The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017
International Conference on Unmanned Aerial Vehicles in Geomatics, 4—7 September 2017, Bonn, Germany

AUTOMATED DETECTION AND CLOSING OF HOLES IN AERIAL POINT CLOUDS
USING AN UAS

Torsten Fiolka, Fahmi Rouatbi and Daniel Bender

Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE, Wachtberg, Germany
{torsten.fiolka, fahmi.rouatbi, daniel.bender } @fkie.fraunhofer.de

KEY WORDS: UAV, 3D terrain model, point cloud, hole detection, surface reconstruction

ABSTRACT:

3D terrain models are an important instrument in areas like geology, agriculture and reconnaissance. Using an automated UAS with a
line-based LiDAR can create terrain models fast and easily even from large areas. But the resulting point cloud may contain holes and
therefore be incomplete. This might happen due to occlusions, a missed flight route due to wind or simply as a result of changes in
the ground height which would alter the swath of the LiDAR system. This paper proposes a method to detect holes in 3D point clouds
generated during the flight and adjust the course in order to close them. First, a grid-based search for holes in the horizontal ground
plane is performed. Then a check for vertical holes mainly created by buildings walls is done. Due to occlusions and steep LiDAR
angles, closing the vertical gaps may be difficult or even impossible. Therefore, the current approach deals with holes in the ground
plane and only marks the vertical holes in such a way that the operator can decide on further actions regarding them. The aim is to
efficiently create point clouds which can be used for the generation of complete 3D terrain models.

INTRODUCTION

Many applications have needs for a detailed representation of the
earth’s surface, depending on the application in different reso-
lutions and with or without buildings and vegetation. The terms
Digital Elevation Model (DEM) and Digital Terrain Model (DTM)
are mostly used for models without any objects on the surface,
the term Digital Surface Model (DSM) is commonly being used
for a model containing all objects. We use in this work the term
Digital Surface Model as defined in (Priestnall et al., 2000) as a
terrain model including all features on the ground. High reso-
lution DSMs are used in different fields such as in archaeology
searching for buried sites, in disaster management for prevent-
ing or evaluating damages or in reconnaissance for reconnoitring
unknown areas. However, before the common availability of Un-
manned Aircraft Systems (UAS), creating a DSM was an elabo-
rate and expensive task which usually involves aircrafts or heli-
copters. Nowadays, DSMs can be created in a fast and efficient
way by the mean of a Light Detection And Ranging (LiDAR)
system carried by an UAS.

Using such an automated system, one can easily create detailed
DSMs over several square kilometers in a short amount of time.
One of the problems which can occur are holes in the model.
These can be caused by several reasons. For example, some areas
are missed by the flight plan, the UAS path is influenced by wind
or the holes are caused by occlusion from neighbouring structures
on the surface. The latter is maybe the most problematic, because
they represent areas which can not be covered by an UAS. These
holes can cause problems depending on the application of the
pointcloud. For example, normals at the edge of a hole tend to
tilt into the direction. Also a subsequently created surface model
will also not be complete or estimate the area of the hole by its
boundaries, which might lead to a wrong representation. This
work proposes a method for the detection of holes in point clouds,
identifying the ones which can be covered and altering the flight

plan to close them automatically. Furthermore, our algorithm can
be extended to handle regions with spare measurements as holes,
so that the resulting point cloud has an overall sufficient point
density.

(b) The corresponding 3D point cloud colored according to the height of
the points

Figure 1. Example of a point cloud generated from a simulated
model containing more than two million points

The aim of the proposed method is to process the data while the
UAS is in flight. This permits creating an automated and unsu-
pervised system which can generate point clouds with minimal
holes. However, the computational power on small UAS is lim-
ited since high-performance processing systems are heavy and
have a high power consumption which leads to less flight time.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W6-101-2017 | © Authors 2017. CC BY 4.0 License. 101



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017
International Conference on Unmanned Aerial Vehicles in Geomatics, 4—7 September 2017, Bonn, Germany

(a) The voxel grid generated from the simulated point cloud of Fig 1(b)
and colored according to the points height

(b) The height map created with the voxelgrid colored according to the
maximum height of the corresponding voxels

Figure 2. The data structures used for the point cloud processing
and the holes detection.

However, computations on the ground requires a high bandwidth
connection to the UAS, which is also challenging or expensive.
We propose therefore no online algorithm but an offline solution
which can be computed either in the air or on the ground. If the
solution is being used on the ground it does not need a contin-
uous connection, an intermittent connection suffices. For exam-
ple, if the UAS is in range for a high bandwidth connection to the
ground station all data will be transmitted, evaluated and retrans-
mitted to the UAS. With the size of point clouds easily reaching
millions of points, the data processing has to be carefully pre-
pared (Fig. 1). Therefore, we choose a voxelgrid as a base rep-
resentation to handle huge point clouds taking into account the
memory and computation time limitations.

The voxelgrid allows the discretization of a point cloud. It divides
the 3D space into cells of identical size, called voxels. Each voxel
represents all points that lie within its volume so that the size of
the point cloud is not based on the number of points rather than
their dilatation in space. This is especially helpful in the case
of an irregularly sampled point cloud. But this also means that
there will be some discretization errors. By carefully choosing
the voxel size depending on the target application, these errors
can be minimized. The voxelgrid is used to accumulate data dur-
ing the flight. A height map is created out of it and used for

the hole detection (Fig. 2). During the creation of the height
map, height jumps and potential vertical holes are identified. The
height map is then used for to detect holes in the ground plane
and decide, whether they can be covered by the UAS or not.

The remainder of this paper is structured as follows. In section 2
we compare our approach with prior proposals. Section 3 covers
the data processing, the hole detection process and the way to
take a decision about covering the surface of a hole. After that,
section 4 outlines the path planning process needed to adjust the
flight course of the UAS. Section 5 describes the experiments of
the proposed methods and section 5 presents a conclusion and
some future work.

RELATED WORK

There are different means of creating a DSM from an aerial ve-
hicle, such as electro-optical cameras and LiDAR systems. Both
techniques have their advantages and disadvantages and should
be seen rather as complementary than competitive, as stated in
(Baltsavias, 1999). A DSM therefore is a representation of the
ground surface including all objects on it. When constructing
DSM with an airborne LiDAR system, one usually uses an com-
bination of Global Navigation Satellite System (GNSS) and Iner-
tial Navigation System (INS) to produce georeferenced data from
the scan lines. The result is a georeferenced point cloud, which is
a point-wise representation of the underlying surface. These point
clouds are usually not perfect, they may include sensor noise as
outliers, are irregularly sampled due to different angles between
surface and LiDAR or include holes. If vegetation is present, the
laser may be reflected from the leaves or from the ground beneath.
Depending on the application, the point cloud may be processed
to remove outliers, apply regular sampling or create a DEM from
it by removing artificial objects. Using a surface reconstruction
algorithm a point cloud may be converted into a polygon mesh
representation. Especially for the surface reconstruction the han-
dling of missing data is important, as holes in the point cloud may
lead to poor or wrong reconstructions. A overview into the field
of surface reconstruction is given by (Berger et al., 2017). As
holes are a common problem, multiple techniques have been de-
veloped to lessen the influence of missing data. Many of these
come from the areas of Computer-Aided Design or Computer
Graphics with the aim of building a watertight surface from an
incomplete model of an object. The algorithms try to reconstruct
surfaces in smooth areas (Wang and Oliveira, 2007) or try to han-
dle complex structure through assumptions about the original sur-
face (Jun, 2005)(Davis et al., 2002).

When the aim is the reconstruction of the ground in an area, these
methods have to be refined to deal with the new conditions com-
pared to point clouds from closed models. (Musialski et al., 2013)
provides an insight into the application and the challenges not
only for LIDAR based algorithms but also for camera based ones.
Finding regions with missing data is a vital task for constructing
plausible surfaces, so there are a number of publications in this
field. Bendels et al. detect holes in point sets through combining
different criteria like the angle between the points, their neigh-
bourhood and their shape (Bendels et al., 2006). For reasons
of performance we do not use the points directly but a voxel-
grid as representation of the points. Salvaggio et al. build point
clouds from multi-view aerial images in (Salvaggio and Salvag-
gio, 2013) and detect void regions. Ni et al. propose a method
for detecting edges and line tracing in 3D point clouds (Ni et al.,
2016). For closing holes in the ground surface with an UAS, our

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W6-101-2017 | © Authors 2017. CC BY 4.0 License. 102



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017
International Conference on Unmanned Aerial Vehicles in Geomatics, 4—7 September 2017, Bonn, Germany

two-dimensional procedure is sufficient. Another approach from
Colleu et al. uses ray-based methods for detecting opening like
windows in urban areas (Colleu and Benitez, 2016). They mark
all areas there the laser ray intersects with the plane of a house
wall as open windows. Wang et al. also detect windows from
laser range images in (Wang et al., 2011). Both approaches need
to extract the facade plane for detecting the holes first. As we are
using an airborne LiDAR system, we usually do not see much of
a facade and cannot use this approach.

Nguyen et al. use a grid representation of point clouds for detect-
ing hole boundaries and simplifying them (Nguyen et al., 2012)
(Nguyen et al., 2013) (Nguyen et al., 2015). We found the ap-
proach for detecting holes in the ground plane suitable, but needed
to make changes for detecting vertical holes and height jumps.
Another approach for filling holes uses tangent planes from the
boundary (Nguyen et al., 2016). Several methods explore pos-
sibilities to fill holes once they are detected. Chalmoviansky
et. al 2003 fit algebraic surface into the holes (Chalmoviansky
and Jiittler, 2003). Another approach interpolating geometry and
shading with a moving least square formulation is from Wang et
al. (Wang and Oliveira, 2007). These approaches have in com-
mon that they are filling holes with artificial data generated by
mathematical models. In contrast, our approach attempts to fill
these holes by rescanning the area containing them.

For closing the holes, we use a greedy algorithm for choosing
the order of the holes we have to visit. There are more efficient
ways to solve the problem (Li et al., 2007), but this work focuses
on other aspects and the simple greedy solution is sufficient for
demonstration. For covering a hole we use a Boustrophedon path
(Galceran and Carreras, 2013) to close the hole with respect to the
swath width of the LiDAR. The choice was made with respect
to the Rotary Wing UAV we intend to use and may not be the
best for other types. For example, a Fixed Wing UAV cannot
turn in place, so the path planning has to be adjusted to reflect its
capabilities.

HOLE DETECTION

In this section, we describe the methods used to detect the hor-
izontal and vertical holes in 3D point clouds. The flowchart of
Fig. 3 summarizes the different steps of our approach. First, we
present the data structure used to organize the input point cloud
and perform the detection of holes. Then, we describe the algo-
rithms used to detect the different kind of holes in the point cloud.
Finally, we present the procedure used to calculate the path that
the UAS has to perform in order to fly to the holes which can be
covered.

Preprocessing

The point clouds in this paper are created by an aerial LiDAR
which produces lines of range measurements. These are fused
with an GPS/INS unit to transform the measurements into points
with global coordinates. The density of the points depends on
factors like the travelling speed of the UAS, the resolution and
the scan rate of the LiDAR as well as the angle and the distance
between the laser beams and the ground. As a result, the gen-
erated point clouds consist of surfaces of irregularly distributed
points in the 3D space Additionally, some areas may not be cov-
ered by points as they are located in the shadows of buildings or
other topographic structures as trees. Furthermore, uncovered ar-
eas are a result from discontinuities in the scanned structures. For

[ Input point cloud ]

Compute voxelgrid
Compute heightmap

I Detect the exterior boundary |

U1ssao0idalg

I Detect interior boundaries |

I Cluster points belonging to a boundary |

—>| Check points of the next interior boundary |

Uo1199193 3]0H

Contains
height jump?

Yes

Mark as vertical
hole

Every point
checked?

Every interior
boundary checked?

Compute flight path
Flight path

Current UAS
position

uiuue|d yyed

Figure 3. Flowchart for the hole detection and path planning
approaches

this reason, the point cloud may include some holes which are re-
gions with no points. In this paper, we classify the holes into two
categories:

e Horizontal holes: Missing points in planar horizontal sur-
faces such as the ground

e Vertical holes: Gaps in vertical surfaces that have not been
illuminated by the LiDAR and commonly generated by ver-
tical structures such as buildings

Working with irregularly sampled point clouds has some pitfalls
like the strong sensibility to noise in sparse sampled areas and
the redundant calculations of features as normals in dense sam-
pled areas without notable differences. For these and other rea-
sons we use a voxelgrid as main data structure. A voxelgrid is
a regular discretization of the 3D space into cells called voxels
which integrate all points that lie within their boundaries. The
points within one voxel are represented by their centroid, but de-
pending on the application, other information may be provided.
For example, by retaining the covariance of the point distribution
for each voxel, normals can be easily calculated for the whole
voxelgrid. In the voxelgrid, the neighbourhood queries are com-
putationally cheap. As it is regularly ordered, computations on
the voxelgrid depend only on its dimensions and not on the num-
ber of points it contains. Of course, one has to choose the suitable

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W6-101-2017 | © Authors 2017. CC BY 4.0 License. 103



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017
International Conference on Unmanned Aerial Vehicles in Geomatics, 4—7 September 2017, Bonn, Germany

voxel size for the grid. If the size is too big, details of the under-
lying surface will be lost in the discretization, If the voxels are
too small, the grid loses its advantages over the point cloud. In
general, the size will be determined by the resolution of the Li-
DAR and the application’s requirements. As the voxelgrid is a
three-dimensional data structure and the following calculations
perform better in a two-dimensional structure, we create a height
map from the voxelgrid. It consists of a regular sampling of the
xy-plane and integrates all point and height information in each
cell. In our case the minimum and maximum z-coordinates and
the number of voxels present are stored for later use. To make
the creation computationally cheap, we use the resolution of the
voxelgrid for the height map and integrate all cells with the same
xy-coordinate from the voxelgrid into one corresponding cell in
the height map.

Figure 4. Classification of the grid cells. The exterior boundary
of the surface (blue points), the boundaries of the horizontal
holes (red points) and the vertical holes (white points)

Detection of height jumps and vertical holes

During the creation of the height map, the jumps in the height and
the potential vertical holes are detected. Large height differences
in the surface may lead to occlusions causing holes in the point
cloud. Therefore, we need the detected height jumps for deciding
whether it is reasonable to return to the hole trying to close it. It
might be possible to clear up some occluded area from the UAS,
but that depends on knowledge about the occluded area or making
assumptions on the nature of the surface in the area. The first
step is to detect height jumps. As the height map contains the
minimum and maximum z-coordinates from the points in each
cell, height jumps can be detected by comparing the difference of
these against a given thresholdneight.

max, — min; > thresholdneight - (1)

If the difference exceeds the threshold, the cell is marked accord-
ingly. The thresholdpeighs has to be chosen carefully and de-
pends on several factors including the resolution of the voxelgrid.
If it is too small, even small slopes and bushes might be consid-
ered as height jump, if it is too large, some holes will be missed.

In the next step we detect vertical holes by comparing the number
of voxels on every cell with a height jump. If the number of
voxels is less than the number on would expect given the height
difference, we can conclude on missing voxels along the height
jump:

maxr, — min,

——— > F#vozels . 2)
resolution

Of course we cannot decide if this is the result from a single hole
or due to under sampling of the surface given a steep angle be-
tween LiDAR and surface. But as clearing up vertical areas is
even more problematic than probably occluded ground areas, we
do not investigate this question further in the scope of this work.

Detection of the exterior boundary

After creating the height map we perform the detection of the
holes. Our method is based on the work of Nguyen (Nguyen et
al., 2012). The points belonging to the exterior boundary are first
extracted. We use the growth-clock-wise algorithm. This algo-
rithm starts from the initial point which corresponds to the occu-
pied cell in the 2D grid with the minimum x and y coordinates.
Then, the exterior boundary is iteratively built by searching for
the first occupied cell in the neighbourhood of the initial point
in a clockwise circular way. In each iteration, the so called ring-
neighbourhood is computed for the current cell, and the next point
is searched by circularly analysing the neighbours in a clockwise
order starting from the previous point’s direction. This algorithm
can extract all exterior boundaries even if the area contains more
than one patch.

Detection of inner boundaries

After extracting the exterior boundary, the remaining points are
searched for inner boundaries. A point is considered as a bound-
ary of a hole if one of its neighbours in 4-connectivity is empty.
The next step is the clustering of the inner boundaries to the corre-
sponding holes. For that purpose the neighbourhoods of all cells
marked as inner boundary are search for adjacent inner bound-
ary cells and stored as a connected component. Also the number
cells with height jumps in the neighbourhood is accumulated dur-
ing the clustering. That allows the classification into holes that
originate from occlusion and those from missing data.

PATH PLANNING

Once the horizontal holes are detected, we perform a path plan-
ning to fly the UAS to the areas where holes are present and per-
form a scan in order to close them. The main objective of this
step is to find the waypoints the UAS has to follow. For each
horizontal hole, we enclose the points from its border in a rect-
angle based on the minimum and maximum coordinates of the
extreme points in the height map. Then, a Boustrophedon path
(Galceran and Carreras, 2013) is generated locally for each hole
based on the length of the sides of the enclosing rectangle (Fig.
5). In order to minimize the number of turns and the velocity
changes that the UAS has to perform over each hole, we perform
the flight along the longest side of the enclosing rectangle. The
number of lines in the flying path and the distance between them
is chosen according to the flight path, the opening angle of the
LiDAR, the corresponding swath of the laser beam and the de-
sired overlap between the point clouds generated in two opposite
directions. We assume that the UAS is flying in a constant alti-
tude with no obstacles. Furthermore, the swath of the LiDAR is
also constant and as a consequence the distance between the lanes

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W6-101-2017 | © Authors 2017. CC BY 4.0 License. 104



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017
International Conference on Unmanned Aerial Vehicles in Geomatics, 4—7 September 2017, Bonn, Germany

=

h n
2 H i
£ ey t
[=] L o
o L E
H - .
v H
- . H
= .
o . §
-] - :
» . E
2 L i
=] [
= . E
Qv - H
<= . :
- H
oo - !
£ d i
E J i 1
H Hole, X
o - : ]
3 . H ]
o i
s . i
£ B H
o . ]
2 H
] . ]
. H i
oc——Y et | e
End Overlap between| Overlap between
two strips Strip and point cloud
®
Start

Figure 5. Scheme of a Boustrophedon path computed locally
over a horizontal hole taking in consideration the swath width
and the desired overlap between the flight lanes

Map #Cells | Time
Test site A 34380 16ms
Simulation | 164594 | 110ms
Test site B | 521368 | 510ms

Table 1. The computation time results of the algorithm. The left
column shows the point cloud used, the middle column the
number of cells in the height map and the right column the

computation time for building the height map and classifying the

cells.

in the flight path. This distance also determines the overlap be-
tween the present point cloud and the new laser scans. Having an
overlap has the advantage of being more robust against deviations
from the planned flight path as well as increasing the point clouds
density. The disadvantage is the increased flight time needed for
completing the course, so the values have to be adjusted to the
target application. If the LiDAR is mounted at an angle from the
vertical and if the UAV tends to fluctuate in flight through turbu-
lences, the start and end points should be planned with a margin
to cover the hole completely. The flight path starts from the ac-
tual position of the UAS and sequentially goes to the nearest hole
until all holes have been covered.

EXPERIMENTS

The implemented algorithms have been applied to simulated and
real data. The results from simulations and flight tests as well as
the evaluation of the algorithms are presented.

Simulated data

The simulation experiments were performed in the Gazebo frame-
work (Koenig and Howard, 2004). We used a freely available 3D

_—

= e
lene, |\l eo I‘fl 5 Ef

o & o] plr

>

:C'J,._.-.'!
&‘q %

Figure 6. Example of a global path starting from the actual
position of the UAS and connection all local paths over each
hole

model from (Nieves, 2013) as environment (Fig. 1(a)). The hec-
tor quadrotor package developed by (Meyer et al., 2012) has been
used to model the UAS. In our setup the model carries a simulated
LiDAR system with the same technical characteristics and orien-
tation as the real system. The point clouds have been generated
by flying the quadrotor model according to a list of way points.
The results of the holes detection are shown is Fig. 4. The path
planned subsequently is depicted in Fig. 6. Most of the holes
are caused by occlusion from the houses and are correctly classi-
fied as occluded and will be skipped for the recovery flight. The
other holes were placed deliberately in the middle of the street
to test the algorithm. The holes were classified correctly and a
path was planned to close them accordingly. Interestingly, the
telephone lines between the houses also cause vertical holes in
the height map. While the lines would probably not cause seri-
ous occlusions, adjacent holes in the ground might be classified
as occluded hole and would not be recovered.

Real data

The proposed approach has been tested on real data collected
by our airborne LiDAR system. The AR200 from AirRobot is
used as a sensor platform to carry the payload (Fig. 7). With
a maximum take-off weight of 11 kg it can carry the payload
up to 30 Minutes with a maximum speed of 20 km/h. The Li-
DAR system includes a SICK LD-MRS 2D laser scanner with
an opening angle up to 110 degrees and an angular resolution of
up to 0.125 degrees. The system measures approximately 10000
points per second. For the georeferencing of the point cloud,
we use the inertial navigation system Ellipse-D from SBG Sys-
tems which supports Real Time Kinematic corrections for im-
proving the accuracy of the position measurement. The sensor
management and the collection of data is done by an onboard
Odroid XU4, a small form factor ARM-based computer. The
point cloud taken on Test site A covers the dimension of approx-
imately 140x100x12 meters and is depicted in Fig. 8(a). The
holes have been cut out afterwards to test the algorithm. The
point cloud from Test site B includes more than 6 million points

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W6-101-2017 | © Authors 2017. CC BY 4.0 License. 105



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017
International Conference on Unmanned Aerial Vehicles in Geomatics, 4—7 September 2017, Bonn, Germany

(a) The components of the LiIDAR system mounted on the multicopter

(b) The AR200 while performing a mapping flight

Figure 7. The airborne LiDAR system.

covering an area of 600x400x50 meters but offers little features
other than some trees. It is mainly used for evaluating the perfor-
mance of the algorithm on a very large point cloud.

Fig. 8(a) shows an example of a registered point cloud with our
LiDAR which has been collected over a test area. The point cloud
has over 2 million points and comprises structures of small con-
tainers, vegetation and a hill. A set of horizontal holes with dif-
ferent shapes have been added in order to test our approach. The
results are visualized in Fig. 8(b).

Evaluation

In the data sets from the simulation and Test site A, the exte-
rior boundary and the horizontal holes have been reliably de-
tected.The corresponding flight plans are shown in Fig. 6 and
Fig. 8(b). The height map can also detect the vertical holes in
most cases. Some special cases where the interior holes are con-
nected to the exterior boundary still have to be considered. The
computational complexity is outlined as follows: The creation of
the voxelgrid is linear in the size of the point cloud, since every
point has to be considered once. All following steps rely only
on the voxelgrid, e.g. the creation of the height map is linear in
the size of the voxelgrid. According to Nguyen et al. (Nguyen et
al., 2012), the computing time for extracting the exterior bound-
ary depends on the size of the boundary N and the size of the
neighbourhood k. The worst case is O(N # k?), but the aver-
age complexity is lower due to the fact that the algorithm will not
search the complete neighbourhood in most cases. The cost for

(a) Point cloud of a test area at the institute colored according to the height
of each point

(b) Results of the hole detection and flight plan

Figure 8. Experiments on Test site A

the path planning is negligible in our case. We did test the al-
gorithm on a desktop computer with three different point clouds
depicting the results in Table 1. The voxel and cell sizes were set
to 0.5m for all point clouds for better comparison of the results.

CONCLUSION

We present an approach for handling of holes while creating a
surface point cloud using an UAS-based LiDAR system. The
detection of holes and necessary adaption to the flight path to
cover these areas are performed while the UAS is executing the
data collection. The approach considers limited computational
resources as well as the avoidance of holes, which may be indis-
cernible through occlusions. Especially the latter is an interesting
problem for further investigations, as our approach might exclude
some holes which would be perfectly visible for the system. A
quality assurance is a vital point for the development of reliable
and robust automated reconnaissance systems in different fields
of applications.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W6-101-2017 | © Authors 2017. CC BY 4.0 License. 106



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017
International Conference on Unmanned Aerial Vehicles in Geomatics, 4—7 September 2017, Bonn, Germany

REFERENCES

Baltsavias, E. P., 1999. A comparison between photogrammetry
and laser scanning. {ISPRS} Journal of Photogrammetry and
Remote Sensing 54(23), pp. 83 — 94.

Bendels, G. H., Schnabel, R. and Klein, R., 2006. Detecting holes
in point set surfaces. Journal of WSCG.

Berger, M., Tagliasacchi, A., Seversky, L. M., Alliez, P., Guen-
nebaud, G., Levine, J. A., Sharf, A. and Silva, C. T, 2017. A
survey of surface reconstruction from point clouds. Computer
Graphics Forum 36(1), pp. 301-329.

Chalmoviansky, P. and lJiittler, B., 2003. Filling Holes in Point
Clouds. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 196—
212.

Colleu, T. and Benitez, S., 2016. Ray-based detection of open-
ings in urban areas using mobile lidar data. ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences XLI-B3, pp. 591-598.

Davis, J., Marschner, S. R., Garr, M. and Levoy, M., 2002. Filling
holes in complex surfaces using volumetric diffusion. In: Pro-
ceedings. First International Symposium on 3D Data Processing
Visualization and Transmission, pp. 428—441.

Galceran, E. and Carreras, M., 2013. A survey on coverage path
planning for robotics. Robotics and Autonomous Systems 61(12),
pp. 1258 — 1276.

Jun, Y., 2005. A piecewise hole filling algorithm in reverse engi-
neering. Computer-Aided Design 37(2), pp. 263 —270.

Koenig, N. and Howard, A., 2004. Design and use paradigms
for gazebo, an open-source multi-robot simulator. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems,
Sendai, Japan, pp. 2149-2154.

Li, F, Golden, B. and Wasil, E., 2007. The open vehicle rout-
ing problem: Algorithms, large-scale test problems, and com-
putational results. Computers & Operations Research 34(10),
pp- 2918 —2930.

Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U. and von
Stryk, O., 2012. Comprehensive simulation of quadrotor uavs
using ros and gazebo. In: 3rd Int. Conf. on Simulation, Model-
ing and Programming for Autonomous Robots (SIMPAR), p. to
appear.

Musialski, P., Wonka, P., Aliaga, D. G., Wimmer, M., Gool, L.
and Purgathofer, W., 2013. A survey of urban reconstruction.
Computer Graphics Forum.

Nguyen, V.-S., Bac, A. and Daniel, M., 2012. Boundary extrac-
tion and simplification of a surface defined by a sparse 3d vol-
ume. In: Proceedings of the Third Symposium on Information
and Communication Technology, SoICT 12, ACM, New York,
NY, USA, pp. 115-124.

Nguyen, V.-S., Bac, A. and Daniel, M., 2013. Simplification
of 3D point clouds sampled from elevation surfaces. In: 2/th
International Conference on Computer Graphics, Visualization
and Computer Vision, WSCG2013, ISBN 978-80-86943-75-6,
Vol. 21number 2, Plenz, Czech Republic, pp. 60-69.

Nguyen, V. S., Ha, T. M. and Thanh, N. T., 2016. Filling holes
on the surface of 3d point clouds based on tangent plane of hole
boundary points. In: Proceedings of the Seventh Symposium on
Information and Communication Technology, SoICT ’16, ACM,
New York, NY, USA, pp. 331-338.

Nguyen, V. S., Trinh, T. H. and Tran, M. H., 2015. Hole bound-
ary detection of a surface of 3d point clouds. 2015 International
Conference on Advanced Computing and Applications (ACOMP)
00, pp. 124-129.

Ni, H,, Lin, X., Ning, X. and Zhang, J., 2016. Edge Detection
and Feature Line Tracing in 3D-Point Clouds by Analyzing Geo-
metric Properties of Neighborhoods. Remote Sensing 8, pp. 710.

Nieves, H., 2013. Old Fashion Town: 3D Model.
https://free3d.com/3d-model/old-fashion-town-88316.html. On-
line; accessed 10-July-2017.

Priestnall, G., Jaafar, J. and Duncan, A., 2000. Extracting urban
features from lidar digital surface models. Computers, Environ-
ment and Urban Systems 24(2), pp. 65 —78.

Salvaggio, K. N. and Salvaggio, C., 2013. Automated identi-
fication of voids in three-dimensional point clouds. Vol. 8866,
pp. 88660H-88660H-12.

Wang, J. and Oliveira, M. M., 2007. Filling holes on locally
smooth surfaces reconstructed from point clouds. Image and Vi-
sion Computing 25(1), pp. 103 — 113. {SIBGRAPI}.

Wang, R., Bach, J. and Ferrie, F. P., 2011. Window detection
from mobile lidar data. In: 2011 IEEE Workshop on Applications
of Computer Vision (WACV), pp. 58-05.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W6-101-2017 | © Authors 2017. CC BY 4.0 License. 107





