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ABSTRACT 

The ability to measure parameters of large-scale objects in a contactless fashion has a tremendous potential in a number of industrial 
applications. However, this problem is usually associated with an ambiguous task to compare two data sets specified in two 
different co-ordinate systems. This paper deals with the study of fitting a set of unorganized points to a polyhedral surface. The 
developed approach uses Principal Component Analysis (PCA) and Stretched grid method (SGM) to substitute a non-linear problem 
solution with several linear steps. The squared distance (SD) is a general criterion to control the process of convergence of a set of 
points to a target surface. The described numerical experiment concerns the remote measurement of a large-scale aerial in the form 
of a frame with a parabolic shape. The experiment shows that the fitting process of a point cloud to a target surface converges in 
several linear steps. The method is applicable to the geometry remote measurement of large-scale objects in a contactless fashion.

∗    Corresponding author 

1. INTRODUCTION

The geometry measurement of large-scale objects in any 
industry is a very acute problem. It reduces to the comparison 
of a 3D point set given by remote measurement to a continuous 
theoretical surface. We can classify it as a point-to-surface 
(PTS) problem. Usually one can treat such comparison as 
superposition that requires not less than three reference points. 
However, reference points can be either unknown or 
meaningless for some classes of product. In this case, the 
problem comes to a comparison of two geometric objects in 3D 
space according to a given criterion of optimality. That is, the 
unknown parameters of the 3D transformation such as 
translation and rotation are a subject to be found according to 
objects optimal matching. 
All the algorithms of two 3D sets comparison can be classified 
in the following way: 
1. ICP- algorithm (iterative closest point algorithm). The basis
of ICP-algorithm is the assumption that two objects have
common area where they coincide well enough. It means that in
the common area, for both of them, each point of one object has
a corresponding point of another object. Vaillant and Glaunes
(Vaillant at al., 2005.) described the basics of the ICP-
algorithm. Though some disadvantages of ICP-algorithm take
place:
- the computational complexity of the closest points finding is
O(mN1 N2) where m - number of iterations, N1- number of the
first object points, N2 - number of the second object points
(Friedman , at al. 1977);
- strong dependence on the given initial approximation;
- strong dependence on the density of point clouds;
- the method requires the existence of a large overlap region
where the points of one cloud correspond to the points of
another cloud.
Recently, many variants of the original ICP approach have been 
proposed, such as:  

- Brunnstrom and Stoddart (Brunnstrom, at al. 1996) describe
the genetic algorithm of finding the most successful initial
approximation which is input data to ICP-algorithm;
- the research of Dyshkant (Dyshkant, 2010) is also dedicated to
the ICP-algorithm modification based on the k-d trees, which
allows minimization of the computational complexity to O(mN1

logN2);
- in works of Liu, Li, and Wang (Y. Liu, at al. 2004) algorithms
to improve the accuracy and reliability of the ICP-algorithm by
imposing certain restrictions of the input data are proposed.
2. Methods based on curvature maps.
This class of methods requires knowledge of the curvature of 
the surface given by the point cloud. The algorithm was 
described by Gatzke at al. (Gatzke, at al., 2005). The 
disadvantage of this method is a strong dependence on the point 
cloud density because it affects the accuracy of the curvature 
calculation. 
3. Other methods.
The authors of (Bergevin, at al. 1995) describe the algorithm 
that does not require the approach of initial data. This algorithm 
can use a free-form surface; however, it has a very low speed. 
The authors of work (Sitnik, at al. 2002) improved the method 
of the steepest descent optimization. The disadvantage of the 
approach is the quadratic computational complexity. 
Delaunay triangulation algorithm in combination with Nelder-
Mead method are described in works (Dyshkant, 2010) and 
(Nelder, at al.1965). The algorithm assumes that the surfaces 
are single-valued. This algorithm as well as ICP-algorithm 
depends on the given initial approximation. 
The authors of (Gruen, at al. 2005) proposed the algorithm 
based on the least square method. The algorithm requirement is 
that the point clouds have a significant overlap area. 
In work (Popov, at al. 2013) the algorithm based on step by step 
geometric transformation of the point cloud is formulated. The 
disadvantage of this algorithm is the lack of mathematical 
rigorousness. 
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Nowadays there are two trends in the surface superpose 
problem solution. The first group of methods limits the initial 
data therefore they work fast. The second group is more general 
but has a large computational complexity. Hence, we need more 
algorithms for the comparison of the two data sets. 

2. INITIAL BACKGROUND 
The initial assumption is that there are two sets: P:Pi(xi,yi,zi) – 
the cloud of source points obtained by measuring and 

)( iz,iy,ixiP:P – the cloud of target points (see Fig. 1). We 
should fit point cloud P to a target point cloud P .  

Figure 1:  Two data sets 

However, we cannot make it directly because of the lack of 
definite and understandable base points. Besides, both data sets 
have different structure so there are no corresponding points to 
compare. Therefore, we triangulate a target cloud and turn it 
into a continuous 3D polyhedral surface Σ (see Fig.2) specified 
on the same bounded domain D⊂R2 as a target data set. It is 
required to find such Ωopt transformation amongst all possible 
Ω 3D transformations so that the source set Ωopt(P) could be in 
closest state to the surface Σ according to the given distance 
function ρ. That is 

( )( ) ( )( )∑∑
=

Ω
=
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i
i
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iopt PP

11
,min, ρρ   (1) 

where ρ(Σ,X) - the distance function from point X to surface Σ. 

Once the two sets are specified with respect to two different 
origins we need such transformation of one of them as ‘rigid 
body’ so that to ensure the satisfaction of the eqn (1). Such 3D 
transformation is defined by six parameters: the components of 
the translation vector Δxc,Δyc,Δzc (here C is the geometry 
center of relocatable set) and three rotation angles φx, φy, φz,. 

The numerical solution of this non-linear problem by the usual 
optimization approaches is very complicated for various 
reasons, namely: 
• In general, it is difficult to fit two sets even approximately. 

Hence, it is impossible to find the initial values of 
Δxc,Δyc,Δzc, φx, φy, φz. It forces us to take them with 
maximum values that makes the computing process slow 
down. 

• The surface cannot be simply single coherent that increases 
the number of constraints in the optimization problem. 

• Often the surface does not have analytical representation, so 
its derivatives are unknown or do not exist. That makes it 
impossible to use efficient numerical algorithms based on 
the function derivatives. 

• The computation time depends on value N (the number of 
points in P set). Therefore, the computing process becomes 
very slow when the dense of the point set grows 
significantly. 

 

Figure 2: The source data set and the 3D surface 

Taking it into account we propose a new approach that consists 
of two stages and the first of them is Principal Component 
Analysis (PCA). We apply PCA to the so-called ‘rough fit’ that 
actually is the approximate initial fit of two sets. The second 
stage is the precise fit based on Stretched grid method (SGM) 
that allows accurate fitting of two sets according to minimum 
SD criterion in 1-4 linear steps. We demonstrate this approach 
with the help of the parabolic aerial where Σ –analytic aerial 
surface, P – source point cloud obtained by measuring the 
aerial with the standard electronic tacheometer «Trimble-M3» 
(Survey of Trimble M3 Mechanical Total Station). Thus, the 
target data set was obtained on the basis of available 
documentation. 

3. ROUGH FIT 

It should be noted, that PCA is often used to map data on a new 
orthonormal basis in the direction of the largest variance 
(Draper, at al., 2002). The largest eigenvector of the covariance 
matrix always points to the direction of the largest variance of 
the data. 
In our case, the first data set is the point cloud and the second is 
the continuous surface, therefore, we should represent the 
surface by another point cloud as well. The further procedure 
follows the scheme described in work (Bellekens, at al. 2014). 
If the covariance matrix of two point clouds differs from the 
identity matrix, a rough fit can be obtained by simply aligning 
the eigenvectors of their covariance matrices. This alignment is 
obtained in the following way: at the first step the two point 
clouds are centered in such a way that the origins of their final 
bases coincide. The centering of the point cloud simply 
corresponds to subtracting the centroid coordinates from each of 
the point coordinates. The centroid of the point cloud 
corresponds to the average coordinate and is thus, obtained by 
dividing the sum of all point-coordinates by the number of 
points in the point cloud. Since the rough fit based on PCA 
simply aligns the directions in which the point clouds vary the 
most, the second step consists of calculating the covariance 
matrix of each point cloud. The covariance matrix is an 
orthogonal 3 × 3 matrix, the diagonal values of which represent 
the variances while the off-diagonal values represent the 
covariance. As the third step, the eigenvectors of both 
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covariance matrices are calculated. The largest eigenvector is a 
vector in the direction of the largest variance of the 3D point 
cloud, and therefore, represents the point cloud’s rotation. 
Further, let A be the covariance matrix, let v be an eigenvector 
of this matrix, and let λ be the corresponding eigenvalue. The 
problem of eigenvalues decomposition is then defined as 

Ax = λx,    (2) 
and further reduces to 

x(A − λI) = 0.   (3)  

It is clear that (3) only has a non-zero solution if A − λI is 
singular, and consequently if its determinant equals to zero 

det(A − λI) = 0.   (4)  
The eigenvalues can simply be obtained by solving (4), whereas 
the corresponding eigenvectors are obtained by substituting the 
eigenvalues into (2). Once the eigenvectors are known for each 
point cloud, the fit is achieved by aligning these vectors. Then, 
let us assume that matrix TΣ represents the transformation that 
would align the largest eigenvector of the target point cloud 
related to surface Σ with the X-axis. Now, let us suppose that 
matrix TP represents the transformation that would align the 
largest eigenvector of the source point cloud P with the X-axis 
as well. Finally, we can align the source point cloud with the 
target point cloud easily if we take into account coincidence of 
both principal component systems (Xpr, Ypr, Zpr) of source 
and target point clouds (see Fig.3). 

 
Figure 3:  Two data sets in common principal component 

system 

Here we face some disadvantage, as we cannot always 
determine the direction of collinear principal component axes 
uniquely with PCA (see Fig.3). Therefore, we correct their 
directions in this issue manually by rotating the source point 
cloud about axes Xpr, Ypr, Zpr consequently to meet the 
minimum of SD criterion. In our sample, we rotate the point 
cloud about Xpr (see Fig. 4.)  
The rough fit cannot obtain real minimum solution according to 
the SD criterion; therefore, the next stage is the precise fit. 

4. PRECISE FIT 

The precise fit stage is based on SGM. SGM described in work 
(Popov E.V., 1997) is a numerical technique for finding 
approximate solutions of various mathematical and engineering 
problems that can be related to an elastic grid behavior. In our 
case, we apply SGM to drag in the source point cloud as a ‘rigid 
body’ to the target surface by the set of elastic springs (Fig.5). 

 
Figure 4: The rough fit of two data sets in common principal 

system 

 

Figure 5. The precise fit scheme 

Each elastic spring for our cloud connects the nearest neighbor 
point on the target surface qi of each point pi in the source point 
cloud (see Fig. 5). We find the neighbor point on the target 
surface by normal projection of the source point onto the target 
surface. This approach is similar to ICP point-to-point 
technique described in (Ben Bellekens, at al. 2014) but is much 
easier and has another physical meaning. 
The aim of the precise fit is to find functions Δxc,Δyc,Δzc, φx, 
φy, φz that obtain the minimum to exp (1). If we apply classical 
motion equation, we should further resolve non-linear equation 
system consisted of transcendental functions. The advantage is 
that we can consider linear dependence of displacement of 
points on the cloud rotation as a rigid body (see Fig. 6). 

 
Figure 6: To rigid body rotation and transformation 

Taking into consideration the ‘rigid body’ rotation of point 
cloud due to precise fit, we can write the displacement of an 
arbitrary point pi (Fig.6) as follows 
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where Δxi,Δyi,Δzi – displacements of an arbitrary point i; 

 Δxj,Δyj,Δzj – displacements of point j; 

          Δxc,Δyc,Δzc - displacements of the point cloud centroid. 

We can calculate the components of the normalized matrix B 
for an arbitrary point of the cloud as a rotation matrix about the 
unit vector ),,( wvus  at the angle θ (see Fig. 6) by the following
expressions 
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Here 
jL

iLF= , where Li, Lj – vectors to points i and j

respectively from the point cloud centroid. 
Due to exp (5) we can calculate the displacement of each point 
in the point cloud if we know the displacement of single point 
number j only. 
The further step is to write the expression for the potential 
energy of entire connecting lines between the cloud points and 
the springs including (Fig. 4) that takes the following form 

∑
=

=Π
n

m
mRD

1

2 ,  (7) 

here n - total number of springs, 
Rm - the length of spring number m, 

D - an arbitrary constant (D = 1 in our case). 

Then, let us assume that co-ordinate vector {X} of all the points 
of the cloud is associated with a final cloud position, when the 
source cloud is fit to the target surface and the vector {X}' is 
associated with the initial point cloud position. Thus, vector 
{X} will look in the following way

},{}{}{ / XXX ∆+= (8) 

where {∆X} - vector of the co-ordinate increment of entire 
points. 

To determine vector {∆X} we should derive function (7) by 
incrementing vector {∆X} with form (8) taken into account, i.e. 

0=
∆
Π

ktX∂
∂ , (9) 

where  k – number of the current point, 
t - number of the current co-ordinate. 

After transformations using exps (5), (7), (8), (9) and keeping 
all lengths Lij constant (see Fig.6) we can obtain the following 
linear equation system 6×6 

K·Δx = Q, (10) 

where vector Δx has only 6 unknown components to be found, 
namely Δxj, Δyj, Δzj, Δxc, Δyc, Δzc;  

K – the matrix of solution with the following 
components 
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Q – the right hand vector with the following 
components 
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When all six unknown functions Δxj, Δyj, Δzj, Δxc, Δyc, Δzc 
are found we can calculate displacement of each source point 
due to precise fit using exp (5). 

5. “SURFACE FITTING” PROGRAM 

We developed the program named “Surface Fitting” based on 
the above described algorithm (Popov, 2016). To make the 
program extremely accessible and mobile we developed it as a 
web-based open source application using JavaScript language 
(Flanagan, 2011) in couple with THREE.JS library (Dirksen, 
2013). As it is known, JavaScript is an object-oriented language 
designed in 1995 to allow non-programmers to extend web sites 
with client-side executable code. The language is also becoming 
a general-purpose computing platform with office applications, 
browsers and development environments being developed in 
JavaScript. Unlike other traditional languages such as Java, 
C++ or C#, JavaScript strives to maximize programming 
flexibility and is ideal for programming accessible applications 
including portable measuring systems. THREE.JS is a high-
level, scene graph framework for 3D graphics built on top of 
WebGL. THREE.JS programs are written in JavaScript because 
there is no alternative for WebGL. The main idea when creating 
the program was to provide the user with a simple, accessible 
tool that depends neither on the hardware nor on the software 
platform. In Fig.7 one can see the user interface of the “Surface 
Fitting” program. 

 
Figure 7: User interface of “Surface Fitting” program. 

Using “Surface Fitting” program we can calculate the 
displacements of entire source points to fit it to the target 
surface and visualize the whole scene. Input data in the form of 
source and target point clouds are loaded into the program 
automatically. The process involves four consecutive steps 

• target cloud triangulation,  
• rough fit,  
• source cloud rotation about principal axes manually at π-

angle if necessary  
• and the final precise fit.  

In spite of linear nature of the precise fit, the process needs 
some iterations to converge because of some disparity of two 

sets after rough fit. Table 1 shows the matching error of SD 
against the number of iterations. 

Iterations Relative Error of SD,% Time, sec 

2 In spite of linear nature 
     

   
   
   

    
     

   
     

   
      
     

4.64 
8 1.5257 18.30 
17 0.0984 46.72 
20 0.0107 55.00 
29 0.0064 85.55 

Table 1: The process convergence 

The final fit of two sets can be seen in Fig.8. 

Figure 8: The final fit of two data sets. 

As we can see, the process meets minimum SD criterion very 
quickly. The final error (about 0.01%) means that the fit 
precision is about 1-2 mm for the aerial with about 15m of 
overall dimension. 

6. CONCLUSION 

This paper has introduced a new two-stage method based on 
rough fit with PCA and precise fit by SGM for direct point 
cloud and polyhedral surface fit in 3D. The algorithm has been 
designed for accurate distance minimizing between source and 
target data sets. It differs from techniques based on the ICP-
algorithm and it differs from any Least Square approaches due 
to clear physical meaning. It does not depend on the 
configuration of data sets and their connectivity. The method 
consists of several linear steps and converges very fast. By vary 
the residual criterion, we can achieve any level of the fitting 
relative error. 

The “Surface Fitting” allows calculation of both data sets at the 
initial and fitting position. It also provides the user with 
comprehensive and detailed tools of the whole scene 
visualization. 

The only temporary inconvenience in using this method for 3D 
data sets comparison is the ambiguity of transformations with a 
rough fitting when applying PCA. We are currently resolving 
this problem by simple manual correction consequentially 
rotating the source data set at π-angle about principal axes to 
obtain local SD minimum. In the future, we plan to make it 
automatic. Besides, we intend to improve PCA algorithm by 
making it less sensitive to the data set singularities. 

Finally, it should be noted that one could successfully apply 
algorithms and “Surface Fitting” program described in the 
paper in healthcare, where a soft-body model often needs to 
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be aligned accurately with a set of 3D measurements. Such 
applications are cancer-tissue detections, hole detection, 
dental occlusion modelling, artefact recognition, etc. 
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