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ABSTRACT: 

Video completion is a necessary stage after stabilization of a non-stationary video sequence, if it is desirable to make the resolution 

of the stabilized frames equalled the resolution of the original frames. Usually the cropped stabilized frames lose 10-20% of area that 

means the worse visibility of the reconstructed scenes. The extension of a view of field may appear due to the pan-tilt-zoom 

unwanted camera movement. Our approach deals with a preparing of pseudo-panoramic key frame during a stabilization stage as a 

pre-processing step for the following inpainting. It is based on a multi-layered representation of each frame including the background 

and objects, moving differently. The proposed algorithm involves four steps, such as the background completion, local motion 

inpainting, local warping, and seamless blending. Our experiments show that a necessity of a seamless stitching occurs often than a 

local warping step. Therefore, a seamless blending was investigated in details including four main categories, such as feathering-

based, pyramid-based, gradient-based, and optimal seam-based blending. 

* Corresponding author

1. INTRODUCTION

Over the two last decades, many digital video stabilization 

methods were developed for various practical applications. 

These methods are categorized into 2D and 3D stabilization 

frameworks that are specified in different ways. While the 2D 

methods utilize the estimation of 2D motion model, smooth 

motion model for removal of unwanted jitters, and application 

of the geometric transforms to the video frames (Cai and 

Walker, 2009; Favorskaya and Buryachenko, 2015), the 3D 

methods use the structure-from-motion model with following 

video reconstruction based on the interpolated low frequency 

3D camera path (Liu et al., 2009). In the both cases, the 

stabilized areas of frames are reduced in a comparison to the 

original non-stationary videos. Thus, the task of video 

enhancement (called as a video completion) in order to fill the 

blank regions on boundaries of the stabilized frames appears. 

The early known methods, such as a mosaicing (Litvin et al., 

2003), a motion deblurring (Yitzhakyet al., 2000), a point 

spread function (Chan et al., 2005), a motion inpainting 

(Matsushita et al., 2006), among others, are utilized for 

restoration of every frame independently. However, the 

stitching provides the artifacts for the non-planar scenes, 

especially. Therefore, the improvement of the stitching 

procedures remains desirable. 

Video inpainting is an extension of single image inpainting that 

can be classified into the Partial Differential Equation (PDE) 

image inpainting algorithms (Bertalmio et al., 2000) and the 

texture synthesis techniques (Liang et al., 2001). The PDE-

based techniques analyze the gradient vectors around the 

inpainting regions with following diffusion of the adjacent 

linear structures into the missing areas. Nevertheless, the 

restored regions may become too blurred when enlarged and 

such procedure is a time-consuming process. The texture 

synthesis techniques select the basic textural patches of the 

sample texture and past the cloned patches into missing area. 

The patch-based sampling algorithm is fast but suffers from 

mismatching features across patch boundaries. Hereinafter, the 

hybrid techniques were proposed. Thus, Criminisi et al. 

(Criminisi et al., 2004) proposed the efficient algorithm based 

on an isophote-driven image sampling process, including a 

simultaneous propagation of texture and structure information. 

The main shortcoming is in that the discontinuous textures or 

edges may appear in some regions. For video inpainting, 

additionally a temporal continuity ought to be considered 

(Favorskaya et al., 2013). Three approaches of video inpainting 

algorithms prevail including the patch search in the 

spatiotemporal domain, separate processing of object and 

background (object-background splitting), and structural and 

texture classification. 

The remainder of our paper is organized as follows. The 

overview of the related work is presented in Section 2. In 

Section 3, the proposed construction of pseudo-panoramic key 

frame is outlined. The suggested inpainting of missing boundary 

areas of the successive frames is described in Section 4. Section 

5 provides the experimental results illustrated by the restored 

frames. Finally, conclusions are covered in Section 6. 

2. RELATED WORK

Video stabilization includes three steps, such as the camera 

motion estimation, motion smoothing, and image warping, 

which are differently implemented by 2D and 3D methods. 

However, after jitters’ compensation the missing boundary areas 

appear that requires a video completion in order to save a 
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resolution of video sequence. Consider the main approaches of 

video inpainting. 

The patch search inpainting is based on a volume matching 

colour components and spatiotemporal gradient vectors (Wexler 

et al., 2007). Nevertheless, this method was applicable to low-

resolution videos because of the time-consuming during a 

volume matching process. Furthermore, the concept of 

recovering the motion information before the spatial 

reconstruction, using the patches, had been developed. Thus, 

Shih et al. (Shih et al., 2009) suggested a motion segmentation 

algorithm for object tracking based on separating the video 

layers. This permitted to process the slow and fast moving 

objects differently in order to avoid “ghost shadows” in the 

resulting videos. Shiratori et al. (Shiratori et al., 2006) 

formulated the fundamental idea of motion warping, when the 

motion parameter curves of an object are warped. The motion 

field transfer is computed on the boundary of the holes, 

progressively advancing towards the inner holes, using the 

copied source patches with the corresponding motion vectors. 

However, this approach suffers from such effects as 

deformation, object occlusion, and background uncovering. 

In order to avoid the problem mentioned above, the technique 

of the object-background splitting with the following separate 

inpainting was developed in 2010s (Jia et al., 2004; Patwardhan 

et al., 2005; Jia et al., 2006; Patwardhan wt al., 2007). Jia et al. 

(Jia et al., 2006) developed a video completion system, which 

was capable to synthesize the missing pixels completing the 

static background and moving cyclically objects. They 

introduced the special term “movel” that means a structured 

moving object and provided a video repairing of large moving 

motion by sampling and aligning movels. The Lambertian, 

illumination, spatial, and temporal consistencies were 

maintained after background completion. Particularly, the 

temporal consistency was preserved by the wrapping and 

regularization of moving regions. Levin et al. (Levin et al., 

2004) studied an image stitching in gradient domain and 

introduced several cost functions to evaluate the similarity to 

the input images and visibility of a seam in the output image. 

Hereinafter, more complex algorithms were designed. Xia et al. 

(Xia et al., 2011) constructed the Gaussian mixture models for 

both background and foreground separately that saved the time 

for calculating the optical flow mosaics for the foreground 

objects only. This approach is worked well for individual 

inpainting objects but fails under highly complex contents or 

irregular moving objects in a scene. 

The inpainting based on structural and texture classification is 

usually based on the PDE functions. The images are divided 

into the structural and textural regions and each type of regions 

is processed by different inpainting technique according to the 

assigned priority. Canny edge detector (Canny, 1986) is often 

employed to identify the edge pixels in adjacent frames. Fang 

and Tsai (Fang and Tsai, 2008) performed a temporal linear 

interpolation in the structural regions. For the textural regions, a 

propagation filling method is used to preserve the spatial 

consistency. Sangeetha et al. (Sangeetha et al., 2011) proposed 

a method, including the image decomposition (an image is 

represented as a cartoon-like version of the input image, where 

the large-scale edges are preserved but interior regions are 

smoothed), structural part inpainting (an image interpolation 

using a third order PDE), damaged area classification (a 

reduction a number of pixels to be synthesized), and improved 

exemplar based texture synthesis. The last step consists mainly 

of three iterative steps, until all pixels in the inpainted region 

are filled, such as the computing patch priorities, propagating 

structure and texture information, and updating confidence 

values. However, the structural temporal linear interpolation 

cannot work well for rapidly moving objects, irregular motion 

paths, or large inpainting regions. 

The short literature review shows that the ideal approach for a 

video inpainting does not exist. The good way is to use the 

multi-resolution and multi-layered video inpainting with the 

irregular patch matching and seamless blending in a frequency 

domain. 

3. CONSTRUCTION OF PSEUDO-PANORAMIC KEY

FRAME 

The real-world videos can be described in different manner, for 

example, a steady-scene with small range of motion, a steady-

scene with large range of motion, a homogeneous background 

with small range of motion, an outdoor-shooting with small 

moving objects, an indoor-shooting with forward translation, an 

on-road shooting with forward moving platform, and so on. A 

scene with a homogeneous background with small range of 

motion is depicted in Figure 1, while a scene obtained from an 

on-road shooting with forward moving platform is depicted in 

Figure 2. These figures show the results of video stabilization 

using three methods, such as Derivative Dynamic Time (DDT) 

warping based on angular integral projections (Veldandi et al., 

2013), Fourier Radon (FRadon) warping (Mohamadabadi et al., 

2012), and Differential-Radon (DRadon) curve warping (Shukla 

et al., 2017). As it can be seen, all methods produce the cropped 

frames that caused a necessity of video completion. 

Figure 1. Scene with a homogeneous background with small 

range of motion: a original frames, b the DDT warping, c the 

FRadon warping, d the DRadon warping 

Figure 2. Scene of on-road shooting with forward moving 

platform: a original frames, b the DDT warping, c the FRadon 

warping, d the DRadon warping 

While a scene with a homogeneous background from Figure 1 

requires the simplest restoration like a mosaic, a scene of on-
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road shooting with forward moving platform demands the 

complex inpainting of many details. 

Our approach deals with a preparing of pseudo-panoramic key 

frame during a stabilization stage as a pre-processing step for 

the following inpainting. Note that the extension of a view of 

field may appear due to the pan-tilt-zoom unwanted camera 

movement. When the stabilized video frames with the decreased 

sizes will be obtained and aligned respect to the original sizes, 

they can be reconstructed using the pseudo-panoramic key 

frame as a first approximation. Then a gradient-based 

inpainting, using the model of the multi-layered motion fields, 

is utilized in order to improve the details of the missing regions. 

A pseudo-panoramic key frame is an extension of the original 

key frame by the parts from the following frames with the 

random sizes. In the case of the non-planar frames with moving 

objects, several pseudo-panoramic key frames can be 

constructed but their number is very restricted between two 

successive key frames and helps to find the coinciding regions 

very fast. A schema of this process is depicted in Figure 3. 

Figure 3. Scheme of pseudo-panoramic key frame receiving 

The use of the pseudo-panoramic key frame/frames provides the 

background information in the missing boundary areas. Such 

approach leads to the simplified stitching step against the 

conventional panoramic image creation. 

4. INPAINTING OF MISSING BOUNDARY AREAS

Unlike the conventional problem statement of image/videos 

inpainting, a video completion of the stabilized video sequences 

deals with the missing areas near boundaries. This means that 

the source of reliable information is predominantly located on 

one side but not around the missing area, which is usually looks 

like as a hole with a random shape. Our approach is based on a 

multi-layered representation of each frame including the 

background and objects, moving differently. The proposed 

algorithm involves four steps, such as the background 

completion, local motion inpainting, local warping, and 

seamless blending, describing in Sections 4.1-4.4, respectively. 

Note that the background completion is always required, while 

other steps operate when it is necessary. 

4.1 Background Completion 

The availability of video sequence permits to consider the task 

of video completion as an extension of 2D successive frames’ 

completion to the spatiotemporal space. The temporal 

consistency in the filled areas is guaranteed. At this step, the 

proposed algorithm, using a pseudo-panoramic key frame, does 

not require to separate the video into the background and 

dynamic foreground objects, extract the motion layers, or use 

the spatiotemporal patches from other frames. A stack of the 

non-cropped frames between the adjacent key frames provides 

reliable background information in the missing boundary areas. 

However, this is only the first but usually not final step of video 

completion. The background may be changed by the motion 

layers, as well as by artifacts of illumination. 

4.2 Local Motion Inpainting 

Due to a local motion occupies a small area in the successive 

frames, it is reasonable to suppose that the motion information 

is sufficient to reconstruct the motion areas in the problematic 

boundaries. Thus, it is required to find the similarity in motion 

in order to provide a good matching of the motion patches. Let 

the estimated by the optical flow motion vector at point 

p = (x, y, t)T be denoted as (u(p), v(p))T and the motion vector 

m be defined as mp  (u(p)t, v(p)t, t)T. Then, according to

Shiratori et al. (Shiratori et al., 2006) the error p can be 

computed by equation 1: 
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The dissimilarity measure of motion patches can be easily 

estimated calculating a distance between two motion vectors mp 

and mq using the angular difference m(mp, mq) (Barron et al., 

1994) using equation 2: 

  


 cos11,

qp

qp

qpm
mm

mm
mm ,    (2) 

where mp and mq = the motion vectors in points p and q 

 = an angle between these motion vectors

The angular error measure m evaluates the differences in both 

directions and the differences in magnitudes of motion vectors. 

The dissimilarity measure between the source patch Ps and the 

target patch Pt as the weight can be calculated using equation 2. 

The best matching patch fills a corresponding area. This is an 

iterative procedure, which is executed until the averaged 

dissimilarity measure will be less a predefined threshold value. 

4.3 Local Warping 

The pure warping means that the points are mapped to the 

points without changing their colors. This means that in rare 

cases such distortions can be based mathematically but usually 

they cannot be described by the known dependencies like the 

planar affine or planar perspective (also called homography) 

transforms. 

Sometimes, especially when an optical flow is mismatched, a 

local warping helps to improve a visibility of the moving 

objects. Only small parts of the moving objects require such 

time-consuming step. In the most cases, the blurring or linear 

interpolation is enough, whereas the non-parametric sampling 

(Wexler et al., 2004), diffusion methods (Bugeau and 
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Bertalmio, 2009), or local homography fields for the 

complicated scenes (Liu and Chin, 2015) may be also used. The 

necessity of this step is determined by the type of a scene and 

requirements to the final results. 

 

4.4 Seamless Blending 

Our experiments show that a necessity of a seamless stitching 

occurs often than a local warping step. Therefore, a seamless 

blending was investigated in details including four main 

categories, such as feathering-based, pyramid-based, gradient-

based, and optimal seam-based blending. The application of 

simple -blending method provides a disappointing visibility. 

 

The methods from feathering-based category perform a 

blending operation using an average value in each pixel of the 

overlapping region. The simplest way is to calculate an average 

value C(x) at each pixel: 

  

        
k

k

k

kk xwxIxwxC
~

,    (3) 

 

where   xIk

~
 = the warped frames 

 wk(x) = the weights, which are equal 1 at valid pixels 

and 0 otherwise. 

 

However, the simple averaging fails under the exposure 

differences, misalignments, and presence of moving objects. 

Szeliski (Szeliski, 2006) mentioned that a superior method is to 

use the weighted averaging along with a distance map, when the 

pixels near the center are weighted heavily and weighted lightly 

near the edges. In terms of the Euclidean distance this 

expression has a view of equation 4: 

  

     invalidis
~

minarg yxIyyxw k
y

k  .   (4) 

 

Such weighted averaging using a distance map is called 

feathering-based blending. The distance map values can be 

raised using the parameter wk(x) in large power in equation 3. 

Peleg et al. (Peleg et al., 2000) proposed a visibility mask-

sensitive version applying the familiar Vornoi diagram for a 

matching of each pixel to the nearest center in the set. However, 

it is difficult to obtain a balance between the smooth low-

frequency exposure differences and preservation of sharp 

transitions. Also, these methods suffer from ghosting artifacts. 

 

The main goal of pyramid-based blending is to separate the low 

frequency and high frequency components and to blend the low 

frequency component gradually over a wide area around the 

seam, while the high frequency component ought to concentrate 

over a narrow area around the seam (Pandey and Pati, 2013). 

This provides a gradual transition around the seam. Usually the 

methods from this category include two steps. First, a mask 

image associated with a source image is created using, for 

example, a grassfire transform (Xiong and Turkowski, 1998). 

Second, the mask image is converted into a low-pass pyramid 

using a Gaussian kernel. These steps are repeated for different 

levels with various sample density and resolution. The resultant 

blurred and subsampled masks serve as the weights to perform a 

per-level feathering. Then the final mosaic is interpolated and 

summarized according to equation 5: 
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where  LI1(x, y) and LI2(x, y) = the Laplacian pyramids of the 

warped source images I1(x, y) and I2(x, y) 

 GM(x, y) = the Gaussian pyramid of the mask image 

M(x, y) 

 LO(x, y) = the Gaussian pyramid of the output image 

O(x, y) 

 

Such algorithms demonstrate a reasonable balance between the 

smoothing out of the low frequency components and preserving 

sharp transitions to prevent blurring. The edge duplication is 

eliminated. Nevertheless, the double contouring and ghosting 

effects are possible. 

 

The gradient-based methods utilize the idea of a suitably mixing 

the gradient of images. The humans are more sensitive to the 

gradients than the image intensities. Thus, these methods 

provide more pleasant visual results respect to the categories 

mentioned above. Levin et al. (Levin et al., 2004) developed the 

Gradient-domain Image Stitching (GIST) framework in two 

variants. The GIST1 computed the stitched image by 

minimizing a cost function as a dissimilarity measure between 

the derivatives of the stitched image and the derivatives of the 

input images. The GIST2 employed additionally the 

minimization of a dissimilarity measure between the derivatives 

of the input images and a field stitching. Xiong (Xiong, 2009) 

eliminated the ghosting artifacts that appear from the moving 

objects. The gradient vector field constructed by solving a 

Poisson equation with boundary conditions was utilized for the 

blending images. Szeliski et al. (Szeliski et al., 2011) proposed 

a method for fast Poisson blending and gradient domain 

compositing based on a multi-spline representation of the 

separate low-resolution offset field associated with each source 

image. The main shortcoming is that the gradient-based 

methods require higher computational resources and perfect 

alignment of initial images. 

 

The gradient-based inpainting uses the multi-layered motion 

fields of foreground objects or the local homography fields for 

the more complicated scenes (Pérez et al., 2003). The following 

blending step removes some discontinuities during a filling 

process. Such techniques as a simple smoothing based on the 

pixels’ intensities, the extrapolation, or the smoothing based on 

the Poisson equation are applied for the textural regions. The 

Poisson equation in the spatial domain has a view of 

simultaneous linear equations 6 for all p  : 

  

 




ppp Nq

pq

Nq

q

Nq

qpp fffN div* ,   (6) 

 

where   = a missing area 

 p = the pixels in the missing area 

 q = the pixels in the known area 

 |Np| = a number of neighboring pixels Np 

 fp and fq = the correct pixel values 

 divpq = a divergence of pixels p and q 

   = a region, surrounding the missing area  in the 

known areas 

 fq
*  = a known value of pixel q in a region  

 

Equations 6 form a classical, sparse, symmetric, positive-

definite system. Because of the arbitrary shape of region , the 
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iterative solvers ought to be attracted, for example, either 

Gauss-Seidel iteration. If a missing area  contains pixels on 

the boundary of a frame, |Np| < 4, then there are no boundary 

terms in the right hand side of equations 6, and equation 7 is 

obtained: 

  

 




pp Nq

pq

Nq

qpp ffN div .     (7) 

 

Note that the Poison equation can be applied in the temporal 

domain, when the neighboring pixels are attracted from the 

adjacent frames. 

 

The optimal seam-based algorithms suppose that a seam line 

placement should minimize the photometric differences 

between two images. The seam gradient becomes invisible, if 

the difference between two images on the seam line has zero 

value. The optimal seam-based algorithms consider the scene 

content in the overlapping region in a contradiction to the 

smoothing-based blending that permits to solve the problems 

like moving objects or parallax impact. Recently, different 

optimal seam finding methods have been developed. Gracias et 

al. (Gracias et al., 2009) proposed an automatic blending 

technique using the watershed segmentation that reduces the 

search space for finding the boundaries between the images and 

graph cut optimization with the guarantees of the globally 

optimal solution for each intersection region. The authors 

claimed the parallel implementation and memory-efficient 

technique even for large-scale mosaics. 

 

The idea of multi-band blending was formulated by Burt and 

Adelson (Burt and Adelson, 1983). Let a weight function in 

Euclid space of an image be W(x, y) = w(x)w(y), where 

functions w(x) and w(y) vary linearly between 0 at the edges and 

1 at the image centre. The idea of a multi-band blending is to 

blend the low frequencies over a large spatial range and the 

high frequencies over a short range. The blending weights for 

each image are initialized by finding the set of points j for 

which image i using equation 8: 
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Then the weight maps are blurred for each band in order to form 

the weights in each band. A high pass version of the image can 

be formed by equations 9: 
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where   yxBi ,  = the spatial frequencies in the range of 

wavelengths   [0, ] 

  yxI i ,  = an image in current band 

  yxI i ,  = an image convoluted with the Gaussian 

  yxg ,  = the Gaussian filter with a standard 

deviation  

 

For current band, the images must be convolved with 

corresponding maximum weight functions: 

  

      yxgyxWyxW ii ,*,, max     (10) 

 

where   yxW i ,  = the blending weight for the wavelength 

from   [0, ] 

 

Therefore, each subsequent band k  1 is blended using the 

previous lower frequency band images and weights: 

  

 

         

       

       yxgyxWyxW

yxgyxIyxI

yxIyxIyxB

i
k

i
k

i
k

i
k

i
k

i
k

i
k

,*,,

,*,,

,,,

1

1

11













  (11) 

 

where   = the Gaussian standard deviation of next band, 

 12k  

 

As a result, the subsequent bands have the same range of 

wavelengths and the final expression for each band is provided 

by equation 12 
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where  N = a number of sub-bands 

 

The multi-band mosaic is obtained by summing images of all 

subsequent bands. This multi-band blending approach allows 

high frequency bands to be blended over short ranges and low 

frequency bands to be blended over long ranges. An example of 

multi-band mask is depicted in Figure 4. 

 

 

Figure 4. Multi-band masks for image blending 

 

The steps of the local motion inpainting, local warping and 

seamless blending are executed for each motion layer if it is 

necessary. The proposed selective technique for video 

completion is reinforced by the look up table that stores the 

computed blending weights for the defined locations in a 

pseudo panoramic key frame. 

 

5. EXPERIMENTAL RESULTS 

The sampling of twelve video sequences was used in 

experiments. These video sequences contain one or many 

foreground objects in a non-planar scene and were obtained 

with an unstable camera movement. A description of some 

video sequences is performed in Table 1. 
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Figure 5. Results of processing of frame 20 from 00081 MTS - shaky original.avi, frame 20 from Gleicher1.avi, frame 15 from 

Gleicher2.avi, and frame 20 from Gleicher4.avi  (from left to right): a original frames, b stabilized frames, c completion of missing 

regions using feathering-based blending, d completion of missing regions using pyramid-based blending, e completion of missing 

regions using gradient-based blending, f completion of missing regions using seamless multi-band blending 

Figure 6. Results of seamless stitching in frame of a high resolution video sequence: a original frame, b fragments with artifacts, 

c fragments without artifacts obtained with seamless multi-band blending 
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Video Size Length Description 

pixels frames 

00081 MTS - 

shaky original.avi1 
640360 1230 Complex structure, 

moving objects 

Gleicher1.avi2 640360 480 Complex structure, 

unstable camera 

motion 

Gleicher4.avi2 640360 412 Slow camera 

motion, 3D scene 

structure 

Sam_1.avi2 640360 330 Fast motion of 

foreground object 

New_gleicher.avi2 480270 275 Non-planar scene, 

complex structure 

Table 1. Short description of test sampling 

The results of frames’ processing are depicted in Figure 5. As it 

seems, the seamless multi-band blending provides better visual 

results even for video sequences with low resolution. The 

results of frame processing from our high resolution video 

sequence are depicted in Figure 6. The feathering-based 

blending causes noticeable visual artifacts that occur due to the 

different color settings and brightness of the original frames. 

Such disadvantages can be eliminated using of seamless multi-

band blending combining the pixel intensity values on the 

boundaries of the successive frames. 

Some problems appear, when the missing areas in the current 

frame are absent in the original frames. This happens, when a 

video sequence contains the fast motion or large changing in a 

scene. In these cases, the additional blurring of contours in the 

missing areas, small frame scaling, or texture reconstruction 

methods are recommended to apply. 

6. CONCLUSIONS

Video completion can be considered as an extension of 2D 

frame completion to the spatiotemporal space. This is a 

necessary stage after video stabilization in order to hold the 

resolution of the reconstructed frame at the initial level. The 

algorithm was tested on several video sequences with different 

unwanted jitters. A special attention was paid to the seamless 

blending in the reconstructed area. The experiments show that 

an optimal seam-based blending provides the best visibility 

result for all types of scenes but for simple scenes the pyramid-

based approach can be applied as a trade-off between visibility 

and computational cost. 
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