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ABSTRACT:

Productivity of cropping systems can be constrained simultaneously by different limiting factors and approaches allowing to indicate
and identify plants under stress in field conditions can be valuable for farmers and breeders. In organic production systems, sensing
solutions are not frequently studied, despite their potential for crop traits retrieval and stress assessment. In this study, spectral data in
the optical domain acquired using a pushbroom spectrometer on board of a unmanned aerial vehicle is used to evaluate the potential
of this information for assessment of late blight (Phytophthora infestans) incidence on potato (Solanum tuberosum) under organic
cultivation. Vegetation indices formulations with two and three spectral bands were tested for the complete range of the spectral
information acquired (i.e., from 450 to 900 nm, with 10 nm of spectral resolution). This evaluation concerned the discrimination
between plots cultivated with only one resistant potato variety in contrast with plots with a variety mixture, with resistant and
susceptible cultivars. Results indicated that indices based on three spectral bands performed better and optimal wavelengths (i.e.,

near 490, 530 and 670 nm) are not only related to chlorophyll content but also to other leaf pigments like carotenoids.

1. INTRODUCTION

Monitoring approaches focusing on the assessment of crop
development in the field can assist in the detection of plant
stress with application in scenarios of limited production due to
abiotic and/or biotic factors (Behmann et al., 2014). Such
applications can guide the implementation of management
practices by farmers or provide high-throughput solutions for
field-based phenotyping frameworks. Remote and proximal
sensing in the optical domain can be used in non-destructive
retrieval of crop traits or to detected stress occurrence over the
growing season. For instance, the application of vegetation
indices based on physical or statistical relations between
vegetation properties and its spectral response may provide a
viable alternative to assess disease severity in crops (Mahlein et
al., 2013). Although these approaches have great potential for
practical application their evaluation concerning organic
production systems is still underrepresented. Organic
production of potato is mainly limited by nitrogen shortage and
late blight occurrence, together with other stress factors that
may affect the crop development, in particular for crops
cultivated in organic systems. Also, assessment of late blight
incidence and severity in potato based on optical sensing
solutions has not been extensively studied yet, especially
concerning data acquired at canopy level. Therefore, the present
study aims to evaluate different two and three bands vegetation
indices formulations with different combinations of spectral
bands, in the visible and near-infrared, in order to identify
important spectral regions and vegetation indices for late blight
assessment at canopy level.

2. STUDY SITE

Data acquisition was performed on twelve plots cultivated with
potato, during the 2015 growing season, as described by
Franceschini et al. (2017). These plots were part of a
stripcropping experiment and two cultivation methods were
compared for this crop: (a) plots in which a variety mixture of
four different cultivars, Annabelle, Ditta, Tiamo and Toluca,
with different degrees of resistance (from low to high,
respectively) to late blight, were iterated in each crop row,
referred as mixed crop system; and (b) plots cultivated with
only one potato variety (Toluca) considered highly resistant to
late blight, named non-mixed system. The main objective of this
experiment was to evaluate crop development and disease
occurrence for these two organic production systems. In this
context the potential of UAV-carried spectrometer for
monitoring plant growth and disease development was tested.
For that, UAV flights were followed by late blight severity
assessments, according to the methodology described by the
European and Mediterranean Plant Protection Organization -
EPPO (2008).

3. UAV-BASED HYPERSPECTRAL DATA

Acquisition of spectral data was performed during the growing
season using the WageningenUR Hyperspectral Mapping
System (HYMSY), an UAV-based pushbroom imaging system
(Suomalainen et al., 2014). Reflectance measurements were
obtained in wavelengths between 450 and 915 nm, resampled to
10 nm of spectral resolution and 0.2 m of ground sampling
distance. Although, data acquisition was performed in five
different dates during the crop development, as described by
Franceschini et al. (2017), analysis reported here are restricted
to the last dataset obtained, since only on this date late blight
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was detected through visual assessment. The objective is to
extend results reported previously concerning the evaluation of
the disease incidence through optical spectral data.

4. OPTIMIZATION OF VEGETATION INDICES FOR
DISCRIMINATION OF DISEASED CROP

In order to assess the potential of the spectral data to
discriminate differences between treatments in the experiment,
which were mainly related to late blight incidence, vegetation
indices were evaluated. Some of the most used formulations for
two and three spectral bands, indicated by le Maire et al. (2004),
Yu et al. (2014) and Verrelst et al. (2015), were tested (Table
1): difference indices (DI); ratio indices (RI); normalized DI
(NDI); difference of RI (DRI); and ratio of DI (RDI).

Index Formulation sp ei\tlgl. l()):nds
DI R;-R; 2
RI R; /R 2

NDI (Ri-R))/(Ri+ Ry) 2

DRI (Ri-R)/(Ry) 3

RDI (Ri-R)/(Ry-R)) 3

Table 1. Formulations of vegetation indices

The discriminative potential of the different indices and the
spectral bands assigned to then was judged based on the
Bhattacharyya distance (B-dist.), as performed by Kim et al.
(2015). This parameter was used to compare the distribution of
vegetation indices corresponding to each treatment (i.e.,
increasing values from zero corresponding to increasingly
distinct distributions). Therefore, for each index and spectral
band combination, results corresponding to plots of the non-
mixed system were compared to those related to plots of the
mixed system. Considering the differences related to late blight
development in plots under the different production systems, it
was expected that the optimization effort would indicate
important spectral regions and vegetation indices formulations
for the discrimination of healthy from diseased areas through
spectral information acquired at canopy level.

5. RESULTS AND CONCLUSIONS

For vegetation indices that use two spectral bands the best
segregation between plots of the different treatments was
observed using ratio indices (RI; Figure 1b, Table A.l).
However, results were comparable to those obtained using
normalized difference indices (NDI; Figure lc, Table A.1),
including the optimal spectral bands selected in both cases, i.e.,
band one centred at 670 nm and band two between 530-570 nm,
in most cases. The spectral region near 670 nm is characterized
by strong energy absorption by chlorophylls, while reflectance
in wavelengths near 530 nm can be associated mainly to other
leaf pigments like carotenoids. Difference indices (DI) had a
slightly worse performance and relied on a different spectral
region in comparison with RI and NDI, with optimal bands
frequently located between 710 and 740 nm, in the red-edge
region (Figure 1a, Table A.1). For RI and NDI, bands in the red
edge also performed well but in this case they were
outperformed by bands in the red and green regions.
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Figure 1. B-dist. for combinations of bands using DI (a), RI (b)
and NDI (c).

Vegetation indices based on three spectral bands provided better
discriminative potential than those formulated using two bands
(Figure 1 — 3; Table A.1).

Although ratio of difference (RDI) and difference of ratio (DRI)
indices achieved their best performance based on similar
spectral bands, i.e., contrast between bands near 490, 530 and
670 nm, RDI would be a better option for discrimination of
treatments based on spectral data acquired at canopy level.
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Figure 4. B-dist. for combinations of bands using DRI (same

legend as Figure 1).

These results indicate that not only wavelengths related to
chlorophyll content, at leaf or canopy level, may be important to
late blight assessment, but also wavelengths in regions affected
by other leaf pigments, like carotenoids. In fact, other authors
identified spectral bands in the red and green regions as
candidates to improved discrimination between healthy and
diseased plants, at leaf level (Ashourloo et al., 2014; Mahlein et
al., 2013). However, the dataset analysed here concerns only
one acquisition date and spectral data at the plot level
corresponded to all spectral signatures acquired, including areas
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with considerable mix of vegetation with soil, in particular for
plots of the mixed system, in which relatively advanced stage of
late blight development was observed (i.e., between 25 and 75%
of leaf area dead per plot). These conditions may limit the
results presented in the sense that they may be too specific to
this dataset. Despite that, results obtained indicate that spectral
information acquired at canopy level can provide information
potentially useful for late blight assessment. Also, identification
of suitable spectral regions to discriminate diseased from
healthy plants can apparently improve the performance of
monitoring approaches. In this case, the acquisition of data over
time can add complexity to the dataset analysed (e.g., changes
in illumination conditions, variable canopy closure causing
different degrees of background effects, etc.). These factors
need to be take into account for assessment of disease incidence
and severity, in particular if early stages of infestation need to
be identified.

As future research needs, conventional indices and n-band
optimization approaches have to be compared with more
complex solutions, focusing on their application for monitoring
disease development over time.
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Figure 5. B-dist. for combinations of bands using RDI (same

legend as Figure 1).
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APPENDIX
. A; (nm) A; (nm) Ay (nm)
B-dist. Bandl Bfand 2 Band 3
DI = Ri_Ri
0.284 730 720 -
0.275 730 710 -
0.275 740 720 -
0.271 670 530 -
0.270 740 710 -
RI = Ri / R]
0.300 670 550 -
0.300 670 540 -
0.297 670 560 -
0.294 670 530 -
0.292 670 570 -
NDI = (R;-R))/(Ri+ R;)
0.293 670 550 -
0.292 670 540 -
0.290 670 560 -
0.286 670 570 -
0.286 520 500 -
DRI = (R-R;)/(Ry)
0.348 520 490 670
0.346 520 500 670
0.339 520 510 670
0.337 520 480 670
0.335 530 490 670
RDI = (Ri-R;)/(Ry-R;)
0.489 490 530 670
0.489 490 670 530
0.488 480 670 530
0.488 480 530 670
0.486 500 530 670

Table A.1. Best five wavelengths combinations for each
vegetation index formulation
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