletal tracking information 

modelling the human joints as 3D data representations (Zhang, 

2012), as illustrated in fig. 1. The device features an "RGB 

camera, depth sensor and multi-array microphone running 

proprietary software", which provide full-body 3D motion 

capture, facial recognition and voice recognition capabilities. 

 

The depth sensor consists of an infrared laser projector combined 

with a monochrome CMOS sensor, which captures video data in 

3D under any ambient light conditions. The sensing range of the 

depth sensor is adjustable, and Kinect software is capable of 

automatically calibrating the sensor based on gameplay and the 

player's physical environment, accommodating for the presence 

of furniture or other obstacles. 

 

3.2 Joint’s analysis related limitations 

We were interested in hip joint trajectory tracking. However, in 

order to follow the floor trajectories, a person has to change his 

body posture; i.e. bend a little. Minor course deviations were also 

expected due to movement speed variations. 

 

The possibility of missteps should also be considered. The dancer 

could slightly deviate his course and instantly correct the 

position. Such cases result in non-smooth areas of sensor’s 

calculated trajectories. 

 

3.3 Trajectories smoothing 

In order to smooth trajectory peaks, well-known techniques from 

the signal processing field are adopted (Orfanidis, 1995). The 

finite impulse response (FIR) filters is defined as: 

 

𝑦𝑛𝑒𝑤[𝑛] = ∑ 𝑏𝑘 ⋅ 𝑦[𝑛 − 𝑘]

𝑀

𝑘=0

 (1) 

 

 

 

  
Figure 1.  Kinect vertical Field of View in default range (left) and the corresponding tracked body joints (right). 

 

 
Figure 2. Trajectory assessment, using Kinect sensor, adopted steps. 
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where 𝑦[𝑛] are the initial trajectory values,  𝑦𝑛𝑒𝑤[𝑛] is the 

smooth value for the 𝑛-th point, 𝑀 is the filter order and 𝑏𝑘 is a 

weight factor. 

 

Another possible smooth operator is the Infinite impulse 

response (IIR) filter, defined as: 

 

𝑦𝑛𝑒𝑤[𝑛] =
1

𝛼0
(∑ 𝑏𝑘 ⋅ 𝑦[𝑛 − 𝑘]

𝑀

𝑘=0

− ∑ 𝛼𝑙 ⋅ 𝑦[𝑛 − 𝑙]

𝐿

𝑙=1

)  (2) 

 

The IIR filter is a combination of feed forward and feed back 

filters where 𝑀, 𝐿 are the corresponding orders, and  𝑏𝑘 , 𝛼𝑙 the 

corresponding coefficients.  

 

 

Finally, the Savitzky-Golay (SG) smoothing filter, a smoothing 

polynomial filter, has been applied. The filter is actually a 

generalizations of the FIR average filter that can preserve better  

the high-frequency content of the desired signal, at the expense 

of not removing as much noise as the average. An illustration of 

the filter outputs, for trajectory no 4, is shown in fig. 4. 

 

4. EXPERIMENTAL SETUP 

A Kinect sensor has been utilized for motion capturing in pre-

defined trajectories. The sensor position was at the edge of a flat 

surface 0.84m from the ground floor. Although the placement 

position has been marked, minor displacements (few mm) are 

considered. The entire analysis has been done on an ordinary pc, 

using MATLAB software.  

 

There was no special hardware requirements, except from the use 

of Kinect. The actual data trajectories are given as inputs, during 

the initialization of the system using a few points; Less than 5 in 

case of linear segments (in order to consider noise in 

measurement) and the radius in case of circular segments. 

 

4.1 The monitoring area 

The monitoring area was a flat surface; i.e. the floor of a room. 

All trajectories were designed in accordance to sensor capture 

area capabilities (fig. 3). The nominal limits, as given by 

Microsoft are for the default range between 0.8 meters and 4.0 

meters, suggesting a practical range of 1.2 to 3.5 meters. Another 

important aspect was that the entire body of a person should 

appear on the generated depth maps, while following the 

designated trajectories. 

 

Trajectory Number of points Actual points variance Kinect points variance Trajectory 

ID Actual Kinect x axis y axis x axis y axis description 

1 4 212 0,32683 0,00008 0,32683 0,00224 4-3-2-1 

2 5 164 0,30648 0,00016 0,30648 0,00082 11-10-6-9-8 

3 4 164 0,31472 0,00012 0,31472 0,00014 17-16-15-14 

4 5 212 0,34436 0,06613 0,34436 0,06486 17-12-6-7-1 

5 5 208 0,30338 0,07203 0,30338 0,09915 4-5-6-13-14 

6 - 230 0,41415 0,01025 0,41415 0,01411 circular segment 

Table 1. Designed (actual) trajectories related information. Additional information regarding the distribution of the Kinect’s 

projected trajectory points is provided. 

 

 

 
Figure 3. Designed trajectories illustration and the Kinect 

sensor corresponding position. 

1.8 m

3
.0

3
 m

 
Figure 4. Illustration of Kinect output projections compared to actual points of trajectory No 4. The effect of all four applied 

filters, on projection, is demonstrated. Measured distances for y values are meters (m). 
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4.2 Trajectories definition 

Two types of trajectories were marked on the floor, using color 

tape: straight lines and curves. The lines were placed in order to 

form a grid with three almost horizontal and diagonal segments. 

Additionally, we established a cyclical segment at a radius of 

1.79 m from Kinect mounting point projection on the floor. A 

brief description of the designed trajectories is provided in table 

1. 

 

4.3 Dancer actions 

A person wearing tight-fitting clothing, in order to avoid 

miscalculations of the joints’ position, was asked to follow the 

trajectories on the floor, by stepping on them. A total of six tracks 

were planned along each of the five 5 line segments and one in 

the cyclical arc. Person’s movement’s speed varied slightly. An 

illustration of the test implementation is shown in fig. 5. 

 

4.4 Data processing 

At first raw data, from one out of the 20 recorded body joints, are 

extracted (i.e. hip joint). Data are mapped to the ground floor 

level in order to generate a 2D trajectory. Prior to any kind of 

curve analysis / comparison various issues, related to tracking 

capabilities had to be dealt with. 

 

Trajectory redundant points trimming. We check if the trajectory 

starting (end) point coincides to the actual starting (end) point of 

our trajectory. Kinect sensor provided a wider range of values, 

outside designed trajectories. As such, we had to identify 

corresponding points among trajectories. 

 

In order to interpolate corresponding points between Kinect 

output and actual trajectories, we had to create explicit solution 

for each of the designed tracks.  Then, given the 𝑥-axis values 

from the sensor, we could calculate the corresponding 𝑦 values 

of the actual trajectories, making the tracks comparable. All 
(𝑥𝑖 , �̂�𝑖) pairs (Kinect output) who were outside actual trajectory 

limits [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] were discarded.   

 

 

Trajectory Offset values (m) 

ID x axis y axis 

1 -0,068 0,297 

2 -0,071 0,242 

3 -0,022 0,170 

4 -0,012 0,142 

5 -0,022 0,296 

6 -0,039 0,180 

Table 3. Kinect generated trajectories starting points were 

always projected to 2D plane with an offset, compared to 

specified trajectories position.  

 

4.5 Performance metrics 

Kinect’s captured trajectories were assessed in both curve 

similarity and corresponding points’ distance fields. Generally, 

we can describe the shape of a function through its moments. A 

moment is a specific quantitative measure of the shape of a set of 

points. The 𝑠-th moment is calculated as:  

 

𝑚𝑠 =
1

𝑛
∑ 𝑦𝑖

𝑠

𝑛

𝑖=1

 (3) 

 

where 𝑛 is the number of trajectory points over 𝑦-axis. 

 

Central moments are used in preference to ordinary moments, 

computed in terms of deviations from the mean instead of from 

zero, because the higher-order central moments relate only to the 

spread and shape of the distribution, rather than also to its 

location. In our case, moments up to sixth order were calculated. 

   
Figure 5. One of the main advantages of the system is the applicability at home, requiring minimal effort. The trajectories are 

marked using tape (image left). The persons’ movement is recorded and projected to the ground, in order to perform the 

trajectory assessment and comparison process. 

 

Traj Actual points Kinect points Errors 

ID X0 Y0 X1 Y1 X2 Y2 X3 Y3 X0 Y0 X1 Y1 X2 Y2 X3 Y3 MSE MAE 

1 -0,92 3,48 -0,92 3,48 0,88 3,45 0,88 3,45 -0,92 3,48 -0,92 3,48 0,88 3,32 0,88 3,32 0,0040 0,0507 

2 -0,89 3,05 -0,89 3,05 0,90 3,01 0,90 3,01 -0,89 3,05 -0,89 3,05 0,90 2,98 0,90 2,98 0,0004 0,0172 

3 -0,96 2,62 -0,96 2,62 0,89 2,58 0,89 2,58 -0,96 2,62 -0,96 2,62 0,89 2,59 0,89 2,59 0,0004 0,0179 

4 -0,95 2,62 -0,95 2,62 0,89 3,45 0,89 3,45 -0,95 2,62 -0,95 2,62 0,89 3,51 0,89 3,51 0,0011 0,0276 

5 -0,92 3,48 -0,92 3,48 0,89 2,58 0,89 2,58 -0,92 3,48 -0,92 3,48 0,89 2,51 0,89 2,51 0,0039 0,0548 

6 -0,98 2,80 -0,98 2,80 0,97 2,79 0,97 2,79 -0,98 2,80 -0,98 2,80 0,97 2,73 0,97 2,73 0,0008 0,0187 

Table 2. Comparison between actual and Kinect generated trajectories, illustration for four point pairs and the corresponding mean 

squared and absolute errors. 
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Prior to the moments calculation, traditional error metrics were 

employed to illustrate the differentiation between actual and 

Kinect curves. 

 

The mean squared error (MSE) is defined as: 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦�̂� − 𝑦𝑖)2

𝑛

𝑖=1

 (4) 

The MSE is a measure of the quality of an estimator—it is always 

non-negative, and values closer to zero are better. The MSE is 

the second moment (about the origin) of the error, and thus 

incorporates both the variance of the estimator and its bias. 

 

The mean absolute error (MAE) is defined as: 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦�̂� − 𝑦𝑖|

𝑛

𝑖=1

 (5) 

 

MAE is known as a scale-dependent accuracy measure and 

therefore cannot be used to make comparisons between series 

using different scales. 

 

4.6 Experimental results 

  Moments 

  ID M2 M3 M4 M5 M6 

N
o

 f
il

te
r 

1 -0,0795 0,0081 -0,0015 0,0002 0,0000 

2 -0,0243 0,0075 -0,0002 0,0001 0,0000 

3 -0,0007 -0,0001 0,0000 0,0000 0,0000 

4 0,0468 0,4250 -0,0894 0,2589 -0,1404 

5 -1,0000 -0,9971 -0,9999 -0,9964 -0,9995 

6 -0,1427 0,0293 -0,0235 0,0104 -0,0038 

F
IR

 

1 -79,3684 8,2199 -1,4567 0,1980 -0,0307 

2 -23,9367 7,5165 -0,2079 0,0525 -0,0020 

3 -0,5956 -0,0688 -0,0006 0,0000 0,0000 

4 46,0391 417,4991 -90,2573 250,1652 -142,1518 

5 -996,5347 -995,2095 -996,1985 -995,2478 -996,2318 

6 -139,9394 28,9507 -23,1350 10,5422 -3,7882 

II
R

 

1 -79,3687 8,1097 -1,4562 0,1941 -0,0306 

2 -24,2602 7,5395 -0,2125 0,0533 -0,0021 

3 -0,6212 -0,1028 -0,0005 -0,0001 0,0000 

4 47,1282 416,3469 -88,8740 249,9751 -139,9279 

5 -999,9744 -1000,0000 -1000,0000 -1000,0000 -1000,0000 

6 -141,8841 28,3000 -23,3184 10,2934 -3,7596 

S
G

-3
 

1 -79,5002 8,0850 -1,4625 0,1940 -0,0308 

2 -24,3092 7,5395 -0,2133 0,0535 -0,0021 

3 -0,7000 -0,0858 -0,0008 -0,0001 0,0000 

4 47,0436 425,6243 -88,9604 259,3747 -139,9067 

5 -999,9791 -997,0920 -999,8580 -996,4504 -999,4435 

6 -142,6709 29,2597 -23,4983 10,4491 -3,7957 

Table 4: Difference in values for the 2nd up to 6th moment 

between the actual trajectory and the Kinect trajectory (no 

filter), including the corrected trajectories using the signal 

filters. For each moment the values were normalized and 

multiplied by 1000 for illustration purposes. 

The differences among various corresponding points between 

actual and Kinect’s trajectories projections on 2D planes have 

been evaluated using central moments. Table 4, presents the 

differences between original trajectories moments and the 

Kinect’s corresponding ones. Results table also include the 

moment after the application of described filters (see sec. 3.3).  

 

Central moments of order 0 and 1 offered no additional 

information; i.e. their values were 1 and 0 respectively. Thus, the 

difference with actual moments was 0. The rest of the 

monuments, regardless of the applied filter appear minor 

differences. Consequently, the application of signal filtering 

should be considered in more complex trajectories, where 

missteps are more likely to occur.   

 
5. CONCLUSIONS 

The applicability of low cost depth sensors for the evaluation of 

moving patterns at home, has been investigated. Movement 

patterns are projected on a 2D plane and evaluated against 

predefined trajectories. Analysis of the trajectories provide 

significant data that can be utilized in many ways. Future work 

shall involve the transition from trajectories to Laban notation, in 

order to support remote tutoring and preservation of folk dances. 
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