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ABSTRACT:

A light distributed visual odometry method adapted to embedded hardware platform is proposed. The aim is to guide underwater
surveys in real time. We rely on image stream captured using portable stereo rig attached to the embedded system. Taken images are
analyzed on the fly to assess image quality in terms of sharpness and lightness, so that immediate actions can be taken accordingly.
Images are then transferred over the network to another processing unit to compute the odometry. Relying on a standard ego-motion
estimation approach, we speed up points matching between image quadruplets using a low level points matching scheme relying on fast
Harris operator and template matching that is invariant to illumination changes. We benefit from having the light source attached to the
hardware platform to estimate a priori rough depth belief following light divergence over distance low. The rough depth is used to limit
points correspondence search zone as it linearly depends on disparity. A stochastic relative bundle adjustment is applied to minimize
re-projection errors. The evaluation of the proposed method demonstrates the gain in terms of computation time w.r.t. other approaches
that use more sophisticated feature descriptors. The built system opens promising areas for further development and integration of
embedded computer vision techniques.

1. INTRODUCTION

Mobile systems nowadays undergo a growing need for self-
localization task to accurately determine its absolute/relative po-
sition over time. Despite the existence of very efficient technolo-
gies for this purpose that can be used on-ground (indoor/outdoor)
and in-air such as Global Positioning System (GPS), optical, ra-
dio beacons, etc. However, in the underwater context most of
these signals are jammed so that the corresponding techniques
cannot be used. On the other side, solutions based on active
acoustics such as imaging sonars and Doppler Velocity Logs
(DVL) devices remains expensive and requires high technical
skills for deployment and operation. Moreover, their size spec-
ifications prevents their integration within small mobile systems
or even being hand held. The research for an alternative is ongo-
ing, notably, the recent advances in embedded systems outcomes
relatively small, powerful and cheap devices. This opens inter-
esting perspectives to adapt a light visual odometry approach that
provides relative path in real-time, which describes our main re-
search direction. The developed solution is integrated within un-
derwater archaeological site survey task where it plays an impor-
tant role to facilitate image acquisition. An example of targeted
underwater site is shown in Figure 1.

In underwater survey tasks, mobile underwater vehicles (or
divers) navigate over the target site to capture images. The ob-
tained images are treated in a later phase to obtain various infor-
mation and also to form a realistic 3D model using photogram-
metry techniques (Drap, 2012). In such a situation, the main
problem is to totally cover the underwater site before ending the
mission. Otherwise, we may obtain incomplete 3D models and
the mission cost will raise significantly as further exploitation is
needed. However, the absence of an overall view of the site es-
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(a) Overall orthphoto

(b) Close-up view

Figure 1. Example of a 3D model of an underwater site that is a
Phoenician shipwreck recently discovered located near Malta.

pecially under bad lighting conditions makes the scanning op-
eration blind. In practice, this yields to over-scanning the site
which is a waste of time and cost. Moreover, the quality of the
taken images may go below an acceptable limit. This mainly hap-
pens in terms of lightness and sharpness, which is often hard to
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quantify visually on the fly. In this work, we propose solutions
for the aforementioned problems. Most importantly, we propose
to guide the survey based on a visual odometry approach that
runs on a distributed embedded system in real-time. The output
ego-motion helps to guide the site scanning task by showing ap-
proximate scanned areas. Moreover, an overall subjective light-
ness indicator is computed for each image to help controlling the
lighting and the distance to target which prevents going too dark
or overexposed. Similarly, an image sharpness indicator is also
computed to avoid having blurred images, and when necessary, to
slow down the motion. Overall, we provide a complete hardware
and software solution for the problem.

In common approaches of visual odometry, a significant part of
the overall processing time is spent on feature points detection,
description and matching. In the tested baseline algorithm in-
spired from (Kitt et al., 2010), the aforementioned operations rep-
resent ∼65% of processing time in case of local/relative bundle
adjustment (BA) approach, which occupies in return the majority
of the time left. Despite their accuracy and successful wide appli-
cations, modern features descriptors such as SIFT (Lowe, 2004)
and SURF (Bay et al., 2006) rely on differences of Gaussians
(DoG) and fast Hessian respectively for feature detection. This is
two times slower than the traditional Harris detector (Gauglitz et
al., 2011). Further, the sophisticated descriptors that are invariant
to scale and rotation, which is not necessary in stereo matching,
slow down the computation. And finally, a brute force matching
is often used which is also a time consuming. In our proposed
method, we rely on low level Harris based detection and template
matching procedure. Whereas in traditional stereo matching the
search for correspondence is done along the epipolar line within
certain fixed range, in our method we proceed first by computing
a priori rough depth belief based on image lightness and follow-
ing the low of light divergence over distance. This is only valid in
a configuration where light sources are fixed to the stereo camera
rig, which is the case in our designed system. Our contribution
is that we benefit from the rough depth estimation to limit points
correspondence search zone since the stereo disparity depends
linearly on the distance. The search zone is defined by a prelimi-
nary learning phase as will be seen later.

A traditional approach to compute visual odometry based on im-
age quadruplets (two distant captures of a stereo image pair) suf-
fers from rotation and translation drifts that grows with time (Kitt
et al., 2010). The same effect applies to the methods based on
local BA (Mouragnon et al., 2009). In contrary, the solutions
that are based on using features from the entire image set, such
as global BA (Triggs et al., 2000), requires more computational
resources which are very limited in our case. Similarly, the simul-
taneous localization and mapping (SLAM) approaches (Thrun et
al., 2005), which are known to perform good loop closure, are
highly computationally intensive especially when complex parti-
cle filters are used (Montemerlo and Thrun, 2007). So they can
only operate in moderately sized environments if real-time pro-
cessing is needed. In our method, we adopt a relative BA method
proposed in (Nawaf et al., 2016), which proceed in the same way
as local method in optimizing a subset of image frames. How-
ever, it differs in the way of selecting the frames subset, as local
method uses Euclidean distance and deterministic pose positions
to find the k closest frames, the relative method represents the
poses in a probabilistic manner, and uses a divergence measure to
select such sub set.

The rest of the paper is organized as follows: We survey related
works in Section 2. In Section 3 we describe the designed hard-

ware platform that we used to implement our solution. Section
4 presents image quality measurement algorithms. Our proposed
visual odometry method is explained in Section 5. The analytical
results are verified through simulation experiments presented in
Section 6. Finally, in Section 7, we present a summary and con-
clusions. Few parts of this work have been presented in (Nawaf
et al., 2016).

2. RELATED WORKS

2.1 Feature Points Matching

Common ego-motion estimation methods rely on feature points
matching between several poses (Nistér et al., 2004). The choice
of the used approach for matching feature points depends on the
context. For instance, features matching between freely taken im-
ages (6 degrees of freedom), has to be invariant to scale and ro-
tation changes. Scale invariant feature descriptors (SIFT) (Lowe,
2004) and the Speeded Up Robust Features (SURF) (Bay et al.,
2006) are well used in this context (Nawaf and Trémeau, 2014).
In this case, the search for a point’s correspondence is done w.r.t.
all points in the destination image.

In certain situations, some constraints can be imposed to facilitate
the matching procedure. In particular, limiting the correspon-
dence search zone. For instance, in case of pure forward motion,
the focus of expansion (FOE) being a single point in the image,
the search for the correspondence for a given point is limited to
the epipolar line (Yamaguchi et al., 2013). Similarly, in case of
sparse stereo matching the correspondence point lies on the same
horizontal line in case of rectified stereo or on the epipolar line
otherwise. This speeds up the matching procedure first by having
less comparisons to perform, and second low-level features can
be used (Geiger et al., 2011). According to our knowledge there
is no method that proposes an adaptive search range following a
rough depth estimation from lightness in underwater imaging.

2.2 Ego-Motion Estimation

Estimating the ego-motion of a mobile system is an old prob-
lem in computer vision. Two main categories of methods are de-
veloped in parallel, namely; simultaneous localization and map-
ping (SLAM) (Davison, 2003), and visual odometry (Nistér et
al., 2004). In the following we highlight the main steps for both
approaches as well as hybrid solutions trying to combine their
advantages.

SLAM family of methods uses probabilistic model to handle ve-
hicle pose, although this kind of methods is developed to handle
motion sensors and map landmarks, they work efficiently with
visual information solely. In this case, a map of the environment
is built and at the same time it is used to deduce the relative pose,
which is represented using probabilistic models. Several solu-
tions to SLAM involve finding an appropriate representation for
the observation model and motion model while preserving effi-
cient and consistent computation time. Most methods use ad-
ditive Gaussian noise to handle the uncertainty which imposes
using extended Kalman Filter (EKF) to solve the SLAM problem
(Davison, 2003). In case of using visual features, computation
time and used resources grows significantly for large environ-
ments. For a complete review for SLAM methods we refer the
reader to (Bailey and Durrant-Whyte, 2006).

From another side, visual odometry methods uses structure from
motion methodology to estimate the relative motion (Nistér et al.,
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2004). Based on multiple view geometry fundamentals (Hart-
ley and Zisserman, 2003), approximate relative pose can be es-
timated, this is followed by a BA procedure to minimize re-
projection errors, which yields in improving the estimated struc-
ture. Fast and efficient BA approaches are proposed simultane-
ously to handle larger number of images (Lourakis and Argyros,
2009). However, in case of long time navigation, the number of
images increases dramatically and prevent applying global BA if
real time performance is needed. Hence, several local BA ap-
proaches have been proposed to handle this problem. In local
BA, a sliding window copes with motion and select a fixed num-
ber of frames to be considered for BA (Mouragnon et al., 2009).
This approach does not suit S-Type motion commonly used in
surveys since the last n frames to the current frame are not nec-
essarily the closest. Another local approach is the relative BA
proposed in (Sibley et al., 2009). Here, the map is represented
as Riemannian manifold based graph with edges representing the
potential connections between frames. The method selects the
part of the graph where the BA will be applied by forming two
regions, an active region that contains the frames with an aver-
age re-projection error changes by more than a threshold, and
a static region that contains the frames that have common mea-
surements with frames in active region. When performing BA,
the static region frames are fixed whereas active region frames
are optimized. The main problem with this method is that dis-
tances between frames are metric, whereas the uncertainty is not
considered when computing inter-frames distances.

Recently, a novel relative BA method is proposed by (Nawaf et
al., 2016). Particularly, an approximation of the uncertainty for
each estimated relative pose is estimated using a machine learn-
ing approach manifesting on simulated data. Neighboring ob-
servations used for the semi-global optimization are established
based on a probabilistic distance in the estimated trajectory map.
This helps to find the frames with potential overlaps with the cur-
rent frame while being robust to estimation drifts. We found this
method most adapted to our context.

3. HARDWARE PLATFORM

As mentioned earlier, we use an embedded system platform for
our implementation. Being increasingly available and cheap, we
choose the popular Raspberry Pi c© (RPi) as main processing
unit of our platform, which is a credit-card size ARM architec-
ture based computer running Rasbain c© , a Linux variant oper-
ating system. Having 1.2 GHz 64-bit quad-core CPU and 1GB
of memory allows to run smoothly most of image processing and
computer vision techniques. A description of the built system
is shown in Figure 2, which is composed of two RPi’s computers
each is connected to one camera module to form a stereo pair. The
cameras are synchronized using a hardware trigger. Both com-
puters are connected to one more powerful computer that can be
either within the same enclosure or on-board in our case. Using
this configuration, the embedded computers are responsible for
image acquisition. The captured stereo images are first partially
treated on the fly to provide image quality information as will be
details in Section 4. images are then transferred to the main com-
puter which handles the ego-motion computation that the system
undergoes. For visualization purposes, we use two monitors con-
nected to the embedded computers to show live navigation and
image quality information (See Figure 3).

Camera stereo pair

Embedded computers

Network switch

Storage

Main computer

Display

Camera sync signal

Figure 2. System hardware architecture

Figure 3. The hardware platform used for image acquisition and
real-time navigation; it is composed mainly of (1) stereo camera

pair, (2) Raspberry Pi c© computers and (3) monitors.

4. IMAGE QUALITY ESTIMATION

Since underwater images do not tend to be at best conditions,
a failing scenario in computing the ego-motion is expected and
has to be considered. Here, we could encounter two cases; First,
when having degenerated configuration that causes a failure in
estimating the relative motion, this can be due to the bad image
quality (blurred, dark or overexposed), the lack of textured areas
or large camera displacements. That may raise ill-posed problems
at several stages. Second, an imprecise estimation of the relative
motion due to poorly distributed feature points or the dominant
presence of outliers in the estimation procedure. As the first fail-
ure case can be straightly identified by mathematical analysis, the
detection of the second case is not trivial. Nevertheless, small er-
rors are to be corrected later using the BA procedure.

A real-time image quality estimation provides two benefits, first,
it can alert the visual odometry process of having bad image qual-
ity, two reactions can be taken in this case, either pausing the
process until taken image quality goes above certain threshold, or
producing position estimation based on previous poses and speed.
We go for the first case while leaving the second for further devel-
opment in future. Second, image quality indicator provides direct
information to the operator to avoid going too fast in case of blur,
or changing the distance to the captured scene when going under
or over-exposed.
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To estimate image sharpness, we rely on an image gradient mea-
sure that detects high frequencies often associated with sharp im-
ages, hence, we use a Sobel kernel based filtering which com-
putes the gradient with smoothing effect. This removes the effect
of dust commonly present in underwater imaging. Given an im-
age I, first we compute

G =
√

(SK> ∗ I)2 + (KS> ∗ I)2 (1)

where S = [1 2 1]>

K = [−1 0 1]>

Next, we consider the sharpness measure to be the mean value of
the computed gradient magnitude image G. The threshold can be
easily learned from images by recording the number of matched
feature points per image as well as image sharpness indicator. By
fixing the minimum number of matched feature points needed to
estimate correctly the ego-motion we can compute the minimum
sharpness indicator threshold (In our experiments we fix the num-
ber of matches to 100 matches, the obtained threshold is 20). It
worth to mention that several assumptions used in our work in-
cluding this measure does not hold for other above-water imag-
ing. The seabed texture guaranties a minimum sharpness even in
objects-free scenes, unlike modern above-water scenes.

As mentioned earlier, image lighting conditions play an impor-
tant role in computing precise odometry. Similar to image sharp-
ness indicator, an image lightness indicator can be integrated
in the odometry process as well as helping the operator to take
proper actions. To estimate lightness indicator, we convert the
captured images to CIE-XYZ color space and then to CIE-LAB
color space. We consider the lightness indicator as the mean value
of the L channel. The threshold is computed in same way as for
the sharpness indicator.

5. VISUAL ODOMETRY

After computing and displaying image quality measures, the im-
ages are transfered over the network to a third computer as shown
in Figure 2. This computer is responsible for hosting the visual
odometry process, which will be explained in this section. We
start fist by introducing the used feature matching approach and
then we present the ego-motion estimation from image quadru-
plets.

5.1 Sparse Stereo Matching

Matching feature points between stereo image pairs is essential
to estimate the ego-motion. As the two cameras alignment is
not perfect, we start by calibrating the camera pair. Hence, for
a given point on the right image we can compute the epipolar line
containing the corresponding point in the left image. However,
based on the known fixed geometry, the corresponding point po-
sition is constrained by a positive disparity. Moreover, given that
at deep water the only light source is the one used in our sys-
tem, the most far distance that feature points can be detected is
limited, see Figure 5 for illustration. This means that there is a
minimum disparity value that is greater than zero. Furthermore,
when going too close to the scene, parts of the image will become
overexposed, similar to the previous point, this imposes a limited
maximum disparity. Figure 4 illustrates the aforementioned con-
straints by dividing the epipolar line into 4 zones in which one is

an acceptable disparity range. This range can be straightforward
identified by learning from a set of captured images (oriented at
30 degrees for better coverage).

Right imageLeft image

1 2 3 4

Point

Figure 4. Illustration of stereo matching search ranges. (1)
Impossible (2) Impossible in deep underwater imaging due to
light’s fading at far distances, where features are undetectable
(3) Possible disparity (4) The point is very close so it becomes

overexposed and undetectable.

Figure 5. An example of underwater image showing minimum
possible disparity (red dots, ∼ 140 pixels) and maximum

possible disparity (blue dot, ∼ 430 pixels).

In our approach, we propose to constraint the so-called accept-
able disparity range further, which corresponds to the range 3 in
Figure 4. Given the used lighting system, we can assume a light
diffuse reflection model where the light reflects equally in all di-
rections. Based on inverse-square law that relates light intensity
over distance, image pixels intensities are roughly proportional to
their squared disparities. Based on such an assumption we could
use feature point’s intensity to constraint the disparity and hence
limiting the range of searching for a correspondence. In order to
do so, we are based on a dataset of stereo images. For each pair
we perform feature points matches. Each point match (xi, yi)
and (x′i, y

′
i), x being the coordinate in the horizontal axis, we

compute the squared disparity d2i = (xi − x′i)2. Next, we asso-
ciate each d2i to the mean lightness value for a window centered
at the given point and has a size of 2n + 1 computed form L
channel in CIE-LAB color space of the right image as follows:

l̄xi,yi =
1

4n2 + 4n+ 1

n∑
j=−n

n∑
i=−n

L(xi, yi) (2)

We assign a large value n = 6 to compensate for using Harris
operator that promotes local minimum intensity pixels as salient
feature points. The computed (l̄xi,yi , d

2
i ) pair shows the linear

relationship between the squared disparity and the average light-
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ness. A subset of such pairs is plotted in Figure 6.
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Figure 6. A subset of matched points squared disparity plotted
against average pixel lightness.

In addition to finding the linear relationship between both vari-
ables that allows to give a disparity value for each lightness value,
it is also necessary to capture the covariance that represents how
rough is our depth approximation. More specifically, given the
diagram shown in Figure 7, we aim at defining a tolerance t asso-
ciated to each disparity as a function of lightness l. In our method,
we rely on Principal Component Analysis (PCA) technique to ob-
tain this information. In details, for a given lightness li, we first
compute the corresponding squared disparity d2i using a linear
regression approach as follows:

d2i = −αli − β (3)

α =
Cov(L,D2)

V ar(L)
(4)

β = l̄ − αd̄2 (5)

where D is the training set of disparity, d̄ is its mean
L is the training set of lightness, l̄ is its mean

Second, let V2 = (v2,x, v2,y) be the computed eigenvector
which correspondences to the smallest eigenvalue λ2. Based on
the illustration shown in Figure 7, the tolerance t associated to d2i
can be written as:

t =

√
λ2
2(
v22,x
v22,y

+ 1) (6)

By considering a normal error distribution of the estimated rough
depth, and based on the fact that t is equal to one variance of D2,
we define the effective disparity range as:

di ± γ 4
√
t (7)

where γ represents the number of standard deviations. It is trivial
that γ is a trade-off between computation time and the probabil-
ity of having points correspondences within the chosen tolerance

v2
t

Lightness

Disparity2

l

Dmax

Dmin

Figure 7. Illustration of disparity tolerance t given a lightness
value l.

range. We set γ = 2 which means there is 95% probability to
cover the data.

At this step, we have all the information needed to proceed for the
points matching. In which for each feature point in the right im-
age, we search for the corresponding point in the left image based
on a sliding window over a rectangle whose width is defined by
the Equations 3 to 7, and the height is defined empirically to al-
low for distortion and stereo misalignment. After testing several
distance measures, we found that normalized measures tend to
be more robust to underwater imaging. In particular, we use the
normalized cross correlation computed as:

R(x, y) =

∑
x′,y′(Wr(x′, y′) · Il(x+ x′, y + y′))√∑

x′,y′ Wr(x′, y′)2 ·
∑

x′,y′ Il(x+ x′, y + y′)2

(8)
whereWr is the sliding window in the right image centered at the
query pixel. Il is the left image. R is the response that we seek
to maximize.

5.2 Ego-Motion Estimation

Since the stereo cameras are already calibrated, their relative po-
sition is known in advance. Both cameras have the same intrinsic
parameters matrix K. Given left and right frames at time t (we
call them previous frames), our visual odometry pipeline consists
of four stages:

• Feature points detection and matching for every new stereo
pair t+ 1.

• 3D reconstruction of the matched feature points using trian-
gulation.

• Relative motion computation using adaptation between the
point clouds for the frames at t and t+ 1.

• Relative BA procedure is applied to minimize re-projection
errors;

In details, let (f1, f2, f3, f4) denote the previous left, previous
right, current left and current right frames respectively. For each
new captured image pair, we compute a 3D point cloud using
triangulation as described in (Hartley and Zisserman, 2003) for
the matched feature points that are obtained using the method
proposed in the previous subsection.
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The rigid transformation [R|T ] required for expressing the
frames at time t + 1 in the reference frame at time t is the rigid
transformation required to move the 3D point cloud at time t to
the one obtained at time t+ 1. Hence, the problem of calculating
the orientation of the cameras at time t + 1 in relation to time t
leads back to the calculation of the transformation used to move
from one point cloud to the other. This is possible under our con-
figuration, with small rotation. We note here that there is no scale
problem between both point clouds which is specific to stereo
systems. We consider here the left previous to left current frames
f1 → f3 positions to represent the system relative motion, and
their relative transformation denoted [R13|T13].

Below, we present the method to compute the transformation for
passing from the point cloud calculated at time t+ 1, denoted P ,
to the one calculated at time t, denoted P ′. So we have two sets
of n homologous points P = Pi and P ′ = P ′i where 1 ≤ i ≤ n.
We have:

P ′i = R13Pi + T13 (9)

The best transformation the minimizes the error r, the sum of the
squares of the residuals:

r =

n∑
i=1

∥∥R13Pi + T13 − P ′i
∥∥2 (10)

To solve this problem, we use the singular value decomposition
(SVD) of the covariance matrix C :

r =

n∑
i=1

(Pi − P̄ )(P ′i − P̄ ′) (11)

where P̄ and P̄ ′ are the centers of mass of the 3D points sets
P and P ′ respectively. Given the SVD of C as: [U, S, V ] =
SV D(C), the final transformation is computed as:

R13 = V U> (12)

T13 = −R13P̄ + P̄ ′ (13)

Once the image pair t+ 1 is expressed in the reference system of
the image pair t, the 3D points can be recalculated using the four
observations that we have for each point. A set of verifications are
then performed to minimize the pairing errors (verification of the
epipolar line, the consistency of the y-parallax, and re-projection
residues). Once validated, the approximated camera position at
time t+1 are used as input values for the BA as described earlier.

6. EVALUATION

We implemented our method using OpenCV library and SBA
toolbox proposed by (Lourakis and Argyros, 2009). Since our
main goal is to reduce the processing time, we tested and com-
pared the computation speed of our method compared to using
high level feature descriptors, specifically SIFT and SURF. At the
same time, we monitor the precision for each test. The evaluation
is done using the same set of images.

In the obtained results, the computation time when using the re-
duced matching search range as proposed in this work is ∼ 72%

Figure 8. Image quadruplet, current (left and right) and previous
(left and right) frames are used to compute two 3D point clouds.
The transformation between the two points clouds is equal to the

relative motion between the two camera positions.

Figure 9. An example of stereo matching using the proposed
method

compared1 to the method using the whole search range (range
3 in Figure 4). Concerning SIFT and SURF, the computation
time is 342% and 221% respectively compared to the proposed
method. The precision of the obtained odometry is reasonable
which is within the limit of 3% for the average translational error
and 0.02[deg/m] for the average rotational error.

7. CONCLUSIONS AND PERSPECTIVES

In this work, we introduced several improvements to the current
traditional visual odometry approach in order to serve in the con-
text of underwater surveys. The goal is to be adapted to em-
bedded systems known for their lower resources. We resume the
developed processing pipeline applied to each captured stereo im-
age pair as follows: A sharpness indicator is computed based on
quantifying image frequencies, and a lightness indicator is com-
puted using CIELAB colour space, both indicators help the op-
erator during image acquisition. A sparse feature points detec-
tion and improved matching is proposed. The matching is guided
with a rough depth estimation using lightness information, this
is the factor beyond most of the gain in computation time com-

1The time evaluation is shown in percentage because the evaluation
is carried out on three platforms with different computational power, in
which one is an embedded unit. The minimum computation time being
220 ms
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pared to sophisticated feature descriptors combined with brute-
force matching.

The evaluation of our system is ongoing. A deep-sea mission is
planned in short term in corporation with COMEX2 our industrial
partner that provides needed instrumental infrastructure.

Our future perspectives are mainly centered on reducing the over-
all system size, for instance, replacing the main computer in our
architecture with a third embedded unit, which in turn does not
keep evolving. This also allows to reduce the power consumption
which increases the navigation time. On the other hand, dealing
with visual odometry failure is an important challenge specially
in the context of underwater imaging, which is mainly due to bad
image quality. The ideas of failing scenarios discussed in this pa-
per can be extended to deal with the problem of interruptions in
the obtained trajectory.
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