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ABSTRACT:

The aim of the paper is to obtain high quality of image upscaling for noisy images that are typical in medical image processing. A
new training scenario for convolutional neural network based image upscaling method is proposed. Its main idea is a novel dataset
preparation method for deep learning. The dataset contains pairs of noisy low-resolution images and corresponding noiseless high-
resolution images. To achieve better results at edges and textured areas, Zero Component Analysis is applied to these images.
The upscaling results are compared with other state-of-the-art methods like DCCI, SI-3 and SRCNN on noisy medical ophthalmological
images. Objective evaluation of the results confirms high quality of the proposed method. Visual analysis shows that fine details and
structures like blood vessels are preserved, noise level is reduced and no artifacts or non-existing details are added. These properties
are essential in retinal diagnosis establishment, so the proposed algorithm is recommended to be used in real medical applications.

1. INTRODUCTION

Image upscaling is an important problem for wide range of prac-
tical applications where input images are usually noisy such as
medical image processing tools, surveillance and satellite sys-
tems and many others. In these cases, the development of image
resampling methods becomes a challenging task.

Single image upscaling is an underdetermined problem since
multiple solutions exist for the input low-resolution image. Thus,
different constrains are essential for reducing the diversity of out-
puts. Due to importance of preserving edges and other high-
frequency details for the solution, we wish to save sharpness of
non-smooth regions on the output image. Also the image interpo-
lation method should be able to cope with noisy images. Upscal-
ing results should be consistent to noiseless images and images
with different levels of noise.

Since precise edge reconstruction is important for human visual
perception, the image upscaling algorithms should preserve non-
smooth regions in the image and should not add artifacts like ring-
ing effect or blur.

Classical general purpose linear upscaling methods such as bi-
linear, bicubic, and Lanczos interpolation are fast and work well
with noisy images, but they do not perform edge-directed inter-
polation and produce blurry results.

Edge-directional image upscaling algorithms use the information
about image edges to produce an adaptive image interpolation
kernel at each pixel. Algorithms EGII (Zhang and Wu, 2006),
ICBI (Giachetti and Asuni, 2011) and DCCI (Zhou et al., 2012)
use a combination of two directional kernels for pixel interpo-
lation depending on the directions of edges in this pixel. They
work well for straight and diagonal edges, but fail at image cor-
ners, textured regions with multiple directions and noisy areas.

Modern image upscaling methods are mostly learning-based al-
gorithms that learn a mapping transform between high-resolution
and corresponding low-resolution images (patches). Algo-
rithm (Li and Orchard, 2001) obtains this transform individu-
ally at each pixel from a self-similarity property of natural im-
ages at different scales. The method family SI (Choi and Kim,
2015) puts the patch into one of 625 classes and uses individ-
ual interpolation kernel for each class. Convolutional neural net-
work (CNN) methods that directly learn end-to-end transforma-
tion between low- and high-resolution images also use the map-
ping functions. In methods such as SRCNN (Dong et al., 2014)
all data of convolutional layers is fully obtained through learn-
ing with little pre/post processing. The quality of resulting high-
resolution images mostly depends on sufficiency of the training
dataset, matching the input image class with image classes from
the training data, and effectiveness of CNN coefficient optimiza-
tion.

Despite the fact that recent CNN models have reported outstand-
ing results, they greatly depend on the training data. If the train-
ing data is not sufficient, the results may become unstable: small
changes in the input image may result in significant changes in
output images. For example, if the image resampling algorithm
has been trained using high-quality image set, it will try to re-
cover the details from noise in case of noisy input image. This
effect is strongly unwanted for medical image processing where
generation of non-existing structures may produce incorrect di-
agnosis. It also results in noise amplification that is highly no-
ticeable in video resampling.

The proposed algorithm is based on SRCNN model, but it differs
in learning dataset preparation. Firstly, we use the training set that
consists of natural images with different levels of Gaussian noise
for learning process, as in (Nasonov et al., 2016). This leads to
accuracy image resampling for both noiseless test examples and
noisy natural images including medical images. Secondly, we ap-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W4, 2017 
2nd International ISPRS Workshop on PSBB, 15–17 May 2017, Moscow, Russia

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W4-27-2017 27



ply zero component analysis (ZCA) transformation (Krizhevsky,
2009) to training image set. It enhances important details such
as edges and textures and also helps to remove unwanted high-
frequency noise.

2. PROPOSED METHOD

2.1 Network model

In our method we use the same model for CNN as described in
SRCNN algorithm (Dong et al., 2014). Firstly, the input image
is upscaled via bicubic interpolation with the certain scale fac-
tor. Then that we apply three convolutional filters with non-linear
function, which produce the mapping to high-resolution image.
The first layer of this function is a convolution of the input image
with a filterW1 of size 9×9×64 plus biasB1 and an application
of rectified linear unit (ReLU) after the convolution. Here input
is a grayscale image andB1 is a vector of size 64. In other words,
on the first layer we apply 64 convolutions with 9×9 sized filters.

Let Y be the low frequency image which is magnified by the
bicubic method. Then the first layer is calculated as

F1(Y ) = MAX(0,W1 ∗ Y +B1). (1)

The first layer extracts low-level structures such as edges of dif-
ferent orientations from the low resolution image.

On the second layer we apply ReLU to the convolution of F1(Y )
with a filter W2 of size 64× 5× 5× 32 plus bias B2, here B2 is
32-dimensional:

F2(Y ) = MAX(0,W2 ∗ F1(Y ) +B2). (2)

It maps the features extracted at the previous step from the low
resolution sub-space with corresponding features from the high
resolution sub-space.

The third layer is used for image reconstruction. It acts like a
weighed averaging of the high-resolution feature patches to sin-
gle pixel. It is a convolution with 32 × 5 × 5 dimensional filter
W3 plus bias B3:

F3(Y ) = W3 ∗ F2(Y ) +B3. (3)

All these operations form a convolutional neural network, which
we name F (Y,Θ), where Θ is the network filter and bias coeffi-
cients.

2.2 Training method

We have to find the network parameters Θ producing the ap-
propriate result for images with and without noise. This is
achieved through minimizing the loss between reconstructed im-
ages F (Y,Θ) and ground truth high resolution images. A train-
ing image set containing high-resolution images {Xi} and their
matching low-resolution images {Yi} is used.

We use Mean Squared Error (MSE) as the loss function:

L(Θ) =

N∑
i=1

‖F (Yi,Θ)−Xi‖2 (4)

This leads to higher PSNR values as an objective metric. PSNR
is a widely-used metric for quantitatively evaluating image in-
terpolation quality. Though it has weak correlation with human
perception, the minimization of the MSE-based loss function pro-
duces satisfactory upscaling results, even if they are assessed us-
ing other objective metrics, e.g., SSIM, MSSIM.

The loss is minimized using stochastic gradient descent with the
standard backpropagation.

Experiments have shown that using only high-quality images in
training dataset leads to noise amplification in noisy testing im-
ages. Thus, we modify the training set in order to obtain satisfac-
tory results for noisy low-resolution images. Let name {Xi} the
images with a lot of high-frequency information from the target
image class, which are taken as the ground truth images. In order
to make the algorithm effective and stable to noisy input images,
we use the following method to generate low-resolution images
for scale factor s:

1. Add Gaussian noise with standard deviation σn.

2. Apply Gaussian filter with radius σs = σ0

√
s2 − 1 for alias-

ing suppression, σ0 = 0.3.

3. Perform image decimation by taking each s-th pixel.

This process can be formulated as:

[Yi]x,y = [(Xi + nσn) ∗Gσs ]sx,sy. (5)

2.3 Zero Component Analysis

As preserving edges and textures is highly desirable in image up-
scaling task for medical imaging, we want to build a mapping
function that minimizes visually salient errors along edges, es-
pecially in case of noisy input. Thus, we use Zero Component
Analysis (ZCA) transformation (Krizhevsky, 2009) to enhance
high-frequency components, such as edges on the image by nor-
malizing the variance of data.

To find a covariance matrix we need to extract patches from the
images of the training set and make these patches have zero mean.
Assuming normalized image patches xi are stored as column vec-
tors, the covariance matrix is computed as follows:

Σ =
1

m
(XXT ) =

1

m

m∑
i=1

(xi)(xi)T (6)

Here X is n-by-m matrix, where i-th column is vectorized i-th
image patch, m is number of image patches cut from the image,
n is the number of pixels in one patch. Then, we can compute
the eigenvectors u1, u2, . . . , un and corresponding eigenvalues
λ1, λ2, . . . , λn of the covariance matrix Σ. Here the first eigen-
vector u1 is the principal direction of variation of the data, u2

is the secondary direction of variation, etc. These vectors form
a new basis in which we can represent the data. Using these
eigenvectors as columns, matrix U can be constructed. By mul-
tiplying U by vectorized data patch x we will rotate the origi-
nal data: xrot = Ux. To make each of the input features have
unit variance, we rescale each feature of the rotated data vector:
xPCAwhite,i =

xrot,i√
λi

, i = 1, . . . , n.

It is important to note that during the evaluation of xPCAwhite,i,
some of the eigenvalues λi may be close to 0. As a consequence,
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the division by
√
λi may lead to unstable results. Thus, a regu-

larisation term ε is added to the eigenvalues before the division.
In our experiments ε is set to 0.1.

Finally, ZCA whitening transformation for vectorized patch x is
defined as:

xZCAwhite = WZCAwhitex =

U


1√
λ1+ε

0 · · · 0

0 1√
λ2+ε

. . .
...

...
. . .

. . . 0
0 · · · 0 1√

λn+ε

UTx (7)

2.4 Preprocessing with ZCA

ZCA whitening transformation is applied to whole images from
the training database in the following way. At first, k × k–sized
patches are extracted from the images. After that we calculate
mean value, store it and extract it from the patch to make it zero-
mean, then ZCA transformation is applied, the old mean value is
restored, and central pixel of the patch is copied to its position on
the new image.

The edges and other high-frequency details on the resulted im-
ages are enhanced after whitening. For ZCA matrix evaluation
we use data set consisting of high resolution natural images with
a lot of high-frequency infromation. Applying ZCA whitening
transformation for the training image database improves the accu-
racy of the interpolation at edges and textured areas, while adding
noise to low-resolution training set suppresses unwanted high-
frequency noise in the result.

3. EXPERIMENTS

The performance of the proposed algorithm has been analyzed
for the upscaling factor of 2. For objective evaluation, we com-
pare our algorithm with other state-of-the-art methods: original
SRCNN (Dong et al., 2014), modified CNN resampling method
with noisy training set (Nasonov et al., 2016), DCCI (Zhou et al.,
2012), SI-3 (Choi and Kim, 2015) and bicubic interpolation.

3.1 Training data

Original SRCNN algorithm with 9-1-5 configuration of the net-
work was trained by its authors on 91 high-resolution images.
We have used a collection of 124 photographic images of nature,
buildings and humans (WebShots Premium Collections, October
2007) with average resolution 1600 × 1200 as a high-resolution
training image set for modified CNN resampling method with
noisy training set, as described by its authors. The same image
set has been used for training SI-3 algorithm.

For the proposed algorithm, ZCA matrix also has been calculated
using the same image set. For its calculations we use only noise-
less high-resolution reference images, because they represent the
desired output. After that, the computed ZCA transformation is
applied to high-resolution reference images in the way described
in the Section 2.3. Further, following (Nasonov et al., 2016),
adding noise and downscaling procedure have been applied to
these images using the method to generate low-resolution images
using (5). σn in this equation is set to 6. These pairs of high- and

low-resolution ZCA’d images constitute a new training set for the
proposed algorithm. From the training set pairs of patches of the
size 32×32 from the low-resolution image and its corresponding
central 20 × 20 (due to the border effects during convolutions)
from the high-resolution image are extracted with the stride of
21. For the training procedure we used Caffe package (Jia et al.,
2014).

3.2 Learned Filters

Figures 1, 2 shows examples of first layers filters trained on
the WebShots Premium Collections database using the proposed
and (Nasonov et al., 2016) method.

Figure 1. Examples of filters obtained with the proposed
learning method

Figure 2. Examples of filters obtained with learning method on
noisy training set (Nasonov et al., 2016)

It is clearly seen that both methods have been trained using noisy
image set, due to a presence of various noise detection filters.
Also filters of texture and edge detectors are presented, but at
the same time these filters are adapted for these noisy features.
However, even the directional features for the proposed method
turned out to be more complicated due to the application of ZCA
whitening transformation. It helps the proposed method detect
more tricky features on the image and process them in a correct
way.

3.3 Testing

We have checked our algorithm on DRIVE database (Staal et al.,
2004), consisting of 20 retinal images. These images are down-
sampled with factor of 2 following (5), then upsampled using
image resampling algorithms being tested. The results are com-
pared with reference images using objective metrics PSNR and
SSIM (Wang et al., 2004).

The results of different upscaling methods applied to test retinal
images are shown on the Figures 3, 4, 5, 6, 7. It can be seen that
the results of bicubic and DCCI (directional bicubic) algorithms
are over-smoothed, which is undesirable in ophthalmological im-
age resampling. At the same time, results obtained with original
SRCNN algorithm produce instable noisy result, which is highly
unwanted in ophthalmological image processing.

On the contrary, the proposed method produces good results
from two points of view: it preserves even small vessels in reti-
nal images removing noisy components at the same time. The
cause of this effect lies in simultaneously applying ZCA whiten-
ing transformation and usage of training dataset containing noisy
low-resolution image patches with corresponding noiseless high-
resolution patches during learning the kernels of the neural net-
work.
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High-resolution reference image

Bicubic result DCCI result

SI-3 result SRCNN result

SRCNN trained on noisy set result Proposed method

Reference image

Figure 3. The result of retinal image upscaling.

4. CONCLUSION

A novel model for CNN-based upscaling algorithm has been
proposed. It learns the mapping transform using noisy low-
resolution and reference high-resolution images with preprocess-
ing via Zero Component Analysis. It has been tested on images
from retinal image database and has shown both high subjective
and objective quality. Absence of artifacts and feature preserving
make the proposed algorithm a good choice to be used in retinal
image processing.

High-resolution reference image

Bicubic result DCCI result

SI-3 result SRCNN result

SRCNN trained on noisy set result Proposed method

Reference image

Figure 4. The result of retinal image upscaling.
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