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ABSTRACT:

In this paper we deal with the problem of optical sectioning. This is a post processing step while investigating of 3D translucent
medical objects based on rapid refocusing of the imaging system by the adaptive optics technique. Each image, captured in focal
plane, can be represented as the sum of in-focus true section and out-of-focus images of the neighboring sections of the depth that
are undesirable in the subsequent reconstruction of 3D object. The problem of optical sectioning under consideration is to elaborate a
robust approach capable of obtaining a stack of cross section images purified from such distortions. For a typical sectioning statement
arising in ophthalmology we propose a local iterative method in Fourier spectral plane. Compared to the non-local constant parameter
selection for the whole spectral domain, the method demonstrates both improved sectioning results and a good level of scalability when

implemented on multi-core CPUs.

1. INTRODUCTION

Recently, a promising tool for investigation of 3D translucent
medical objects was suggested which is based on the rapid refo-
cusing of the incoherent imaging system by adaptive optics tech-
nique (see (Larichev et al., 2002)). By properly varying of the
focal length it provides a stack of images each corresponding to
different depths of cross section. In principle, having a sufficient
amount of sections, one can try to reconstruct the original 3D
object by known methods. However, a special step called sec-
tioning is necessary for image processing of the stack obtained.
Actually, images, captured in each focal plane, represent both in-
focus image of true section and a sum of out-of-focus images of
the neighboring sections of the depth. Various aberrations of an
optical system, fixation fluctuations, distortions of light-sensitive
sensors, etc. should be taken into account as well. Thus, the prob-
lem is to elaborate a robust approach capable of obtaining a stack
of cross section images that are purified from such distortions.

In this paper, we elaborate a 3D model of the incoherent imag-
ing system which takes into account defocus between sections
depending on their depth and high order phase aberrations. The
problem consists in solving a 3D convolution equation. Direct
deconvolution is an ill-posed problem. Analysis of contempo-
rary 3D deconvolution methods (Wu et al., 2008) shows that it-
erative methods, compared with direct ones, are more accurate,
but usually are accompanied by an increase in the complexity of
computing and additional requirements for tuning of parameters.

The approach we propose utilizes the iterative algorithm in trans-
versal Fourier domain, allowing parallelization of computations
by modern multi core CPU/GPU software and hardware, in such a
way that an increase in the complexity is not a matter of principle.
In (Razgulin et al., 2015) the particular case of the approach was
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presented with a constant selection of parameters for all spectral
components. It was found that for different values of the parame-
ters the quality of recovery for high and low Fourier harmonics is
different and can not be equally good for both cases. In this paper
we utilize the effective local Fourier domain approach, based on
the localization of the regularization parameter selection method.
The results of computer simulations demonstrate the efficiency
of the approach. The performance obtained by parallelization al-
lows sectioning with transversal resolution up to 4K and accept-
able time which is promising in noninvasive restoration of the 3D
structure of human eye fundus in vivo for a consequent diagnosis
of diseases.

2. 3D MODEL OF IMAGING SYSTEM

We consider the following principal scheme of imaging system
for optical sectioning (see Figure 1). A thin translucent 3D object
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Figure 1. Principal scheme of imaging system for optical
sectioning

of width w is placed at a distance do in front of the thin lens with
pupil function P(u,v) being a characteristic function of a disc of
radius 7o centered at the origin. The image plane (z, y) is placed
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at a distance d; behind the lens. Here, for the sake of simplicity,
we suppose the parameters do, di to be fixed and the focal length
of the lens f(z) being a function of the variable z:

1 1 1

f(z):d0+wfz+d71' b

By altering z from 0 to w one can obtain, at the image plane,
a stack of translucent object cross-section images. Each cross-
section image represents the true cross-section superposed with
blurred neighboring sections. Further we discuss this fact in de-
tail.

To this end, we consider infinitely thin translucent object illu-
minated by incoherent uniform plane wave and characterized by
amplitude transmittance (optical density) Or(z',%', 2"). If we
place it at the plane 2’, 0 < 2’ < w, and focus imaging system
at the plane z with focal length f(z) according to (1), then, at the
image plane, we observe the following distribution
I(:L‘7 Y, 2, Z/) = K(Z7 Zl) X
X /h(:c -2 y—1v, 22Oy, 2 )dx' dy 2)
R2

1
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is the image of the object in geometrical optics approximation,
M(z) = dy - (do + w — z)~' — magnification. Point spread
function h(&,n, 2, 2’) takes into account incoherent illumination
and defocus caused by the misalignment of focal and object plane
locations in the case z # 2’ under the Fresnel scalar diffraction
theory approach (Easton Jr., 2010, Gaskill, 1978):

where K (z, 2")
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Strength of defocus is conducted by the function

E(Z7ZI)ZL— 1 _ 2 =z .
f&) f(z)  (do+w—2)(do+w—2)
When w < do, dy there is a spatially invariant approximation
y 2 -z
e(z,2') = m. 4)

In the case of thick N-layered translucent object composed of
Az = w/N width layers placed at 2, = nAz,n =0,1,..., N
with plane optical density Or(z', 3/, 2;,) the amplitude transmit-
tance of n-th layer is Or(z',y’, z;,) Az’. In the image plane, as
mentioned in (Gu, 2000, p. 64), the total impact of all layers
may be considered under linear superposition principle, which
is valid for translucent thick objects where secondary diffraction
is neglected. Thus the resulted distribution appears as a sum of

corresponding images of each layer:

N

I(x7y7z) = Zl(x,y7zvzn)AZ‘

n=1
When N — +oo we obtain integral form

w
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Note that, under approximation (4), this formula can be easily
represented in the form of 3D convolution integral, but this is not
essential for us. From the relation (5) one can easily see that,
due to the integration along z axis, the image of z-section of 3D
object contains true cross-section and defocused images of neigh-
boring sections of the depth. These distortions are undesirable in
the problems of 3D object reconstruction from captured cross-
sections arisen in ophthalmology applications, bio-microscopy,
etc. (Castleman, 2007, Wu et al., 2008). The problem is to elabo-
rate robust approach capable to "purify” stack of captured cross-
section images from such distortions. This procedure is further
called “optical sectioning”.

3. DISCRETE APPROXIMATION IN FOURIER
DOMAIN

Equation (5) is a 3D integral Fredholm equation of the 1st kind.
The problem of its solving is an ill-posed unstable problem. In
addition, from the optical point of view, this is also related to the
fact that corresponding optical transfer function (OTF), a Fourier
transform of PSF, is close to zero in some regions of the Fourier
frequency domain. A review of the advantages and disadvantages
of the available direct and iterative methods for solving similar in-
verse problems of three-dimensional biomicroscopy, which differ
from our statement in the form of a PSF function, is given, for ex-
ample, in (Castleman, 2007, ch. 22.2) and (Wu et al., 2008, ch.
14). An analysis of these methods shows that the iteration meth-
ods are more accurate in comparison with the direct ones, but
are accompanied by an increase in the computational complexity.
However, with the proper choice of the iterative algorithm, which
allows the parallelization of computations with modern software
and hardware, such an increase in computing resources is not es-
sential.

Typically, the sections of a three-dimensional image of an oph-
thalmic object are available for analysis and processing only in a
finite set of cross-section planes z € {z1, 22, ..., 2~ }, equally
located at a distance Az, where the number N is in orders of
magnitude smaller than the number of points in each horizon-
tal section. As we saw above, the same situation appears for a
thick N-layered translucent object composed of Az-width lay-
ers. Thus it is reasonable to turn from equation (5) to its discrete
analogue in depth variable z:

N
Z O *hmn y)a (6)

where * is a sign of 2D convolution, I, (z,y) = I(z,y, zm),
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On(z',y) =0y, 2), m,n=1,2,..., N,

hn (2", y") = K(2m, 2n) - M@, Y, 2m, 2n) - Az.

Following to (Razgulin et al., 2015), we propose the iteration ap-
proach allowing effective parallelization. To start with, we use
compactness of support property both for image I, (z,y) and
PSF function h(z’,y’, 2m, zn), which allows effective sampling
of these functions and transforming continuous convolution in-
tegral to discrete convolution. Using discrete Fourier transform
(DFT) and discrete convolution theorem we write equatlons (6)
in Fourier spectral domain (u v) using notations Im, Om, hmn
for discrete Fourier coefficients of corresponding functions I,
Om, hmn:

N
Zo U, )+ B (1, ). (7

At each point (u, v) equations (7) form a system of linear alge-
braic equations (SLAE)

HO=1I ®)

for the vector O (u,v) = (51(u, v), O» (u,v),..., 6N(u, v)) of
Fourier coefficients of the sought function O and N x N matrix
H(u,v) = {hmn(u,v)}.

Direct methods are unapplicable for solving (8) since H is a de-
generate or ill-conditioned matrix in most interesting cases. That
is why we use iterated Tikhonov regularization method (Bakushin-
sky and Goncharsky, 1989)

O™ = (E+ pH'H) 'O* + w(E + pH'H) 'H'I, (9)
where k = 0,1,..., K, O° = (0,0,...,0). As it is men-
tioned in (Razgulin et al., 2015), in case of distortion present in
observed data I, the parameter 1 > 0 and the number of itera-
tions K should be chosen according to the trade-off between a
rapid draft sectioning with the smallest number of iterations for a
rough visualization of layers at relatively large values p and thor-
ough restoration with fine identifying the texture due to additional
iterations applied for small p.

4. RESULTS OF SECTIONING

4.1 Phantom three-dimensional object

We have considered a phantom translucent three-dimensional ob-
ject consisting of several vessels located on different layers. The
following system parameters specific to the living three-dimen-
sional structure of the eye were used: the depth of the object along
z coordinate was 800 microns, the number of layers N = 20.
Also a small defocus was introduced to each layer as a kind of
stationary aberration. The specific form of three-dimensional ob-
ject and corresponding true cross-sections are shown in Figure
2.

Since Poisson noise is typical for light-sensitive sensors used in
imaging system at the image plane, sectioning was performed
for the case of 2% Poisson noise was added to captured images,
which corresponds to 100, 000 photons per unit of pixel intensity.
A typical view of noisy images for layers no. 3, 10, 19 is shown
in Figure 3.

> O

Figure 2. The image of the 3D object under consideration and of
true layers no. 3, 10.

OO

Figure 3. Images of noisy layers no. 3, 10, 19.

4.2 Restoration results for a constant p

We utilize vector frequency criterion (VFC) to quantify the qual-
ity of image restoration in each cross-section focusing plane. VFC
is defined by the function

A(T) - mtr Z

r2<u? o2 < (r+1)2

F(E(D(O)
F(E(D(0)))

where O — recovered image, shifted to nonnegative area, O —
original object, D(X) = X/D(X), E(X) = X/E(X), D(-) -
dispersion, E(-) — average, F' — Fourier transform, m(r) — num-
ber of points (u, v), satisfying the inequality 7* < u? + v? <
(r + 1)%. VFC allows one to control the restoration features in
the spectral domain.

Figure 4 presents specific restoration results and graphs of the
corresponding values of VFC for the section with the number of
3 for different values of the parameter . for a fixed number of
iterations K = 40 of the method (9).

As demonstrated in Figure 4, the value ¢ = 0.1(a) is too large
for noisy images due to the high-frequency noise added to the
restored image. Decrease of the parameter down to the value
0.01 improves the quality of restoration insignificantly. The VFC
graph still shows degradation of the restored image in the high-
frequency area. Further reduction of the parameter p to the value
0.001 makes it possible to significantly reduce the noise level, but
leads to the sectioning of the layers being insufficient. This can
also be seen on the VFC graph, where a dip in the low frequency
area is noticeable, although the high-frequency graph demon-
strates a sufficient quality of restoration.

4.3 Restoration results for the parameter ;. depending on
the harmonic number

A significant improvement in the quality of the restored image
can be achieved through choosing the parameter ;. depending on
the number of the harmonic to be restored. Since in the case of
observable images without noise the sufficiently large values of
the parameter p are optimal, an analysis of the restored images
was carried out for cases in which the low-frequency restoration
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Figure 4. Sectioning of the layer 3 of the image for the number
of iterations K = 40 and the parameter p = 0.1 (a), u = 0.01
(b) and p = 0.001 (c).
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Figure 5. Sectioning the image layer no. 3 for the number of
iterations K = 40 and the values of the parameter ;:, depending
on the harmonic number.

was fulfilled with a larger value of the parameter y, but with the
same number of iterations.

Figure 5(a) shows the results of the reconstruction for the case of
K = 40 iterations, when p was equal to 0.1 for harmonics

(u,v) : \Vu2 +v2 < R/3, R=max(u’+2%),

(u,v)

and equal to 0.001 for the remaining harmonics. Despite good

sectioning, the restored image is noised by the low-frequency
noise, which is confirmed by a jump in the corresponding fre-
quency region of the VFC graph. By reducing the calculation
area for low frequencies to (u,v) : Vu? + v? < R/6, a signif-
icant improvement in the quality of the reconstructed image can
be achieved. As we see from Figure 5(b), the reconstructed im-
age is well sectioned from adjacent layers, and the VFC graph is
close to unity throughout the region, including the high-frequency
region.

Figure 6 compares the image restoration quality for cases the pa-
rameter p (a), (b) constant to all harmonics numbers and case (c)
described above on Figure 5(b). The recovery result for u, de-
pending on the harmonic number, is characterized by VFC graph
closed to unity, in contrast to the VFC graphs for constant y,
which have jumps and irregular changes in the mid and high fre-
quencies. Moreover, for the case under consideration, it was pos-
sible to achieve a good sectioning of the renewable layers from
adjacent layers in combination with a sufficiently low level of in-
put noise.

3.0
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64 128 192 256
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64 128 192 256
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(c) 128 192 256

Figure 6. Comparison of restoration quality on various choices

of the parameter u: constant for all harmonics (¢ = 0.1(a) and
= 0.001(b)) and depending on the harmonics (c).

The above results show that, by fine-tuning of the parameter p
depending on the choice of the frequency domain, it is possible
to achieve a significant improvement in the quality of the recon-
struction of noisy images. If, in addition, a-priori information
about the aberrations of spectral components of captured images
is available then suboptimal filtration method (Sizikov, 1999) is
applicable.

5. SOFTWARE IMPLEMENTATION

The developed iterative method of three-dimensional sectioning
was implemented in C++ using the FFTW DFT library, the offi-
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cial release of BLAS (Basic Linear Algebra Subprograms) from
Netlib for Windows within the LAPACK library.

OpenMP standard in C++ was used to parallel the implementa-
tion of the iterative method for several points on selected number
of processor cores. Maximum size of the RAM used by each par-
allel process of the iteration method for some point (u,v) was
128 x (2N? + 3N) bytes, which allowed to increase the maxi-
mum possible size of the processed data.

To measure the performance of the implemented algorithm, cal-
culations for tasks with dimensions of 256 x 256, 512 x 512,
1024 x 1024 and 2048 x 2048 for 20 recoverable layers were per-
formed on a personal computer with an Intel Core i7-4790K pro-
cessor having 4 processor cores supporting Intel Hyper-Threading
Technology, 16 GB of RAM under control of 64-bit operating
system Windows 8.1.

With typical image sizes, as can be seen in Figure 7, the running
time of the program changes little with the number of iterations
and is acceptable for clinical practice when restoring medical im-
age stacks.
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Figure 7. Execution time for K = 10, 40 and 100 iterations.

As we can see from the execution time graph shown in Figure 8
the program demonstrates good scalability for different sizes of
input images on the 4-core CPU.
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Figure 8. Performance acceleration graph for different image
sizes depending on the number of threads.

Note that one of the important features of the implemented algo-
rithm is its ability of effective parallelizing using the multi-core
architecture of modern CPUs. Furthermore, it allows to transfer
a part of computations to the GPU, that, taking into account the
specifics of modern multi-core GPUs, will potentially lead to a
significant reduction of runtime for both DFT and SLAE.

6. CONCLUSION

A local iterative method in Fourier spectral plane is considered
for a typical statement of three-dimensional sectioning problem
arising in ophthalmology. Compared to non-local parameter se-
lection, the method demonstrates both improved sectioning re-
sults and a good level of scalability when implemented on multi-
core CPUs. Additional quality improvements of sectioning can
be achieved while utilizing grid warping techniques that provides
both denoising and sharpening of images (Krylov et al., 2016).
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