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ABSTRACT:

Known scene geometry and camera calibration parameters give important information to video content analysis systems. In this paper,
we propose a novel method for camera pose estimation based on people observation in the input video captured by static camera. As
opposed to previous techniques, our method can deal with false positive detections and inaccurate localization results. Specifically,
the proposed method does not make any assumption about the utilized object detector and takes it as a parameter. Moreover, we do
not require a huge labeled dataset of real data and train on the synthetic data only. We apply the proposed technique for camera pose
estimation based on head observations. Our experiments show that the algorithm trained on the synthetic dataset generalizes to real

data and is robust to false positive detections.

1. INTRODUCTION

Automatic extraction of useful information from a video is the
key computer vision task. Location and attributes of presented
objects as well as action they perform are the most interesting
parts of such information.

If scene geometry and camera pose are known then these tasks
become easier. Indeed, such information restricts available ob-
ject locations. For example, cars usually can be found on the
roads and their size on an image are restricted by the camera lo-
cation and orientation, i.e. it’s pose. On the other hand, modern
object detection algorithms assume unknown scene geometry and
camera pose. Therefore, they have to search objects of any size
at all locations. It leads to false detections and high computation
time. If only camera calibration is known we can reduce influence
of these factors.

Unfortunately, the most robust methods require interaction with
a some template for calibration parameters estimation. It makes
calibration of hundreds of thousands of surveillance cameras in-
tractable. In this paper we propose an algorithm that automati-
cally solves this task for surveillance cameras with known focal
length. Our algorithm does not require any special calibration
templates and directly infer parameters from surveillance video.
The constructed algorithm takes object detector results as the in-
put.

We apply supervised machine learning to solve calibration task.
Requirement of huge labeled dataset restricts implementation of
machine learning techniques in practice. We show how to con-
struct synthetic dataset to solve the calibration task. It allows es-
timation camera parameters even if there is no real labeled dataset
at all.

We show that camera pose can be estimated from people obser-
vation in surveillance video. We construct a calibration algorithm
that uses head detector results and known camera focal length as

the input. As opposed to previous works in the area, we don’t
assume the “perfect” people detector and implicitly take into ac-
count its object localization error and false detections. Our algo-
rithm makes the following assumptions about the observed scene:

1. The camera is static, i.e. it does not change location, view
direction and focal length;

2. Camera observes “flat” scene, i.e. ground is a plane;
3. All people stand on the ground plane;

4. All people presented in the scene has the same height (1.75
meters).

The assumption of a single flat ground plane is a standard for the
works on surveillance calibration (Liu et al., 2011, Chen et al.,
2007, Dubska et al., 2014, den Hollander et al., 2015, Micusik
and Pajdla, 2010, Hoiem et al., 2008).

In real surveillance scenario camera produces continuous video
stream and detector localizes thousands of objects per minute. In
practice the set of detections contains false positives. Therefore,
the calibration algorithm should a) work with input of various
length and b) be robust to false positive. We show that the pro-
posed calibration algorithm meets these requirements.

Our main contributions are:
1. We propose a technique for construction a synthetic dataset
for scene geometry understanding;

2. We construct an algorithm for the camera pose estimation
from people observation;

3. The introduced algorithm is shown to be robust to noise in
the input data and allows input of any length.
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2. RELATED WORK

Automatic surveillance camera pose estimation task has a long
history of research (Caprile and Torre, 1990, Li et al., 2010, Liu
et al., 2011, Chen et al., 2007, Pflugfelder and Bischof, 2007,
den Hollander et al., 2015, Puwein et al., 2012, Dubsk4 et al.,
2014, Hoiem et al., 2008). The authors (Puwein et al., 2012)
utilizes key points tracking to estimate camera focal length and
relative location during rotation and zooming of a PTZ camera.
Unfortunately, most of surveillance cameras are static, i.e. they
do not change location, view direction and field of view. This
limitation significantly reduces information that can be extracted
from video.

The paper (Caprile and Torre, 1990) presents relationships be-
tween a camera focal length and location of three orthogonal van-
ishing points (TOVPs). Thus, the most of later works reduces the
internal camera calibration task to localization of TOVPs. The
authors (Li et al., 2010) presents a method to exploit vanishing
points from static scene structures, such as buildings. However,
they cannot be applied in scenes without structures. The paper
(Dubska et al., 2014) uses motion direction of vehicles to ex-
tract horizontal vanishing point. The papers (Chen et al., 2007,
Liu et al., 2011, den Hollander et al., 2015) use people obser-
vations to estimate vertical vanishing point and horizon line. In
addition, this information provides camera orientation in world
coordinates. They use known people height to estimate camera
location. The authors (den Hollander et al., 2015) assume con-
stant people height (1.8 meters) in the scene and the authors (Liu
et al., 2011) use height distribution measured for European pop-
ulations (Visscher, 2008). The methods (Chen et al., 2007, Liu et
al., 2011) use orientation of people foreground blob to estimate
vertical vanishing point. The quality of these methods signifi-
cantly depends on accuracy of extracted masks. Moreover, these
works approximates people with a vertical sticks. The proposed
approximation is inaccurate especially when tilt angle close to 3
(the camera view is an opposite top direction). Thus, we use a
detector to estimate head size at different locations of the input
image. The authors (Hoiem et al., 2008) also use people detec-
tion results for camera pose estimation, but they assume zero roll
angle and tilt angle to be close to zero.

3. PROPOSED MODEL

We divide this section into several parts. In subsection 3.1 we
propose a technique for synthetic dataset construction. Subsec-
tion 3.2 introduces our LogNormLoss layer for CNN that allows
learning probabilistic prediction for regression tasks. In subsec-
tion 3.3 we propose an algorithm for camera calibration.

3.1 Dataset

The proposed algorithm requires a labeled dataset for training.
We found that it is hard to use real surveillance videos for this
task. Most of such data does not contain calibration parameters
and groundtruth people location. On the other hand, computer
graphics allows construction synthetic dataset of an arbitrary size
with specified parameters.

We construct synthetic dataset with 100373 scenes. Each scene
is a ground plane with people standing on it and camera placed
above. Scenes are differ in the intrinsic and extrinsic parameters
of the camera and location of captured people. The proposed al-
gorithm uses only head locations in form of bounding boxes and

Parameter | Caption Minimum value | Maximum
value
h height (m) 0 20
t tilt (rad) 0 5
r roll (rad) —15 15
f focal length | O 5000
(pixels)

Table 1. Limits of the camera parameters.

does not need original images. Thus our dataset contains 1) cam-
era calibration parameters; 2) location of people on the ground
plane and 3) head detector results. We describe used camera, hu-
man models and applied head detector below.

3.1.1 Camera Model Camera calibration contains intrinsic
and extrinsic parameters. World coordinate system specifies ex-
trinsic parameters. Thus we choose an unified world coordinate
system for all scenes. It specifies ground as a plane z = 0. We as-
sume that a camera is placed on the Z axis. Therefore, the height
h is the only parameter of a camera location. The view direction
of the camera is specified by two angles: tilt ¢ and roll r of the
camera.

In the constructed synthetic dataset cameras record FullHD frames
(1920 x 1080). A principal point is assumed to be in the center of
captured images and a camera has square pixels with aspect ratio
equal to 1. In such assumptions the focal length f (measured in
pixels) is the only intrinsic parameter of the camera.

Each scene is parametrized by camera calibration parameters.
We sample these parameters from uniform distributions with the
boundaries specified in the Table 1.

3.1.2 Human Model The only objects in our dataset are peo-
ple and we apply human shape model (Pishchulin et al., 2015)
to visualize them. Our dataset contains people in standard pose
and constant shape. To make the dataset easier all people have
the same height (1.75 meters). Thus only location on the ground
plane specifies human shape.

We construct at least 200 people in different locations for each
scene. We place each person in such a way that the applied de-
tector could find him. In addition, we reject scenes where the
detector cannot find people.

3.1.3 Detector We treat detector results as features extracted
from a scene. Modern person detectors are sensitive to camera
angle and occlusions, therefore it cannot find people in some
scenes. But heads are visible in most surveillance scenarios. Thus
the proposed features consist of head bounding boxes.

Indeed, human model (Pishchulin et al., 2015) provides the true
head location in synthetic data. However, we apply the head de-
tector even to synthetic images. It allows us to avoid modeling
of the detector noise and bias in head localization. We assume
that these factors are equal on real data and the proposed syn-
thetic datasets. Thus the distributions of features extracted from
the real and synthetic data becomes closer.

We use fast implementation (Prisacariu and Reid, 2009) of head
detector. It has two significant advantages over the modern de-
tectors: 1) low computation time of the detector allows construc-
tion the huge dataset in reasonable amount of time and 2) it finds
heads even if we do not model texture of the person skin.
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Figure 1. Visualization of the camera calibration network.

3.2 LogNormLoss Layer

We use Convolutional Neural Network (CNN) to estimate the cal-
ibration parameters. The Euclidean loss is a traditional loss layer
for such regression tasks. It assumes equal penalty rules” for all
predictions. In some cases it leads to inaccurate results. Imag-
ine, the input data have outliers or huge noise level. A regression
with the Euclidean loss tends to bias true predictions to compen-
sate shift from groundtruth on such data. On the contrary, if the
used model can indicate how “good” the input data are, it can
overcome this drawback. The proposed LogNormLoss layer is a
solution for this task. It estimates the predicted value and confi-
dence of the prediction by minimizing negative logarithm of nor-
mal distribution density function.

Formally, LogNormLoss layer assumes that the true value y is
normally distributed with unknown mean p and variance :

p(ylz,©) = N(y|u, ) )

It estimates the parameters p and 3 using maximization of the
likelihood. If we assume that these parameters do not depend
on the input data x, the layer describes all targets y with a sin-
gle Gaussian. On the other hand, CNN with LogNormLoss layer
trains p and X as functions of the input data = and model param-
eters ©.

The proposed loss layer has 3 inputs. The layer interprets first two
inputs 1 and s as a mean and logarithm of a variance of normal
distribution. Thus, the loss is a negative logarithm of a normal
distribution density function:

L(ylp, s) = —log N(ylp, e + €) )
We use € = 107° to prevent overfitting to a single train sample.

If y is a vector we assume independence of the different compo-
nents of the prediction:

L(ylp, s) = —log N (ylp, diag (e®) + €I) 3)

The s parameter can be interpreted as a predicted error. The
higher value it takes the fewer model confidence is. If the s val-
ues are equal for all input data z, this loss equal to Euclidean loss.
But if they depend on the observed data, CNN trains to estimate
accuracy of the predicted mean value p for the current input x.

Derivatives of the LogNormLoss layer has simple analytical form:

OL(ylp,s) _ wi—y’
= 4
O €% +e @
OL(ylp,s) 1 % (i —y')?
= : 1 , 6))
0s; 2e% +€ e’ + €

Equations (3), (4) and (5) allows efficient implementation of the
layer for modern GPUs. We implement the LogNormLoss layer
in the Caffe framework (Jia et al., 2014).

3.3 Calibration Model

Our main goal is construction of calibration algorithm that pre-
dicts camera pose from people observations in the scene. It takes
the bounding boxes of detected human heads and focal length (in
pixels) as the input and predicts camera extrinsic parameters and
confidence of the prediction.

We make several assumptions of the observed data. All people
in the scene have the same height and stand on the ground plane.
Thus all heads lie on a plane in a world coordinates. Therefore,
if 3 found heads do not lie in a single line in the image, we can
analytically estimate camera extrinsic parameters. Nevertheless,
noise and quantization makes this solution inaccurate. Therefore,
we construct each input sample from 64 head locations and solve
the regression task using CNN.

The first problem we solve is how to present head detection to
CNN. Initially the input head locations in a sample do not have
any ordering. Hence, there are 64! permutations of the same head
locations in a sample. If we use data without any ordering the
constructed model should adapt to all of these permutations. To
solve this problem we sort heads by size and arrange them in a
grid. Consequently, the head locations forms a 3D array of size
3 X 8 x 8, where each head bounding box is presented by location
of its top left corner and size.

The introduced structure of the sample allows us to use convolu-
tional layers (see Fig. 1). We apply 3 convolutional layers with
ReLu non-linearity. Each convolution has size of 3 x 3. These
layers allow 1) extract information from distant objects (corre-
spond to convolution of columns) and 2) be robust to noise in
data (convolution adjacent objects in a column).

After the third convolution and ReLu non-linearity we concate-
nate the constructed features with the camera focal length. The
model applies five fully connected layers with non-linearity to
this features. The model uses LogNormLoss layer to evaluate
quality of the predicted camera location g and its error s.

It is important to notice, as we use the detected bounding boxes,
the proposed algorithm becomes sensitive to the applied detector,
i.e. it fits to the detector. Thus, we should update synthetic dataset
and repeat training of the CNN, if we want to use another detec-
tor. On the other hand, this solution allows us to skip modeling of
the detector noise. Moreover, if results of another detector is sim-
ilar to the ours, it is not necessary to train the model from scratch,
the proposed CNN gives a good initialization.

4. TRAINING AND EVALUATION

4.1 Training

We train the calibration model on the constructed synthetic dataset.
This dataset contains only groundtruth head detections without
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“cluttered” data
single observation

0.3237 £ 0.0176
0.4694 + 0.0649

—0.0345 + 0.0219
—0.0513 £ 0.0402

Tilt angle [ Roll angle Height
groundtruth 0.3497 —0.0251 —
“clear” data  |{0.3634 £ 0.0149| 0.0130 4 0.0182 | 8.3290 + 0.3453

7.0696 + 0.4294
11.0312 4+ 2.1441

table presents camera parameters and its predicted standard deviation.

video sequence Tilt angle Roll angle Height

PETS | groundtruth 0.105 —0.0172 1.8786
predicted |0.4458 £ 0.0612|—0.0012 % 0.0356|4.5958 + 0.8783

PETS 2 groun.dtruth —0.0362 —0.0959 4.6097
predicted |0.1607 £ 0.0715(—0.0374 £+ 0.0428| 9.377 £ 1.0811

PETS 3 groundtruth 0.2892 —0.0304 5.5016
predicted |0.3579 &£ 0.0241|—0.0246 + 0.0225|5.8238 £ 0.2988

PETS 4 groundtruth 0.4582 —0.1095 6.5672
predicted |0.4539 £ 0.0249| 0.059 £ 0.0236 |5.3678 £ 0.3262

Table 3. Predicted camera parameters for video sequence of PETS 2006 dataset. The table presents camera parameters and its
predicted standard deviation.

— Training
— validation ||

-14

o 20000 40000 0000 BOOQO 100000 120000 140000

Figure 2. Training and test error on the synthetic dataset.

outliers (false detections). We found that the model trained on
this “clear” detections does not generalize to real data.

Therefore, we add noise to the data. We model two types of noise:
1) duplicated observations of a single object in the same place
and 2) false positive detections. We choose at random a subset of
found heads to construct a single sample. It may contain less than
64 heads. At the next stage we randomly replace up to 10% of
chosen bounding boxes with random noise. Finally, we randomly
peek 64 heads from the set and construct training sample. Thus
the constructed sample may contain noise and duplicate observa-
tions. We peek 3 samples from each generated scene.

Our CNN has small number of parameters and the input is rela-
tively small. Thus each batch contains 32768 samples. We use
80% of scenes for training and 20% for validation. We set gamma
to 0.3 and step size to 2000. Training was performed in 150000
iterations.

4.2 Evaluation

We perform several tests to evaluate quality of the constructed
model. First of all we test our model on the synthetic validation
set. Training process (Fig. 2) shows that error rate on training

and validation sets are similar, i.e. the model does not overfits to
training data.

We test constructed model on the real data without noise. We
choose the TownCentre dataset (Benfold and Reid, 2011) as it
contains groundtruth head location for all presented people and
the known calibration parameters. Unfortunately, we cannot use
height of the camera as scale of the presented world coordinates
differs from ours.

We apply the fastHOG detector (Prisacariu and Reid, 2009) to
each frame. Detections that overlap with groundtruth is higher
than 0.5 for IoU metric are marked as true positives. The detector
precision is found to be 48% for this criterion. There are 19061
true positive heads in 4501 frames. To estimate quality on such
“clear” data we choose at random 40000 samples with 64 bound-
ing boxes. The first row of Fig. 3 shows histogram of the model
predictions.

To make the final solution we choose a distribution with the small-
est differential entropy. For Gaussian distributions it also has the
smallest determinant of the predicted covariance matrix 3. The
mean value of the chosen distribution is the predicted location of
the camera. We show the chosen distribution in the second row
of Fig. 3. Fig. 4 presents synthesized people on the real image
from the video sequence. We see that the presented and synthe-
sized people have similar sizes. Thus the proposed model pre-
dicts plausible camera location. In further experiments we use
the predicted camera height as the groundtruth.

In the next experiment we use all head detections on the Town-
Centre dataset. We repeat the proposed calibration technique
used for clear detections. Note, that in average a number of false
positives in the constructed samples are much higher than in train
samples (52% vs 10%). The constructed results are shown in the
third row of 3. It shows that the predicted camera location is
close to its true value even when there are a huge number of false
positive detections.

In addition we experiment with duplicate detections in a sample.
We choose a single true positive head found by the detector and
construct a sample that contains 64 copies of this head. Such an
extreme case of duplication corresponds to a scene with a single
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Figure 3. Camera calibration results on the TownCentre dataset. The first row presents histograms of the predicted camera locations
from the true positive detections (blue). The second row presents chosen distribution of camera parameters. The third row presents
predicted camera location from detections containing false positives (blue) and single true positive head (green). The true camera
location is shown in red. Columns correspond to tilt, roll, height parameters.

Figure 4. Visualization of people sampled with the predicted camera location.

person standing in the same place for a long time. Camera loca-
tion cannot be predicted from this sample as is it specifies only
distance to the single person in a scene. Fig. 3 shows that the
model predicts a very significant error for camera locations that
can produce such a detection. Thus a determinant of the predicted
covariance matrix is a good measure of the model confidence.

Our training data assumes that people can be found in each lo-
cation of the input images. Thus, each training sample contains
people uniformly distributed in the image plane. Hence, the long
input video sequence is preferable as it gives better statistics of
people sizes across image plane.

‘We evaluate the proposed method on four video sequences of the
more challenging PETS 2006 dataset (Thirde et al., 2006). It’s
important to notice, that the first and second video sequences

of this dataset violate our assumption of a single ground plane.
These video sequences contain people on several floors. Nev-
ertheless, we apply the proposed method to all video sequences
in the dataset and use all detector results as the features. Our
evaluation (Table 3) reveals that the proposed method correctly
estimate camera location on the third and fourth sequence and
cannot predict plausible camera pose on the first two sequences.
However the predicted deviation is significantly larger for such
failure cases, thus the model indicates low confidence in these
predictions.

5. CONCLUSIONS

In this paper we present a novel approach to camera pose esti-
mation. It utilizes 3 main concepts: the synthetic training set,
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intermediate scene representation and prediction of the result er-
ror. Our experiments show that in spite of training on synthetic
dataset, the constructed algorithms generalize to real data. The
proposed algorithm is shown to be robust to noise in the input
data and allows input of any length.

In our experiments we use people observation and the head detec-
tor (Prisacariu and Reid, 2009) to estimate camera pose. However
the proposed approach can be integrated with any kind of objects
in the scene, that we can model in synthetic dataset and localize
on both real and synthetic data.

The future works include several aspects: (1) integrate camera
calibration with detectors to prevent false positives of unlikely
sizes (2) speed up the applied detector by skipping image regions
where people of the plausible sizes cannot be found. (3) Integrate
camera calibration algorithm with detectors of other objects to
predict extrinsic and intrinsic parameters.

ACKNOWLEDGEMENTS

This work was supported by Microsoft: Moscow State University
Joint Research Center (RPD 1053945) and by Skolkovo Institute
of Science and technology, Contract 081-r, appendix A2.

REFERENCES

Benfold, B. and Reid, I., 2011. Stable multi-target tracking in
real-time surveillance video. In: CVPR, pp. 3457-3464.

Caprile, B. and Torre, V., 1990. Using vanishing points for cam-
era calibration. [International journal of computer vision 4(2),
pp. 127-139.

Chen, T., Del Bimbo, A., Pernici, F. and Serra, G., 2007. Accu-
rate self-calibration of two cameras by observations of a mov-
ing person on a ground plane. In: Advanced Video and Sig-
nal Based Surveillance, 2007. AVSS 2007. IEEE Conference on,
IEEE, pp. 129-134.

den Hollander, R. J., Bouma, H., Baan, J., Eendebak, P. T. and
van Rest, J. H., 2015. Automatic inference of geometric cam-
era parameters and intercamera topology in uncalibrated disjoint
surveillance cameras. In: SPIE Security+ Defence, International
Society for Optics and Photonics, pp. 96520D-96520D.

Dubska, M., Herout, A. and Sochor, J., 2014. Automatic camera
calibration for traffic understanding. In: BMVC.

Hoiem, D., Efros, A. A. and Hebert, M., 2008. Putting objects
in perspective. International Journal of Computer Vision 80(1),
pp. 3-15.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Gir-
shick, R., Guadarrama, S. and Darrell, T., 2014. Caffe: Convo-
lutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093.

Li, B., Peng, K., Ying, X. and Zha, H., 2010. Simultaneous van-
ishing point detection and camera calibration from single images.
In: [International Symposium on Visual Computing, Springer,
pp. 151-160.

Liu, J., Collins, R. T. and Liu, Y., 2011. Surveillance camera
autocalibration based on pedestrian height distributions. In: Pro-
ceedings of the British Machine Vision Conference, p. 144.

Micusik, B. and Pajdla, T., 2010. Simultaneous surveillance
camera calibration and foot-head homology estimation from hu-
man detections. In: Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, IEEE, pp. 1562-1569.

Pflugfelder, R. and Bischof, H., 2007. People tracking across
two distant self-calibrated cameras. In: Advanced Video and Sig-
nal Based Surveillance, 2007. AVSS 2007. IEEE Conference on,
IEEE, pp. 393-398.

Pishchulin, L., Wubhrer, S., Helten, T., Theobalt, C. and Schiele,
B., 2015. Building statistical shape spaces for 3d human model-
ing. arXiv preprint arXiv:1503.05860.

Prisacariu, V. and Reid, I., 2009. fasthog-a real-time gpu imple-
mentation of hog. Department of Engineering Science.

Puwein, J., Ziegler, R., Ballan, L. and Pollefeys, M., 2012. Ptz
camera network calibration from moving people in sports broad-
casts. In: Applications of Computer Vision (WACV), 2012 IEEE
Workshop on, IEEE, pp. 25-32.

Thirde, D., Li, L. and Ferryman, F., 2006. Overview of the
pets2006 challenge. In: Proc. 9th IEEE International Workshop
on Performance Evaluation of Tracking and Surveillance (PETS
2006), pp. 47-50.

Visscher, P. M., 2008. Sizing up human height variation. Nature
genetics 40(5), pp. 489-490.

Revised June 2015

This contribution has been peer-reviewed.
doi:10.5194/isprs-archives-XLII-2-W4-1-2017 6





