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ABSTRACT: 

This paper sums up the main contribution derived from the thesis entitled "Multispectral imaging for the analysis of materials and 

pathologies in civil engineering, constructions and natural spaces" awarded by CIPA-ICOMOS for its connection with the 

preservation of Cultural Heritage. This thesis is framed within close-range remote sensing approaches by the fusion of sensors 

operating in the optical domain (visible to shortwave infrared spectrum). In the field of heritage preservation, multispectral imaging is 

a suitable technique due to its non-destructive nature and its versatility. It combines imaging and spectroscopy to analyse materials 

and land covers and enables the use of a variety of different geomatic sensors for this purpose. These sensors collect both spatial and 

spectral information for a given scenario and a specific spectral range, so that, their smaller storage units save the spectral properties 

of the radiation reflected by the surface of interest. The main goal of this research work is to characterise different const ruction 

materials as well as the main pathologies of Cultural Heritage elements by combining active and passive sensors recording data in 

different ranges. Conclusions about the suitability of each type of sensor and spectral range are drawn in relation to each particular 

case study and damage.  It should be emphasised that results are not limited to images, since 3D intensity data from laser scanners 

can be integrated with 2D data from passive sensors obtaining high quality products due to the added value that metric brings to 

multispectral images. 

1. INTRODUCTION

There is an increasing commitment to preserve and restore 

Cultural Heritage (CH) since it is a rich legacy on which the 

footprint of time does not go unnoticed. Therefore, current 

generations have the undeniable responsibility to preserve and 

safeguard it by studying the evolution of its state in order to 

avoid future damages on it (Sánchez-Aparicio et al., 2016). For 

that reason, the degradation study and assessment of historical 

buildings is one of the central themes in the maintenance of the 

world Cultural Heritage. Conservation activities in the field of 

heritage require new techniques for careful monitoring and 

evaluation of the integrity of these heritage elements.  

Among the most common physical factors causing deterioration 

of materials in CH are moisture (by capillarity, filtration or 

condensation), erosion and pollution. Other factors such as the 

appearance of salts, animal or vegetal organisms, as well as the 

exposure to acid or alkaline environments produces a gradual 

decomposition of their construction materials being the main 

cause of aging and degradation of CH (Del Pozo et al., 2016b). 

In this way, changes on CH due to these factors are susceptible 

of being assessed with new technologies since their capabilities 

can enhance and improve the effectiveness of more traditional 

strategies and methodologies for the preservation and protection 

of CH.  

Furthermore, digital methods and techniques are able to link 

historical documentation data and disseminate them for a better 

understanding and perception of their evolution through time 

(Rodíguez-Gonzálvez et al., 2017). Within the broad diversity 

of techniques that can be used for this purpose, close-range 

remote sensing has become really important. This technology, 

together with the use of appropriate algorithms and data 

processing methodologies, allow data acquisition and 

interpretation in a fast, reliable and accurate way.  

In order to diagnose the current state of CH elements, a wide 

variety of geotechnologies can be used, from airborne to ground 

level, such as Airborne Laser Scanning (ALS) (Doneus et al., 

2008), Mobile LiDAR Systems (MLS) (Rodríguez-Gonzálvez 

et al., 2017), Terrestrial Laser Scanning (TLS), aerial and 

terrestrial photogrammetry  (Gonzales-Aguilera et al., 2009), etc. 
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At this point, multispectral imaging technique plays a key role 

since it allows the integration of data acquired by all these non-

destructive technologies proving to be a powerful tool to 

analyse damages on CH (Lerma et al., 2011). Moreover, 

multispectral imaging allows the generation of useful hybrid 

mapping products for quantitative and qualitative analysis: 

rectified images and orthoimages for visual interpretation (in true 

or false colour), 3D textured models from images acquired at 

different regions of the spectrum and also the so called 4D 

models; 3D models that are comparable over time in order to 

address monitoring processes. All of them may act as input data 

in the application of different strategies of multispectral 

classification and dimensional analysis, in order to assess 

possible chemical and physical pathologies, respectively. 

 

In this framework, the present paper proposes multispectral 

imaging as comprehensive methodology to succeed 

documentation, interpretation and mapping of most common 

damages of CH assets based on: (i) sensor fusion of both active 

and passive sensors operating in different regions of the optical 

spectrum (400-3,000 nm) and (ii) the radiometric calibration of 

them in order to analyse physical values and obtain accurate 

results.  

 

2. THEORETICAL BACKGROUND 

In this section, a brief review of the physical fundamentals on 

which multispectral imaging data is based is presented. 

 

2.1 Fundamentals of Remote Sensing 

By studying the radiation behaviour through remote sensing, it 

is possible to derive conclusions about physical and chemical 

damages in CH elements. This is possible since the share of 

energy reflected, absorbed and transmitted by an object depends 

not only on the wavelength but also on the material composition 

and the roughness of its surface. Although each material has its 

specific spectral behaviour, it varies substantially as a function 

of the physicochemical properties of that material. In this way, 

moisture, degradation and decomposition influence this spectral 

behaviour. The amount of spectral bands required to identify a 

given material or pathology depends on the amount of materials 

to be discriminated as well as their possible alterations. Within 

the multispectral framework, a deep knowledge of the 

advantages provided by the different sensor operating principle 

as well the wavelength configuration of them are required to 

achieve successful pathology assessments and material 

characterizations of CH assets.  

 

2.2 Passive and Active Sensors 

Multispectral imaging is usually associated with data captured 

by a single remote sensor capable of recording information at 

various wavelengths at the same time.  However, multispectral 

datasets can be acquired by the combination of data from 

different types of sensors adding the advantages that various 

sensors can bring to the limited registration of a single one. 

 

Sensors specialized in capturing the portion of energy reflected 

on the optical spectrum can be divided into passive or active 

according to their operating principle (Barrett, 2013). Passive 

remote sensing is based on recording radiation naturally reflected 

from the objects; in this case, the sun acts as the source of 

radiation. However, active remote sensors provide their own 

source of radiation being the backscatter signal the radiation that 

characterises the object. Active sensors do not portray the 

results in image format so to conduct studies through the fusion 

of both techniques rigorous corrections must be undertaken to 

achieve uniformity in the resolution of the final products.  

 

Each sensor has its own advantages so that by selecting the 

most appropriate in each case we can better adapt to the needs 

required for case (Gonzo et al., 2004). In this way, reaching a 

compromise between costs, level of accuracy, size and 

complexity of the object, etc. it is possible to cover a wide 

variety of studies being able to adapt better to every specific 

need. Among the advantages of passive sensors for multispectral 

analysis are their portability, cost savings, the short data 

acquisition time required, and their level of detail among others.  

However, they are very sensitive to changes in lighting 

conditions, are affected by shadows, and they should require 

some image corrections (e.g. vignetting and background noise 

produced by the optical systems and the electronics). In the 

particular case of multispectral cameras, sensors use multi-

lenses systems with different filter combinations to acquire 

images simultaneously for its spectral ranges. They have the 

advantage of recording reflected energy in discrete wavelength 

ranges (Colwell, 1961). On the other hand, active sensors have 

the added value of providing metric to the narrowband 

radiometric intensity data without depending on lighting 

conditions. TLS have the capacity of performing 3D surveys 

useful to quantify chemical and physical damages of the CH 

asset (cracks, deformations, material losses, etc.). In most cases, 

a combination of both types of sensors is the best solution 

(Fuchs et al., 2004). 

 

2.3 Radiometric Calibration 

Figure 1 outlines the operation of all these devices. Detectors 

receive the incoming radiation that is converted into an electronic 

signal proportional to the radiance (W·m-2·sr-1·nm-1) reflected 

by surfaces. Some transformations regarding spatial, radiometric, 

and geometric characteristics of the radiance happen at this 

point. It is important to study these alterations to properly 

design data processing algorithms (Schowengerdt, 2006).  

 

 
Figure 1. Process followed by radiation inside a sensor 

 

At the analogue-to-digital (A/D) converter, the processed signal 

is sampled and quantized into digital levels assigned to the 

smallest storage elements with a number that depends on the 

radiometric resolution of the sensor. These systems have also 
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resolution in the spatial, spectral and temporal measurement 

domains (Parr et al., 2005). The spatial resolution refers to the 

size of the smallest possible feature that can be detected and 

depend primarily on the distance between the object and the 

sensor as well as the field of view. The spectral resolution is the 

sensitivity of a sensor to respond to a specific frequency 

electromagnetic range. Finally, the concept of temporal 

resolution refers to the time interval between data acquisitions.   

 

One of the most important challenges of remote sensing is to be 

able to classify objects and their characteristics trough the 

analysis of the radiation reflected from their surfaces. Thus, the 

key is to invert the transformation process undergone by the 

radiation from the objects until it is digitally stored (Figure 1). 

This reverse process is known as the radiometric calibration of 

the sensor (Dinguirard and Slater, 1999). While remote sensing 

data in digital levels can be used without needing further 

processing (Robinove, 1982), this methodology  does not take 

the full advantage of the possibilities that a radiometric 

calibration process open to it. The digital levels should be 

converted to their corresponding physical value (radiance or 

reflectance) to perform rigorous analysis as well as multisensory 

data fusion. In this way, the range of studies is broadened 

allowing multi-temporal analysis both qualitative and 

quantitative.  

 

Regarding the radiometric calibration process, two are the most 

common methods: (i) the absolute and (ii) the relative calibration 

(Lo and Yang, 1998). For absolute calibration, the instrument 

response is compared with a known and consistent radiation 

source while the relative calibration consists of the equalization 

of the output signal when the sensor is irradiated by a uniform 

source of radiance (Dinguirard and Slater, 1999). Works referred 

to in this paper were performed by applying passive and active 

sensors calibrated by the absolute radiometric calibration 

method. In this way, each spectral band parameter is determined 

in order to transform the signal from raw digital levels to 

physical values. 

 

At this point, the question arises whether all sensors have the 

same pattern of behaviour. Usually, a linear model with gain and 

offset parameters is appropriate to represent the internal 

behaviour of passive sensors (Richards and Richards, 1999) as 

Equation 1 shows. 

 

 








E

offsetDLgain 


   (1) 

 

where  
 = reflectivity of the object observed  

DL = digital levels of the image pixels 

 
E = solar irradiance of the scene 

  

However, it must be borne in mind that Equation 1 is generic 

since passive sensors usually transmit a series of radiometric 

and geometric distortions to output images due to the optical 

and electronic system. Regarding the radiometric distortions, 

they usually correspond to an increase of the signal for the case 

of the background noise and an attenuation for the case of the 

vignetting effect (Del Pozo et al., 2014). For its part, it is 

necessary to correct the sensor from the geometric distortion in 

order to perform radiometric analysis by sensor fusion. In this 

case, it is important to ensure that the projection of any point 

corresponds to the same pixel for all the images from the 

different sensors used.  

 

Taking into account all the above and for the particular case of a 

6-band multispectral camera (Mini-MCA6, Tetracam®), Table 1 

summarizes the calibration coefficients obtained after applying 

the Equation 1 particularized for this sensor (Del Pozo et al., 

2014). The Mini-MCA6 was radiometrically calibrated on board 

an unmanned aerial system (at 30 m high) through a vicarious 

radiometric calibration (Slater et al., 1987) by using a self-

developed software, MULRACS. Figure 2 outlines the field 

campaign performed which required: (i) a test area with 

Lambertian surfaces, (ii) a spectroradiometer for ground truth 

measurements and (iii) a simultaneous data acquisition between 

the sensor and the ground-based spectroradiometer. 

 

 
Figure 2. Sketch of the multispectral data acquisition performed 

to radiometrically calibrate the Mini-MCA6 

 

Bands 
Block Adjustment 

offset gain R2 

530 nm 0.000704 0.057802 

0.9833 

672 nm -0.000307 0.049919 

700 nm -0.000345 0.041242 

742 nm -0.000688 0.074146 

778 nm -0.000992 0.047175 

801 nm -0.000319 0.047655 

Table 1. Radiometric calibration coefficients of the Mini-MCA6  

 

For the case of active sensors, the radiometric behaviour of their 

backscattered signal depends on: (i) the scanning geometry; (ii) 

the surface properties of the materials and (iii) some other 

instrumental parameters (Höfle and Pfeifer, 2007). Since the 

instrumental effects depend on each specific device, a unique 

behaviour pattern cannot be established although a logarithmic 

behaviour is frequently assumed (Pfeifer et al., 2008). Regarding 

the scanning geometry, (i) the distance between the scanner and 

the measured object and (ii) the incoming beam incidence angle 

to the object define it (Kaasalainen et al., 2011). The distance 

effect plays a strong role consisting of an attenuation 

proportional to square of the distance considered as usual 

(Pfeifer et al., 2008). With respect to the incidence angle effect, 
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it is related not only to the scanning geometry but also to the 

scattering properties of the object surface.  

 

In order to show this logarithmic behaviour, Equation 2 shows 

the radiometric calibration equation obtained for the particular 

case of a phase shift TLS, the Faro Focus3D (905 nm). This 

sensor was calibrated by the reflectance-based method and under 

laboratory conditions (Del Pozo et al., 2016a). In this case, a 4-

panel calibrated Spectralon® (Figure 3a) was stationed at 0.5 m 

distance intervals from 3 to 36 m in order to study the distance-

behaviour of the backscattered TLS radiation (Figure 3b). 

 

 
Figure 3. (a) Spectral behaviour of the Spectralon® panels. (b) 

Sketch of the Faro Focus3D data acquisition 

 

I
DLgain

ebddae
d


 2

/
    (2) 

 

where  
d/

 = reflectivity of the object at the wavelength of 

the TLS depending of the distance range 

a , b = empirical coefficients related to the signal 

attenuation and laser scanner internal conversion 

d = distance between the laser scanner and the object 

I
DL = digital levels of the backscattered intensity data 

 

The incidence angle (α) affects the backscattered intensity 

according to the Lambert´s Law (Höfle and Pfeifer, 2007), so 

that the higher the incidence angle the smaller the amount of light 

coming back to the TLS (Equation 3). 

 







cos

/ d
c
  

  (3) 

 

where  
c

 = reflectivity of the object at the wavelength of the 

TLS corrected from the incidence angle effect. 

 

Taking into account the above and for the particular case of the 

Faro Focus3D, Table 2 summarizes the empirical calibration 

coefficients obtained after applying the Equation 2 for each 

range of distances (Del Pozo et al., 2016a). 

 

 

Distances (m) a b gain R2 

3-5.25 -1.0928 3.0295·10-5 0.0064 0.9868 

5.25-9 -0.1134 4.9446·10-7 0.0059 0.9932 

9-36 0.0214 3.9072·10-7 0.0054 0.9966 

Table 2. Empirical calibration coefficients of the Faro Focus3D  

 

For the radiometric calibration of both types of sensors, it was 

assumed that the surfaces of materials have a perfect Lambertian 

behaviour. 

 

2.4 Sensor fusion 

In order to perform damage assessments of CH and obtain 

hybrid cartographic products through multispectral images, it is 

necessary to make a correct registration of the different sensor 

used. If data from active laser scanners is combined with data 

from passive sensors, 3D intensity data must be converted into 

images with the same radiometric and spatial resolution as 

images recovered by the passive sensors. Therefore, it is 

necessary to conduct several geometric rectifications and 

radiometric transformations before the classification process 

(Table 3). The registration methodology follows two main 

steps: (i) to determine the angular and spatial position of the 

sensors and (ii) to reconstruct the 3D geometry of the object. 

Once the geometry and the position of the sensors is resolved, it 

is possible to extract the radiometric values of interest for each 

of the spectral bands of each sensor. 

 

The internal orientation, through which focal length, principal 

point and geometric distortion are obtained, are usually solved 

before the radiometric calibration of the sensors (Luhmann et al., 

2013). The external orientation can be solved by establishing the 

collinearity condition model. This model involves ground control 

Classification techniques Characteristics Examples of classifiers 

Pixel-based techniques Each pixel is assumed pure and 

typically labelled as a single 

class 

Unsupervised: K-means, ISODATA, SOM, hierarchical clustering. 

Supervised: Maximum likelihood, Minimum distance-to-means, 

Mahalanobis distance, Parallelepiped, K-nearest neighbours. 

Machine learning: artificial neural network, classification tree, random 

forest, support vector machine, genetic algorithms. 

Sub-pixel-based 

techniques 

Each pixel is considered mixed, 

and the areal portion of each 

class is estimated 

Fuzzy classification, neutral networks, regression modelling, 

regression tree analysis, spectral mixture analysis. 

Object-based techniques Geographical objects, instead of 

individual pixels, are considered 

the basic unit 

Image segmentation and object-based image analysis techniques: E-

cognition, ArcGIS Feature Analyst. 

Table 3. Most common classification techniques (Li et al., 2014) 
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points and tie-points of unknown position measured 

automatically in the images by SIFT (Scale-Invariant Feature 

Transform, Lowe, 1999) or SURF (Speeded Up Robust 

Features, Bay et al., 2006) algorithms. Accordingly, as an 

alternative to this process, there is the possibility of re-

projecting the different images onto a common plane using a 2D 

projective transformation (Hartley et al., 2003).  

 

2.5 Multispectral Analysis: Image Classification 

A multispectral dataset is essentially made up of an r×c×b 

matrix of numerical values in radiance or reflectance levels (if the 

calibration is performed). The value of each pixel will be located 

in a row (r), column (c) and a band (b) conforming the 

multispectral image (Figure 4). 

 
Figure 4. r×c×b multispectral image and a spectral signature 

 

The analysis of these data consists of a classification to identify 

and classify pixels with different properties. In the 

classification, a particular class is assigned to each pixel based on 

its radiometric and spectral characteristics (pixel-based 

techniques). The two generic approaches are the supervised and 

the unsupervised classifications (Lillesand et al., 2014). In 

supervised classification, the expert user identifies some pilot 

areas known as training polygons. These areas must correspond 

to specific informational classes (building materials, chemical 

pathologies, etc.). These areas must show a certain degree of 

homogeneity and balanced distribution in different zones of the 

multispectral image. For its part, unsupervised classification 

does not require the interaction of the user in the definition of 

classes. This is an automatic procedure that looks for spectral 

clustering of pixels. Finally, the user must analyse the classes 

detected to establish possible correspondences with  

informational classes.  

It is common to choose mixed classification strategies that 

firstly apply unsupervised classifications serving as a guide for 

later supervised classifications. Furthermore, both strategies can 

take into account additional criteria as the surface roughness for 

the case of active sensors. In this case, the surface characteristics 

of the object would serve as an additional band that will improve 

the results of the final classification. Finally, thematic maps will 

be obtained showing the different building materials or the 

spatial distribution of a given pathology. These products will 

serve as a basis for problem-solving and decision–making in 

order to preserve CH elements. Furthermore, they can be back-

projected to the 3D model for a complete inspection and 

management. Table 3 synthesizes the most significant image 

classification algorithms 

 

3. MULTISPECTRAL IMAGING APPLIED TO 

HISTORICAL CONSTRUCTIONS 

This section deals with the application of multispectral imaging 

to real cases in order to evaluate the flexibility and potential of 

this technique for detecting and classifying accurately a wide 

range of construction materials as well as their pathologies.    

Based on these premises, three consecutive case studies are 

addressed. The first one tested a multispectral sensor to 

different rock outcrops in order to analyse the ability of the 

sensor to differentiate types of construction materials used in 

CH elements (Figure 5). The second case study sought to 

evaluate the ability of this technique to assess different degrees 

of moisture since this is the most common pathology presented 

in CH constructions (Figure 6). In this case, sensor fusion of 

both active and passive sensors was the chosen technology.  

 

Finally, all the knowhow and experience acquired with the 

previous works was applied to a specific heritage case study, 

the damage assessment of the façade of a church with apparent 

pathologies (Figure 7). For this final study, it was opted to 

apply a combination of both active and passive sensors 

previously calibrated. 

 

 The study area for this fist case study was an area lithologically 

characterized by sedimentary rocks (limestones, marlstones and 

sandstones) and placed in south-eastern part of the Rhône-Alps 

region of France. By using a Mini MCA-6 (530-801 nm) 

multispectral camera previously calibrated a total of 12 

formations were remotely acquired. In addition, a standard 

calibrated reflection target (Spectralon®) was placed in each 

scene in order to obtain the irradiance at the each capture 

moment and so be able to obtain images in reflectance values 

(see Equation 1). 

 

After analysing the results (Table 4), it was concluded that this 

multispectral camera is capable to find spectral differences 

between two of the three types of rock analysed, limestone and 

marlstone, not being currently possible the discrimination 

between limestone and sandstone. The spectral signatures 

obtained for the three rock types are consistent with the 

spectral behaviour of their mineral compositions and grain sizes. 

Bearing in mind that the spectral range of this camera is not the 

appropriate for spectral studies of rocks, additional difficulties 

associated with the study of this particular land cover should be 

added. Rocky walls usually have heterogeneous surfaces that 

cause variations in the reflection of incoming radiation. In 

addition, its surface geometry favours the formation of surface 

shadows. Therefore, it is recommended to perform the data 

acquisition on diffused light days as well as fusion other type of 

sensor with the multispectral camera in order to record 

information in the short-wave infrared spectrum. 
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Figure 5. (a) Band 5 of the Mini-MCA6 in reflectance values, 

(b) images of probability and (c) the final rock classification map 

(Del Pozo et al., 2015) 

 

Transformed divergence Limestone Marlstone Vegetation 

Marlstone 1,999 - - 

Vegetation 1,999 2,000 - 

Shadows 1,918 1,808 1,989 

Table 4. Separability between classes (0-2) 

 

Regarding the second case study, a concrete structure was 

selected (Figure 6) in order to analyse the feasibility of 

automating the inspection of moisture through the analysis and 

processing of multispectral data from multiple sensors. This 

pathology was selected since it is a critical parameter for the 

early detection of CH assets degradation. In this case, a total of 

four sensors, two active laser systems and two passive digital 

cameras were used covering the visible, near and short wave 

infrared ranges. The active sensors involved a Faro Focus3D 

(905 nm) and a Riegl-Z390i (1550 nm) TLS. Passive sensors 

comprise a Canon EOS5D (400-700 nm) and a Mini-MCA6 

multispectral camera (530-801 nm). 

 

Sensor fusion was achieved in an 11-band multidimensional 

matrix after several geometric data transformations: (i) 

processing of 3D point clouds from laser scanners to 2D 

orthoimages and (ii) correction and registration of images from 

the two passive sensors. Orthoimages were generated from 3D 

models by the projection point clouds into a plane. For its part, 

2D data from passive sensors was rectified. Finally and before 

the classification procedure, a homogenization of the geometric 

and radiometric resolution of the images was performed 

establishing a GSD of 25 mm and a radiometric resolution of 8 

bits.  Figure 6 shows the results of the last stage consisted of the 

automatic mapping of different levels of moisture by applying 

the fuzzy k-means unsupervised classification method.  

 

 
Figure 6. Moisture classification map. Combination of (a)(b) 

two active and (c)(d) two passive sensors. (Conde et al., 2015) 

 

After this study, it was concluded that multispectral imaging is a 

suitable technique to detect different degrees of moisture where 

active sensors gave the added value of quantifying the damages 

and affected areas. Finally, and thanks to an analysis of variance, 

it was determined that the most suitable spectral range for 

moisture detection is the near and shortwave infrared. 

 

The final case study also proposed the hybridization of passive 

and active sensors in order to detect different building materials 

and pathologies in a façade of a church. In this case, the Mini-

MCA-6 multispectral camera and the Faro Focus3D TLS 

previously calibrated were used as remote sensing technologies. 

The aim of this final work was to be able to achieve a damage 

assessment of the façade as well as evaluate the degree of 

improvement obtained by working with radiometrically 

calibrated sensors. 

 

To merge data from both kind of sensors and analyse them in 

reflectance values several corrections and transformations were 

applied to raw data. In the case of the multispectral images, they  

were corrected from two systematic radiometric errors (the 

background and the vignetting effects). For its part, 3D laser 

data was aligned and filtered to remove redundant information 

captured. After this pre-processing and thanks to the use of a 

Spectralon® to know the irradiance of the sun, raw data from the 

Mini MCA-6 was converted into reflectance values. In the case 

of the Faro Focus3D, raw intensity data was converted to 

reflectance values by applying Equation 2 and 3. Finally, and in 

order to analyse data from both sensors 3D data and 

multispectral images were transformed into true orthoimages 

thanks to the metric provided by the laser scanner. These 
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orthoimages were finally classified by applying a previous 

unsupervised and a last supervised classification. 

Figure 7. (a) San Segundo Church and sketch of the acquisition 

setup. (b) Supervised classification map. (Del Pozo et al., 

2016a) 

The multisensory map obtained after the final classification 

allowed to differentiate and quantify two different types of 

granite stones, the mortar between them, the wood of the main 

door as well as the main pathology, moisture (from capillarity 

and filtration). In addition and for both cases, significant 

improvements were achieved from the use of the sensors 

radiometrically calibrated. A 34% improvement of the results, 

by means of Kappa coefficient (Cohen, 1960), was reached after 

calibrating both sensors. 

4. CONCLUSIONS

The thesis entitled "Multispectral imaging for the analysis of 

materials and pathologies in civil engineering, constructions and 

natural spaces"  has been awarded by the CIPA-ICOMOS for 

its contribution to the preservation of Cultural Heritage. The 

research work deals with the study and classification of 

materials and pathologies in CH assets. This paper summarizes 

the main contributions to this field after a comprehensive study 

performed on a wide variety of sensors covering the optical 

range of the spectrum (from the visible to the shortwave 

infrared). In this way, the greater suitability for each specific 

pathology or case study has been established. Each sensor offers 

its specific advantages depending on its nature, operating 

principle and the wavelength for which it acquires information. 

The main conclusions reached after performing this research 

work are listed below: 

- The basis of robust CH assessment by multispectral imaging 

is the use of sensors that have been previously

radiometrically calibrated. In this way, it is possible to

analyse physical values instead of digital levels as well as to

monitor the evolution of CH pathologies through time by

sensor hybridisation.

- To take the advantage of different sensors, sensors

hybridisation stands out as the best solution to conduct

comprehensive multispectral studies of CH. In this regard,

four sensors (two active and two passive) have been

combined successfully thanks to the pertinent radiometric

and geometric calibrations of each one.

- Regarding passive sensors, some radiometric corrections had

to be applied prior to the radiometric calibration process.

Background error and vignetting are common systematic

errors that are transmitted affecting the results. Although,

these sensors have the disadvantage of being very sensitive

to changes in lighting conditions they are very versatile,

allowing to perform low-cost data acquisitions and analysis.

- Regarding active sensors, they are less influenced by changes

in lighting conditions than passive sensors although they are

more expensive. Since they are monochromatic, they have to

be combined with other sensors in order to perform

multispectral analysis. Thanks to them, it is possible to

calculate the surface roughness that can serve as an

additional criterion in the classification process of materials

as well as to quantify the damages detected.

- Regarding multispectral sensors, it is very important to

choose a correct configuration of their spectral bands in

order to cover the spectral behaviour of the

pathology/material to be analysed. The configuration of the

multispectral camera used in this study (the Mini MCA-6,

530-801 nm) is ideal to analyse biological colonisations

(mosses, lichens and vegetation) in CH elements. However,

this configuration is not ideal to discriminate construction

materials and other pathologies like moisture so it should be

combined with other sensors operating at the short-wave

infrared range in order to obtain more comprehensive results.

- In relation with the most common pathology of CH

elements, the moisture content, it can be drawn that it is

well characterised in the near to medium infrared range.

Finally, some implementations are open to improve these works 

in relation to obtain better CH analysis. These can include the 

study of the anisotropic behaviour (Soulié et al., 2007) of 

building materials in order to improve their characterization. 
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