The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLII-2/W3
https://doi.org/10.5194/isprs-archives-XLII-2-W3-519-2017
https://doi.org/10.5194/isprs-archives-XLII-2-W3-519-2017
23 Feb 2017
 | 23 Feb 2017

CLOSE RANGE UAV ACCURATE RECORDING AND MODELING OF ST-PIERRE-LE-JEUNE NEO-ROMANESQUE CHURCH IN STRASBOURG (FRANCE)

A. Murtiyoso, P. Grussenmeyer, and T. Freville

Keywords: Close range, photogrammetry, UAV, 3D reconstruction, heritage documentation

Abstract. Close-range photogrammetry is an image-based technique which has often been used for the 3D documentation of heritage objects. Recently, advances in the field of image processing and UAVs (Unmanned Aerial Vehicles) have resulted in a renewed interest in this technique. However, commercially ready-to-use UAVs are often equipped with smaller sensors in order to minimize payload and the quality of the documentation is still an issue. In this research, two commercial UAVs (the Sensefly Albris and DJI Phantom 3 Professional) were setup to record the 19th century St-Pierre-le-Jeune church in Strasbourg, France. Several software solutions (commercial and open source) were used to compare both UAVs’ images in terms of calibration, accuracy of external orientation, as well as dense matching. Results show some instability in regards to the calibration of Phantom 3, while the Albris had issues regarding its aerotriangulation results. Despite these shortcomings, both UAVs succeeded in producing dense point clouds of up to a few centimeters in accuracy, which is largely sufficient for the purposes of a city 3D GIS (Geographical Information System). The acquisition of close range images using UAVs also provides greater LoD flexibility in processing. These advantages over other methods such as the TLS (Terrestrial Laser Scanning) or terrestrial close range photogrammetry can be exploited in order for these techniques to complement each other.