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ABSTRACT:

This paper shows how to use the result of Google’s SLAM solution, called Cartographer, to bootstrap our continuous-time SLAM

algorithm. The presented approach optimizes the consistency of the global point cloud, and thus improves on Google’s results. We use

the algorithms and data from Google as input for our continuous-time SLAM software. We also successfully applied our software to a

similar backpack system which delivers consistent 3D point clouds even in absence of an IMU.

1 INTRODUCTION

On October 5, 2016 Google released the source code of its real-

time 2D and 3D simultaneous localization and mapping (SLAM)

library Cartographer 1. The utilized algorithms for solving SLAM

in 2D have been described in a recent paper by the authors of

the software (Hess et al., 2016). It can deliver impressive results

— especially considering that it runs in real-time on commodity

hardware. A publication describing the 3D mapping solution is

still missing. The released software however, solves the problem.

In addition, Google published a very demanding, high-resolution

data set to the public for testing their algorithms. Also custom

data sets are easy to process, as Google’s software comes with

an integration into the robot operating system (ROS) (Quigley et

al., 2009). ROS is the de-facto standard in the robotic commu-

nity as middleware. It allows to connect heterogeneous software

packages via a standardized inter-process communication (IPC)

system and is available on recent GNU/Linux distributions.

Google’s sample data set was recorded in the museum “Deutsches

Museum” in München, Germany. It is the world’s largest mu-

seum of science and technology, and has about 28,000 exhibited

objects from 50 fields of science and technology. The data set

was recorded with a backpack system, which features an iner-

tial measurement unit (IMU) and two Velodyne PUCK (VLP-16)

sensors. The trajectory we processed was 108 meters long and

contained 300,000 3D scans from the PUCK sensors.

Due to a high demand on flexible mobile mapping systems, map-

ping solutions on pushcarts, on trolleys, on mobile robots, and

backpacks have recently been developed. Human carried systems

offer the advantage to overcome doorsteps and that the operator

can open closed doors etc. To this end, several vendors build hu-

man carried systems which are also often called personal laser

scanners.

This paper shows how to use the result of Google’s SLAM solu-

tion to bootstrap our continuous-time SLAM algorithm. Our ap-

proach optimizes the consistency of the global point cloud, and

thus improves on Google’s results. We use the algorithms and

data from Google as input for our continuous-time SLAM solu-

tion, which was recently published in (Elseberg et al., 2013). We

1https://opensource.googleblog.com/2016/10/

introducing-cartographer.html

present successful applications of the software to our own similar

backpack system which delivers consistent 3D point clouds even

in absence of an IMU (Nüchter et al., 2015).

2 STATE OF THE ART

2.1 Laser Scanner on Robots and Backpacks

Mapping environments received a lot of attention in the robotics

community, especially after the appearance of cost effective 2D

laser range finders. Seminal work with 2D profiles in robotics

was performed by Lu and Milios (1994). After deriving 2D vari-

ants of the by now well-known ICP algorithm they derived a

PosegraphSLAM solution (Lu and Milios, 1997), that considers

all 2D scans in a global fashion. Afterwards, many other ap-

proaches to SLAM have been presented, including extended Kal-

man filters, particle filters, expectation maximization and Graph-

SLAM. These SLAM algorithms aimed at enabling mobile robots

to map the environments where they have to carry out user spe-

cific tasks. Thrun et al. (2000) presented a system, where a hori-

zontally mounted scanner performed FastSLAM –a particle filter

approach to SLAM– while an upward looking scanner was used

to acquire 3D data, exploiting the robot motion to construct en-

vironments in 3D. Lu and Milios’ approach was extended to 3D

point clouds and poses with six degree of freedom (DoF) in (Bor-

rmann et al., 2008).

In 2004 an early version of a backpack system was presented.

Saarinen et al. (2004) used the term Personal Localization And

Mapping. They used a horizontally mounted SICK LMS200 scan-

ner in front of the human carried and put additional sensors and

the computing equipment into a backpack. Chen et al. (2010)

presented a backpack system that feature a number of lightweight

2D profilers (Hokuyo scanner) mounted in different viewing di-

rections. In previous work, we tried to apply our algorithms to a

backpack system without an IMU (Nüchter et al., 2015). The sys-

tem consists of a horizontally mounted SICK LMS100 scanner

and a spinning Riegl VZ400. Similarly to the work of Thrun et al.

a horizontal scanner is used to estimate an initial trajectory that

is afterwards updated to regard the 6 DoF motion. The term Per-

sonal Laser Scanning System was shaped by Liang et al. (2014).

They use a single FARO scanner and rely on the global navi-

gation satellite system (GNSS) system. Similarly, the commer-

cially available ROBIN system features a RIEGL VUX scanner
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Hokuyo

Velodyne PUCK

Figure 1: Left: Google’s Cartographer system featuring two Hokuyo laser scanners (image: Google blog). Middle: Google’s Cartogra-

pher system with two Velodyne PUCKs and the Cartographer team (image courtesy of the Cartographer team). Right: Second author

operating Würzburg’s backpack scanner.

and GNSS. In contrast, the Leica Pegasus is a commercially avail-

able backpack wearable mobile mapping solution, which is com-

posed of two Velodyne PUCK scanners, cameras and a GNSS.

The PUCKs scan 300.000 points per second and have a maximal

range of 100 meters. 16 profilers are combined to yield a vertical

field of view of ±15 degree.

The Google Cartographer backpack was initially presented in Sep-

tember 2014. Back then, the backpack system was based on two

Hokuyo profilers and an internal measurement unit (IMU). The

current version features two Velodyne PUCK scanners. Figure 1

shows the system from Google and our backpack solution.

2.2 Calibration, Referencing, and SLAM

To acquire high quality range measurement data with mobile laser

scanner the position and orientation of every individual sensors

have to be known. Traditionally, scanners, GPS and IMU are

calibrated against other positioning devices whose pose in rela-

tion to the system is already known. The term Boresight cali-

bration is used for the technique of finding the rotational param-

eters of the range sensor with respect to the already calibrated

IMU/GPS unit. In the airborne laser scanning community, au-

tomatic calibration approaches are known (Skaloud and Schaer,

2007), and similarly vehicle-based kinematic laser scanning has

been considered (Rieger et al., 2010). In the robotics commu-

nity there exist approaches for calibrating several range scan-

ners semi-automatically, i.e., with manually labeled data (Under-

wood et al., 2009) or using automatically computed quality met-

rics (Sheehan et al., 2011; Elseberg et al., 2013). Often vendors

do not make their calibration methods public and unfortunately,

the authors of this paper have no information on the calibration

of the Google Cartographer backpack. In general, calibration in-

accuracies can to some extend be compensated with a SLAM al-

gorithm.

Aside from sensor misalignment, a second source of errors are

timing related issues. All subsystems on a mobile platform need

to be synchronized to a common time frame. This is often accom-

plished with pure hardware via triggering or with mixes of hard

and software like pulse per second (PPS) or the network time pro-

tocol (NTP). However, good online synchronization is not always

available for all sensors. Olson (2010) has developed a solution

for the synchronization of clocks that can be applied after the

fact. In ROS, sensor data is time-stamped, when it arrives and it

is recorded in an open file format (.bag files). Afterwards, one

works with the time-stamped data using nearest values or inter-

polation.

As the term direct referencing or direct Geo-referencing implies,

it is the direct measurement of the position and orientation of a

mapping sensor, i.e., the laser scanner, such that each range value

can be referenced without the need for collecting additional infor-

mation. This means that the trajectory is then used to “unwind”

the laser range measurements to produce the 3D point cloud. This

approach has been taken by Liang et al. (2014).

Some systems employ a horizontally mounted scanner and per-

form 2D SLAM on the acquired profiles. Thrun et al. (2000)

used FastSLAM, Nüchter et al. (2015) used SLAM based on the

truncated signed distance function (TSD SLAM), or alternatively,

HectorSLAM (Kohlbrecher et al., 2011). These 2D SLAM ap-

proaches produce 2D grid maps. Similarly, Google’s Cartogra-

pher code is for creating 2D grid maps (Hess et al., 2016). After-

wards, the computed trajectory and the IMU measurements are

used to “unwind” the laser range measurements to produce the

3D point cloud.

The Google Cartographer library achieves its outstanding per-

formance by grouping scans into probability grids that they call

submaps and by using a branch and bound approach for loop clo-

sure optimization. While new scans are matched with and sub-

sequently entered into the current submap in the foreground, in

the background, the library matches scans to nearby submaps to

create loop closure constraints and to continually optimize the

constraint graph of submaps and scan poses. The authors dif-

ferentiate between local scan matching which inserts new scans

into the current submap and which will accumulate errors over

time and global SLAM which includes loop closing and which

removes the errors that have accumulated in each submap that

are part of a loop. Both, local and global matching are run at the

same time.

During local scan matching, the Cartographer library matches

each new scan against the current submap using a Ceres-based

scan matcher (Agarwal et al., n.d.). A submap is a regular proba-

bility grid where each discrete grid point represents the probabil-

ity that the given grid point is obstructed or free. These two sets

are disjoint. A grid point is obstructed if it contains an observed

point. Free points are computed by tracing the laser beam from

the estimated scanner location to the measured point through the

grid. The optimization function of the scan matcher makes use of

the probability grid as part of its minimization function.

During global SLAM, finished submaps (those that no longer

change) and the scans they contain are considered for loop clos-

ing. Just as during local scan matching, the problem is passed

to Ceres as a nonlinear least squares problem. The algorithm

is accurate down to the groups of points defined by the regu-

lar probability grid of each submap. By taking the submap grid

size as translation step delta and the angle under which a grid

point is seen at maximum range as the rotation step delta, a finite

set of possible transformations is created. This solution space

is searched using a branch and bound approach where nodes are
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traversed using a greedy depth first search and the upper bound

of the inner nodes being defined in terms of computational effort

and quality of the bound. To compute the upper bound efficiently,

grids are precomputed for each height of the tree that overlay the

involved submaps and store for each obstructed grid point the

maximum values of possible scores. This operation is done in

O(n) with n being the number of obstructed grid points in each

precomputed grid.

Hess et al. (2016) describe the 2D version of the algorithm, which

uses the horizontally mounted 2D profiler. The provided data sets

contain also data from a setup with Velodyne PUCK scanners (cf.

Figure 1 middle). Their algorithm is able to process 3D data and

to output poses with 6 DoF, however, a description of their 3D ap-

proach is missing from their paper. Nevertheless, we understand

from their published source code that their 3D implementation

is mostly an extension of their 2D approach to three dimensions

with a 3D probability grid. Some changes have been made to

improve performance. For example, the 3D grid is not fully tra-

versed to find free grid cells but only a configurable distance up

to the measured point is checked.

Only a few approaches optimize the whole trajectory in a con-

tinuous fashion. Stoyanov and Lilienthal (2009) presented a non

rigid optimization for a mobile laser scanning system. They opti-

mize point cloud quality by matching the beginning and the end

of a single scanner rotation using ICP. The estimate of the 3D

pose difference between the two points in time is then used to

optimize the robot trajectory in between. In a similar approach

Bosse and Zlot (2009) use a modified ICP with a custom corre-

spondence search to optimize the pose of six discrete points in

time of the trajectory of a robot during a single scanner rotation.

The trajectory in between is modified by distributing the errors

with a cubic spline. The software of Riegl RiPRECISION MLS

automatically performs adjustments of GNSS/INS trajectories to

merge overlapping mobile scan data based on planar surface el-

ements. Our own continuous-time SLAM solution improves the

entire trajectory of the data set simultaneously based on the raw

point cloud. The algorithm is adopted from Elseberg et al. (2013),

where it was used in a different mobile mapping context, i.e., on

platforms like the LYNX mobile mapper or the Riegl VMX-250.

As no motion model is required, it can be applied to any continu-

ous trajectory.

3 CONTINUOUS-TIME SLAM

3.1 6D SLAM

To understand the basic idea of our continuous-time SLAM, we

summarize its foundation, 6D SLAM, which was designed for a

high-precision registration of terrestrial 3D scans, i.e., globally

consistent scan matching (Borrmann et al., 2008). It is available

in 3DTK – The 3D Toolkit2. The globally consistent scan match-

ing is a full SLAM solution for 3D point clouds.

6D SLAM works similarly to the well-known iterative closest

points (ICP) algorithm, which minimizes the following error func-

tion

E(R, t) =
1

N

N
∑

i=1

∥

∥mi − (Rdi + t)
∥

∥

2

(1)

to iteratively solve for an optimal rotation T = (R, t), where

the tuples (mi,di) of corresponding model M and data points

D are given by minimal distance, i.e., mi is the closest point to

2http://threedtk.de

di within a close limit (Besl and McKay, 1992). Instead of the

two-scan-Eq. (1), we look at the n-scan case

E =
∑

j→k

∑

i

|Rjmi + tj − (Rkdi + tk)|
2
, (2)

where j and k refer to scans of the SLAM graph, i.e., to the graph

modeling the pose constraints in SLAM or bundle adjustment.

If they overlap, i.e., closest points are available, then the point

pairs for the link are included in the minimization. We solve for

all poses at the same time and iterate like in the original ICP.

The derivation of a GraphSLAM method using a Mahalanobis

distance that describes the global error of all the poses

W =
∑

j→k

(Ēj,k −E
′

j,k)
T
C

−1

j,k(Ē
′

j,k −E
′

j,k) (3)

=
∑

j→k

(Ēj,k − (X′

j −X
′

k))C
−1

j,k(Ēj,k − (X′

j −X
′

k)).

where E
′

j,k is the linearized error metric and the Gaussian dis-

tribution is (Ēj,k,Cj,k) with computed covariances from scan

matching as given in (Borrmann et al., 2008). X′

j and X
′

k denote

the two poses linked in the graph and related by the linear error

metric. Minimizing Eq. (2) instead of (3) does not lead to differ-

ent results (Nüchter et al., 2010). In matrix notation W in Eq. (3)

becomes

W = (Ē−HX)TC−1(Ē−HX).

Here H is the signed incidence matrix of the pose graph, Ē is

the concatenated vector consisting of all Ē′

j,k and C is a block-

diagonal matrix comprised of C−1

j,k as submatrices. Minimizing

this function yields new optimal pose estimates.

Please note, while there are four closed-form solutions for the

original ICP Eq. (1), linearization of the rotation in Eq. (2) or (3)

seams to be always required.

Globally consistent scan matching is a full SLAM solution for

3D point clouds. It is an offline algorithm and thus optimizes

all poses in the SLAM pose graph. As a result, processing more

scans will increase the algorithm’s run-time.

3.2 Continuous-time SLAM

We also developed an algorithm that improves the entire trajec-

tory of the backpack simultaneously. The algorithm is adopted

from Elseberg et al. (2013), where it was used in a different mo-

bile mapping context, i.e., on wheeled platforms. Unlike other

state of the art algorithms, like (Stoyanov and Lilienthal, 2009)

and (Bosse and Zlot, 2009), it is not restricted to purely local

improvements. We make no rigidity assumptions, except for the

computation of the point correspondences. We require no ex-

plicit motion model of a vehicle for instance, thus it works well

on backpack systems. The continuous-time SLAM for trajectory

optimization works in full 6 DoF, which implies that even planar

trajectories are turned into poses with 6 DoF. The algorithm re-

quires no high-level feature computation, i.e., we require only the

points themselves.

In case of mobile mapping, we do not have separate terrestrial

3D scans. In the current state of the art in the robotics commu-

nity developed by Bosse and Zlot (2009) for improving overall

map quality of mobile mappers, the time is coarsely discretized.

This results in a partition of the trajectory into sub-scans that are

treated rigidly. Then rigid registration algorithms like the ICP

and other solutions to the SLAM problem are employed. Ob-

viously, trajectory errors within a sub-scan cannot be improved
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in this fashion. Applying rigid pose estimation to this non-rigid

problem directly is also problematic since rigid transformations

can only approximate the underlying ground truth. When a finer

discretization is used, single 2D scan slices or single points result

that do not constrain a 6 DoF pose sufficiently for rigid algo-

rithms.

More mathematical details of our algorithm are given in (Else-

berg et al., 2013). Essentially, we first split the trajectory into sec-

tions, and match these sections using the automatic high-precision

registration of terrestrial 3D scans, i.e., globally consistent scan

matching that is the 6D SLAM core. Here the graph is estimated

using a heuristic that measures the overlap of sections using the

number of closest point pairs. After applying globally consistent

scan matching on the sections the actual continuous-time or semi-

rigid matching as described in (Borrmann et al., 2008; Elseberg

et al., 2013) is applied, using the results of the rigid optimiza-

tion as starting values to compute the numerical minimum of the

underlying least square problem. To speed up the calculations,

we make use of the sparse Cholesky decomposition by (Davis,

2006).

Given a trajectory estimate, we “unwind” the point cloud into

the global coordinate system and use nearest neighbor search to

establish correspondences at the level of single scans (those can

be single 2D scan profiles). Then, after computing the estimates

of pose differences and their respective covariances, we optimize

the trajectory. In a predependend step, we consider trajectory

elements every k steps and fuse the trajectory elements around

these steps l temporarily into a meta-scan.

A key issue in continuous-time SLAM is the search for closest

point pairs. We use an octree and a multi-core implementation

using OpenMP to solve this task efficiently. A time-threshold for

the point pairs is used, i.e., we match only to points if they were

recorded at least td time steps away. This time corresponds to the

number of separate 3D point clouds acquired by the PUCKs. It is

set to 0.1 sec. (k = 300, l = 300). In addition, we use a maximal

allowed point-to-point-distance which has been set to 50 cm.

Finally, all scan slices are joined in a single point cloud to enable

efficient viewing of the scene. The first frame, i.e., the first 3D

scan slice from the PUCKs scanner defines the arbitrary reference

coordinate system.

4 BOOTSTRAPPING CONTINUOUS-TIME SLAM

WITH GOOGLE’S SLAM SOLUTION

For improving the Cartographer 3D mapping, the graph is es-

timated using a heuristics that measures the overlap of sections

using the number of closest point pairs. After applying globally

consistent scan matching on the sections for several iterations the

actual continuous-time SLAM is started.

The data set provided by Google is challenging in several ways:

Due to the enormous amount of data, clever data structures are

needed to store and access the point cloud. We split the trajectory

every 300 PUCK-scans and join ±150 PUCK-scans into a meta-

scan. These meta-scans are processed with our octree where we

use a voxel size of 10 cm to reduce the point cloud by select-

ing one point per voxel. We prefer a data structure that stores

the raw point cloud over a highly approximative voxel represen-

tation. While the latter one is perfectly justifiable for some use

cases, it is incompatible with tasks that require exact point mea-

surements like scan matching. Our implementation of an octree

prioritizes memory efficiency. We use pointers in contrast to se-

rialized pointer-free encodings in order to efficiently access the

large amounts of data. The octree is free of redundancies and is

nevertheless capable of fast access operations. Our implementa-

tion allows for access operations in O(log n). We use 6-bytes for

pointers as this is sufficient to address a total of 256 terabyte. Two

bit fields signal if there is a child or leaf node, thus our implemen-

tation needs a few bit operations and the 8 byte are sufficient for

an octree node.

The preprocessing step of the continuous-time SLAM runs for 20

iterations, where the edges in the graph are added, when more

than 400 point pairs between these meta-scans are present. The

maximal allowed point-to-point distance is set to 50 cm. Figure 3

and present 4 results where the consistency of the point cloud

has been improved. Figure 5 shows the modifications in the 3D

point cloud, while Figure 6 details the changes in the trajectory’s

position and orientation. It is an open traverse, thus the changes

are mainly at the end of the trajectory. Processing was done on a

server featuring four Intel Xeon CPUs E7-4870 with 2.4 GHz (40

cores, 80 threads). We have optimized the Google data set for 12

to 15 days (few interruptions).

5 FURTHER CARTOGRAPHER SLAM RESULTS

In further experiments, we evaluated the Cartographer. As the li-

brary is fully integrated into ROS, we are able to exchange on our

backpack HectorSLAM or TSD SLAM with Cartographer. In-

door office-like environments are no challenge for all the named

algorithms. Featureless environments such as long tunnels or out-

door environments are problematic. Figure 2 shows a typical er-

roneous map obtained with default parameters of Cartographer

vs. HectorSLAM in the environment where the photo Figure 1

(right) has been taken.

6 SUMMARY, CONCLUSION AND FUTURE WORK

This paper revisits a continuous-time SLAM algorithm and its ap-

plication on Google’s Cartographer sample data. The algorithm

starts with splitting the trajectory into sections, and matches these

sections using the automatic high-precise registration of terres-

trial 3D scans.

Needless to say, a lot of work remains to be done. First of all, we

plan to evaluate 2D mapping method as we have indicated above.

Secondly, as calibration is as crucial as SLAM, we will apply our

calibration framework (Elseberg et al., 2013) to the data files pro-

vided by Google. Furthermore, we will transfer our continuous-

time SLAM to different application areas, e.g., underwater and

aerospace mapping applications.

Figure 2: Left: Cartographer. Right: HectorSLAM.
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Figure 3: Results of continuous-time SLAM on Google’s Cartographer sample data set Deutsches Museum in München. Left: input.

Right: output of our solution. Shown are 3D views (perspective) of the scene. Major changes in the point cloud are highlighted in red.

Continued in Figure 4
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Figure 4: Results of continuous-time SLAM on Google’s Cartographer sample data set Deutsches Museum in München. Left: input.

Right: output of our solution. Shown are sectional views of the museum hall. Major changes in the point cloud are highlighted in red.
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Figure 5: Visualization of the changes in the point cloud. Shown are two views of the optimized 3D point cloud, colored with the

difference to the result from Google’s Cartographer.
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Figure 6: Visualization of the changes in the trajectory computed by our method to bootstraped trajectory. Left: distance. Right:

orientation
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mic solutions for computing accurate maximum likelihood 3D
point clouds from mobile laser scanning platforms. Remote
Sensing 5(11), pp. 5871–5906.

Hess, W., Kohler, D., Rapp, H. and Andor, D., 2016. Real-time
loop closure in 2d lidar slam. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA
’16), Stockholm, Sweden.

Kohlbrecher, S., Meyer, J., von Stryk, O. and Klingauf, U., 2011.
A flexible and scalable slam system with full 3d motion esti-
mation. In: Proceedings of the IEEE International Symposium
on Safety, Security and Rescue Robotics (SSRR ’ 11).

Liang, X., Kukko, A., Kaartinen, H., andY. Xiaowei, J. H.,
Jaakkola, A. and Wang, Y., 2014. Possibilities of a personal
laser scanning system for forest mapping and ecosystem ser-
vices. Sensors 14(1), pp. 1228–1248.

Lu, F. and Milios, E., 1994. Robot Pose Estimation in Unknown
Environments by Matching 2D Range Scans. In: Proceedings
of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR ’94), pp. 935–938.

Lu, F. and Milios, E., 1997. Globally Consistent Range Scan
Alignment for Environment Mapping. Autonomous Robots
4(4), pp. 333–349.
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