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ABSTRACT: 

The ability of a denoising procedure to preserve fine image structures when suppressing unwanted noise has crucial importance for an 
accurate and effective medical diagnosis. We introduce here a new procedure of edge-preserving denoising for medical images, that 
combines the flexibility in prior assumptions, and computational effectiveness of parametric multi-quadratic dynamic programming with 
the increased accuracy of a tree-like representation of a discrete lattice based on the full set of possible adjacency graphs of image elements. 
Proposed procedure can effectively remove an additive white Gaussian noise with high quality. We provide experimental results in image 
denoising as well as comparison with related methods. 

1. INTRODUCTION

Medical images such as X-ray, computed tomography (CT), 
magnetic resonance imaging (MRI) or other tomographic 
modalities, like SPECT, PET, or ultrasound, is an essential source 
of non-invasive information both for diagnosis and treatment 
planning. However, the image acquisition and transmission process 
inevitably causes noise in the image due to Imaging plate 
nonuniformity, noise in the electronics chains, source power 
fluctuations, quantization noise in the analog-to-digital conversion 
process, and so on. But in the field of medical imaging, a precise 
representation of the fine local image structure is extremely 
important since the detection of small objects or a tissue type is 
often an objective. Thereby, the edge preserving properties of the 
denoising procedures become especially significant. 

Despite of many present powerful methods, described in the 
literature, like nonlinear total variation (Rudin et al., 1992; Wang 
Y., et al., 2011), fourth order PDEs (You Y., Kaveh M., 2000), and 
nonlinear anisotropic diffusion (Perona, P. and Malik, J., 1990, 
Gerig G., et al., 1992; Yuanquan Wang, et al., 2013), none of them 
can simultaneously achieves both sufficient accuracy to provide a 
highly reliable data, and computational speed to process super-
resolution or dynamic images at practice-relevant time. 

In this paper, we proposed a parametric procedure for edge 
preserving image denoising using Bayesian framework as one of 
the most popular approaches to image processing. In this approach, 
the image analysis problem can be described as the problem of 
estimation of a hidden Markov component of a two-component 
random field, where the analyzed image plays the role of the 
observed component. An equivalent representation of Markov 
random fields in the form of Gibbs random fields, according to the 
Hammersley-Clifford theorem, can be used to define a priori 

probability properties of a hidden Markov field by means of so 
called Gibbs potentials for cliques.  

In the case of a so called singular loss function, the Bayesian 
estimation of the hidden component can be found as a maximum a 
posteriori probability (MAP) estimation, which leads us to the  
problem of minimization of the objective function, often called the 
Gibbs energy function (Besag J.E., 1974). 

A new non-convex type of pairwise Gibbs potentials was proposed 
in the papers (Pham C.T. and Kopylov A.V., 2015, 2016), with the 
ability to flexibly define a priori preferences, using separate 
penalties for various ranges of differences between values of an 
image adjacent elements. A special version of the parametric 
dynamic programming procedure was elaborated for optimization 
of the objective function, based on the tree-like approximation of 
the lattice neighborhood graph. Experiments show that the 
proposed procedure can effectively manage heterogeneities and 
discontinuities in the source data.  

The tree-like approximation method (Mottl V., et al., 1998) 
decomposes the original lattice-like adjacency graph into several 
tree-like ones. Each of these graphs covers all elements of the pixel 
grid. The final decision for each variable is based on the separate 
partial objective function with the tree-like adjacency of variables 
instead of the overall objective function. Thus, some relations 
between goal variables are eliminated and are not taken into 
account, which leads to decreasing in accuracy.  

In the paper (Dvoenko S.D., 2012) another way for the tree-like 
approximation of a lattice based on the full set of acyclic adjacency 
graphs was proposed. Let a hypothetical covering set of all 
spanning acyclic graphs (the full set) be given. For the finite set of 
image elements, the number of such graphs is also finite. Let us 
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assume that all elements of the data array be roots for several 
unknown for us acyclic adjacency graphs from the full set. 
Expanding step-by-step vicinities of descendants for each element 
simultaneously, we can obtain its maximal vicinity including the 
element itself, and thus obtain the final decision for that element as 
a combination of decisions based on acyclic adjacency graphs from 
the full set. The paper describes the general probabilistic framework 
for dependent objects recognition. 

In this work, we propose a new edge-preserving procedure for 
medical images, that combines the flexibility in prior assumptions, 
and computational effectiveness of parametric dynamic 
programming shown in (Pham C.T. and Kopylov A.V., 2015, 2016) 
with the increased accuracy of the tree-like representation of a 
lattice on the basis of the full set of adjacency graphs, described in 
(Dvoenko S.D., 2012). It should be noticed, in this case the only 
forward move of the dynamic programming procedure in needed to 
find the final solution. According to it, we sufficiently simplify the 
recalculation of the intermediate Bellman functions. 

In experimental studies, we compare the performance of image 
denoising algorithms by using well-known criteria (Bovik A. C., 
Wang Z., 2006) like the Mean Structure SIMilarity Index (MSSIM) 
and the Peak to Signal Noise Ratio (PSNR) for Gaussian denoising. 
We provide experimental results in medical image denoising as 
well, as comparison with other related methods. 

2. THE PRIOR MODEL FOR EDGE-PRESERVING
DENOISING 

Within the Bayesian framework to image processing, denoising 
problem can be formulated as the problem of estimation of a hidden 
Markov component ( , )x T tX t  on the basis of observation 

( , )y T tY t , where 1 2{ ( , )}T t t t ,  1 11t N  , 2 21t N 

is a discrete image lattice. Hidden component X represents the 
“true” image that we would like to recover, and Y  is observed 
intensity function of a noisy image.  

An equivalent representation of Markov random fields in the form 
of Gibbs random fields, according to the Hammersley-Clifford 
theorem, can be used to define a priori probability properties of a 
hidden Markov field by means of so called Gibbs potentials for 
cliques of adjacency graph G T T  of image elements (Figure 
3). The clique number of a lattice-like graph is equal to two. 
Therefore, the pairwise Gibbs potentials, or so-called edge 
functions are the primary means to specify the statistical relations 
between image elements and, in turn, to define an edge-preserving 
properties of estimation procedures. Edge functions ( , )x x    t ,t t t  is 

defined over X X  for each pair ( , )  t t G  of neighboring pixels 
and takes the greater value the greater is the discrepancy between 
the respective hidden values.  

Different pairwise potentials such as Huber (Stevenson R., 
Stevenson D.E.,1990), semi-Huber function Fleury G., De la Rosa 
J. I., 2004), generalized gaussian function (Bouman, C., Sauer K.,
1993), Besag function (Besag J., 1986), Green function (Green P.
J. 1990) and others, can be found in the literature (Nikolova M., et
al., 2010). Nonconvex functions offer the best possible quality of
image reconstruction with neat and exact edges. One of the main
problems in these approaches is high computational complexity of
corresponding estimation procedures which can hardly be applied
to high-resolution images.

A new non-convex type of pairwise Gibbs potentials (Figure 1): 

(1) ( )
1 1 1( , ) min ( , ), , ( , )Lx x x x x x    

   t t t t t t tt t , (1) 

where ( ) ( ) 2 ( )
1 1( , ) ( )i i ix x x x d    t t t tt – are quadratic

functions with parameters ( )i  и ( )id , 1, ,i L  , was proposed in 
the papers (Pham C.T. and Kopylov A.V., 2015, 2016).  

This type of edge functions has the ability to flexibly define a priori 
preferences, using separate penalties for various ranges of 
differences between values of an image adjacent elements, and 
leads to computationally effective procedure of maximum a 
posteriori probability (MAP) estimation of a hidden component of 
two component random field. 

Figure 1. Examples of non-convex pairwise Gibbs potentials for а) 
2L  ; б) 3L  ; в) 4L   

MAP estimation, can be formulated as a problem of minimization 
of the objective function of a special kind, called Gibbs energy 
function (Besag J.E., 1974). 

( )

( | ) ( | ) ( , ).
T G

J x x x     

  

  t t t ,t t t

t ,tt

X Y Y  (2) 

where node function ( | )x t t Y , x t X  represents unary Gibbs 
potentials and takes the greater value the more evident is the 
contradiction between the hypothesis that x t X  is just the correct 
local value we are seeking and the current observable value y t Y

. 

3. THE BASIC OPTIMIZATION PROCEDURE FOR A
SEPARABLE FUNCTION SUPPORTED BY A TREE

If G  is a tree on the set of nodes T  (Figure 2.), there exists the 
highly effective global optimization procedure, based on a recurrent 
decomposition of the initial problem of minimizing multivariate 
function into a succession of partial problems, each of which 
consists in minimizing a function of only one variable. Such a 
procedure is nothing else than one of versions of the famous 
dynamic programming procedure.  

Let the tree G Gt  formed by a node t  and its descendants be 
called descendant tree of this node. The set of all nodes in the 
descendant tree of a node t  will be denoted by Tt , symbol ( )T t  
will mean the same set without this node itself. Analogously, 
symbols ( , )x T t s tX s   and ( ) ( )( , )x T t s tX s  will mean 
partial vectors of variables at the respective sets of nodes.  

The principal idea of the optimization procedure for separable goal 
functions supported by trees is based, like the classical dynamic 
programming procedure for chains, on the notion of Bellman 
function. The fundamental property of the Bellman function (Mottl 
V., et al., 1998): 
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0
( )

,( ) ( ) min ( , ) ( ){ }
x

T

J x x x x J x 




  t t

t

t t t s t s s s
Xs

s

    (3) 

is called the upward recurrent relation. The inverted form of this 
relation 

  0
, ( )( ) arg min ( , ) ( ) , ,

x
x x x x J x T


  t

s

s t s t s s s t
X

s   (4) 

is referred to the backward recurrent relation. 
Let us call  

0
( )

,( ) min ( , ) ( ){ }
x

T

F x x x J x




 t t
s

t

t s t s s s
X

s

  ,  (5) 

a partial Bellman function, then ( ) ( )J x xt t t t
 + ( )F xt t

 . 

a)  b)  
Figure 2: a) Structure of an arbitrary tree; b) Markov vicinity 

for the xt  variable divided into two arbitrary parts for 

treelike adjacency graph G  

The procedure of dynamic programming searches for the minimum 
of the objective function (2) in two passes according to forward (3) 
and backward (4) recurrent relations.  

Nevertheless, this procedure cannot be applied immediately to the 
image reconstruction tasks since discrete image lattice is not a tree. 
The tree-like approximation method (Mottl V., et al., 1998) 
decomposes the original lattice-like adjacency graph into several 
tree-like ones. Each of these graphs covers all elements of the pixel 
grid. The final decision for each variable is based on the separate 
partial objective function with the tree-like adjacency of variables 
instead of the overall objective function. Thus, some relations 
between goal variables are eliminated and are not taken into 
account, which leads to decreasing in accuracy.  

As it was shown in (Pham C.T. and Kopylov A.V., 2015, 2016), in 
the case of a minimum of a finite set of quadratic functions of 
pairwise Gibbs potentials (1), and node functions are in quadratic 
form, the Bellman functions at each step of the dynamic 
programming are a minimum of a finite set of quadratic functions. 
The procedure breaks down at each step into several parallel 
procedures, according to the number of quadratic functions forming 
the intermediate optimization problems of one variable. The 
corresponding procedure is called a multi quadratic dynamic 
programming procedure (MQDP). A special version of the multi 
quadratic dynamic programming procedure was elaborated for 
optimization of the objective function, based on the tree-like 
approximation of the lattice neighborhood graph. Experiments 

show that the proposed procedure can effectively manage 
heterogeneities and discontinuities in the source data.  

The number of quadratic functions in a representation of Bellman 
functions grows during the forward move and a special technique 
on the basis of k-means clustering (Dvoenko S. D., 2009) was 
proposed to reduce their number.  

We proposed here a new procedure on the basis of another type of 
tree-like representation of image lattice, which does not eliminate 
any pairwise connections between image elements and can 
sufficiently simplify the recalculation of the intermediate Bellman 
functions. 

4. THE FULL SET OF ACYCLIC ADJACENCY GRAPHS

In the paper (Dvoenko S.D., 2012) another way for the tree-like 
approximation of a lattice based on the full set of acyclic adjacency 
graphs was proposed.  

For an element t ∈ T, we have its vicinity relative to a certain acyclic 
adjacency graph G, which can be divided arbitrarily into two parts 

0 0 0
( ) ( ) ( )T T T  t t t  (Fig. 2.b). 

Let us expand vicinity 1 0
( ) ( )T T t t of descendants 

2 0 0 0 0 0
( ) ( ) ( ) ( ) ( )( ) ( ),T T T T T         t t t s t

s
s , 

3 0 0 0 0 0 0
( ) ( ) ( ) ( ) ( )

0 0
( ) ( )

(( ) ) ( ( )) ) ,

, , ,

v
v

v
v

T T T T T

T T

      

 

    

 

t t t s
s

ts 

( 1) ( 1) ( 2)0
( ) ( )( ) ( ) ( )) , \ .i i ii

v
v v

T T T v T T         t t t t  

This process is finished when the expanded descendant vicinity will 
contain all terminal elements as descendants of element Tt . 

Let a hypothetical covering set of all spanning acyclic graphs (the 
full set) be given. 
For the finite set of elements for array T , the number of such 
graphs is also finite. In the general case for all feasible data arrays 
T , the full set of acyclic adjacency graphs is countable. 

It is evident that in the general case the acyclic graphs from the full 
set are unknown. Let us accept that all elements tT  of the data 
array appear to be roots for several unknown for us acyclic 
adjacency graphs from the full set. 

Let us expand vicinities of descendants for each element tT  
simultaneously step-by-step. Since we use 4-connectivity of image 
elements, only four descendants must be considered simultaneously 
(Figure 3). Thus, when we obtain the maximal vicinity for each 
element, including the element itself, we will have the whole 
collection of the Bellman functions ( )J xt t

  (3), Tt  already as a 
result of combining the acyclic adjacency graphs from the full set. 

We use here non-convex type of pairwise potential functions (1) in 
the form: 
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Step 1  Step 2 

Figure 3. Step-by-step expansion of a vicinity of a central point 

2 2 2
1 1 1 1( , ) min[( ) , ( ) , ]x x u x x x x d      t t t-1 t t t t ,  (6) 

where  u - smoothing parameters;   
2

1 1 1( )x x d  t t ‐quadratic functions with
parameters  1   и  1d . 

Node functions are selected in the quadratic form: 

2( ) ( )x x y  t t t t . 

For each element  1 2,t tt Tt  we calculate partial Bellman
function (5):  

 
 
 

1 2 1 2 1 2 1 2 1 2
, 11 2

1 2 1 2 1 2 1 2 1 2
, 11 2

1 2 1 2 1 2 1 2 1 2
1,1 2

1 2
1,1 2

, 1 , , 1 , 1 , 1

, 1 , , 1 , 1 , 1

1, , 1, 1, 1,

1,

min ( , ) ( )

min ( , ) ( )
( )

min ( , ) ( )

min (

t t

t t

t t

t t

t t t t t t t t t t
x

t t t t t t t t t t
x

t t t t t t t t t t
x

t t
x

x x J x

x x J x

F x
x x J x

x

















   

   

   





 


 



t t








 1 2 1 2 1 2 1 2, 1, 1, 1,, ) ( )t t t t t t t tx J x  

 
 
 
 
 
 
 
 
 
 
  



. (7) 

Partial Bellman functions ( )J xt


in (7) are taken instead of the 
node functions ( )x t t . Then we can calculate Bellman functions 
for each element  1 2,t tt :

, , , , , ,1 2 1 2 1 2 1 2 1 2 1 2
( ) ( ) ( )t t t t t t t t t t t tJ x x F x   .  (8) 

The number of quadratic functions in a representation of a current 
Bellman function can be naturally reduced by the following 
algorithm. 

Algorithm 1: Reducing a number of quadratic functions 

Input: ( ) ( ), 1,...,iF x i Kt tt
  . 

Output: ( )( ), 1,..., ' , 'iF x i K K K t t t tt
   

1. At the beginning, sort by ascending values ( )idt
  of array

( )( )iF xtt
 . 

2. In case of the presence of a parameter  at each step, we

look for the minimum constant  (1) 2D d u  t t
  and reject 

all other constants. 
3. Discard all functions than have minimum greater than or
equal to this constant ( ) , 2id D i K t t t

  .

4. Among the remaining functions, select the function with
the smallest minimum and leave it.
5. Find and check necessary and sufficient condition of
intersection of quadratic functions. Discard all the functions
which have no intersection.
6. Among the remaining functions, select the function with
the smallest minimum and leave it.
7. Repeat until there will be functions for which have no
decision on acceptance or discarding.

The denoising algorithm for the full set of acyclic graphs is 
described as following: 

Algorithm 2: Image denoising algorithm for the full set of 
acyclic graphs 

1. Initialize: (1)( )J xtt
 , MaxIter 

2. While k=2 to MaxIter do
3. Compute Bellman functions ( )( )kJ xtt



Using (7-8) with applying algorithm 1 for reducing
number of quadratic functions. 

4. Repeat step (3)
5. ( )argmin ( )kx J xt tt



6. Return { }xt tX


We assign that node functions ( )x t t  are taken instead of Bellman 

functions ( )J xt t
  in equation (7) for first step of algorithm 2.

In the next section, we performed studying experiments to test our 
model for medical image denoising. 

5. EXPERIMENTAL RESULTS

We perform experiments to test our model in case of a 8 bit medical 
images from the  BrainWeb database 
(http://brainweb.bic.mni.mcgill.ca/brainweb/). The experimental 
performance is measured by PSNR,  

2

10
1 2

25510log ˆ / ( )
PSNR

N N


X X
, 

and a mean value of Structure SIMilarity (SSIM) index: 

1 , 2
2 2 2 2

2

(2 )(2 )
( , )

( 1)( )
P Q P Q

P Q P Q

c c
SSIM P Q

c c

  

   

 


   
, 

where  ,P Q  -means of images;  
 ,P Q  - standard deviations (the square root of 

variance) of images;  
,P Q - covariance of images; 

( , )P i j  and ( , )Q i j ; 

1c =6.5025, 2c =58.5225;  
( , )P i j and ( , )Q i j denote pixel values of the original 

image and the reconstructed or noisy image 
accordingly. 

,
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Note that all the PSNR results (in dB) and MSSIM reported in Fig. 
5 have been averaged over 10 noise realizations.  

The figure 4 shows PSNR Variations on Loops at level of additive 
white Gaussian noise with a standard deviation 15.   Figure 5 
shows result images of proposed and compared methods: Multi 
quadratic dynamic programming (MQDP), nonlinear anisotropic 
diffusion (AD P-M), modified Perona-Malik (MP-M), fourth order 
PDEs, nonlinear total variation (TV). For MQDP we use edge 
functions (5) with smoothing parameters of edge function with 
fixed values 0.2  , 20.5d   . 

Figure 4. PSNR variations during the vicinity expansion steps 

The experimental results show that our image denoising method 
allows image denoising as well as other related method. 

6. CONCLUSION

Edge preserving image denoising has become an urgent step in 
imaging to remove noise and to preserve local image features for 
improving the quality of further analysis. In this paper, we proposed 
approaches to achieve these aims. Proposed edge-preserving 
procedure for medical images allows, sufficiently simplify the 
recalculation of the intermediate Bellman functions to find the final 
solution. The experimental results show that proposed algorithm 
allows get high results of dynamic programming for image 
processing.  

Numerical results show that our proposed algorithms are efficient 
and allows get result as well as existed method. 
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