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ABSTRACT: 

This thesis aims to analyze the precision of Position and orientation of cameras on Mobile Mapping System (MMS) determined by 

disparity based VO (DBVO). Dual forwards taken cameras on MMS are applied to obtain a sequence of stereo pairs. The Interior 

Orientation Parameters (IOPs) and Relative Orientation Parameters (ROPs) are derived in advance. The pose estimation is achieved 

by DBVO without additional control data. The procedure of DBVO consists of four steps. First up, keypoint detection and matching 

is conducted to obtain tie points in consecutive images. Then, image rectification is implemented to transform tie points into epipolar 

image space. Next, parallax equation is applied to estimate the 3D coordinates of interest points in epipolar image 3D space. Since 

their image points have different disparity in neighboring stereo pairs, the 3D coordinates of interest points in neighboring pairs are 

different as well. Finally, 3D conformal transformation is employed to derive the transformation parameters between neighboring 

pairs according to changing of coordinates of interest points. The posteriori STDs are adopted to assess the quality of transformation. 

Besides, check data of ground trajectory derived by photo triangulation are applied to evaluate the result. The relative errors of 

horizontal and vertical translations derived by DBVO are 2% and 3% in non-viewing direction. However, the translation in viewing 

direction and three rotation angles derived by DBVO have significant systematic errors about 1 m, 3°, 3° and 10° respectively. The 

influence of error propagation is not significant according to the chart of error distance ratio. In open area, the trajectory of INS/GPS 

is similar to ground truth, while the trajectory derived by DBVO has 44% relative error. In residential district, the trajectory derived 

by INS/GPS has drift error about 2 m, while the relative error of the trajectory derived by DBVO decreases to 38%. It is presumed 

that the systematic error results from 3D coordinates estimated by parallax equation because of poor intersection geometry. It will be 

proved by adding sideward photographing cameras in the future. 

1. INTRODUCTION

1.1 Background 

Mobile Mapping System (MMS) is a movable platform which 

integrates multiple sensors for spatial data acquisition. The 

selection of platform depends on the application. Aircrafts and 

Unmanned Aerial Vehicles (UAVs) are selected as platforms 

for wide area applications, such as urban planning, disaster 

prevention and generation of Digital Terrain Model (DTM). 

Land based vehicles (e.g., cars and bikes) are able to collect 

spatial data at street-level, and ships are chosen for bathymetric 

surveying. In indoor environment, human and robots are ideal 

platforms for exploration, rescue, etc.  

Mapping and pose estimation are two main purposes of sensors 

on MMS. Former one is to acquire spatial data around the 

environment, and latter one is to determine the motion of MMS, 

also known as ego-motion. The pose of MMS means its 

position and orientation (Lu and Milios, 1997). In 3D space, the 

pose includes three translations and three rotations, which are 

generally named six Degrees of Freedom (6-DOF) (Saez et al., 

2005). Inertial Navigation System (INS) is a well-known pose 

estimation sensor, but the drift error enlarges as time increases 

when INS is applied for navigation solely (Howard, 2008). 

Although Global Navigation Satellite System (GNSS) is usually 

integrated with INS to improve the positioning, the signals of 

GNSS are easily blocked in complex environment, which makes 

GNSS positioning become poor or even fail. Odometer is 

another solution for ego-motion determination of land based 

vehicles because it provides how long the MMS has driven 

according to the rotation of the wheel. However, the distance 

given by odometer is incorrect when MMS is driving on rough 

terrain (Howard, 2008). Since sensors mentioned above all have 

the limitation on positioning, it is necessary to integrate 

mapping sensors to assist in ego-motion determination. 

Simultaneous Localization And Mapping (SLAM) is a concept 

to map the environment and to locate the platform at the same 

time. 

1.2 Related Works 

Visual Odometry (VO), which is to estimate 6-DOF ego-motion 

of cameras from a sequence of images (Nistér et al., 2004). 

There are three methods to achieve VO by features. First one is 

to construct the relative orientation of consecutive images by 

corresponding image points, which is named Structure from 

Motion (SFM) in photogrammetric computer vision. SFM is 

applied for not only 3D reconstruction but also camera motion 

recovery (Koch et al., 1998; Seitz et al., 2006; Chiuso et al., 

2002). Another method is to construct ego-motion by tracking 

the features through sequential images (Howard, 2008; Geiger 

et al., 2011), which is called feature based VO. First up, 

features in previous stereo pair are transform to object space by 

space intersection. Then, image resection is conducted to derive 

the pose of current stereo pair. The ego-motion is constructed 

by minimizing the reprojection error in image resection. The 

other method is disparity based VO. Since the distance between 

camera and object static point is variant when camera is moving, 

the disparity of the static points is different in sequential images. 

Therefore, ego-motion is estimated according to the disparity 

changing. The disparity based VO is applied for indoor robot 
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navigation by Hirschmüller et al. (2002). The approaches of VO 

mentioned above are all based on features. Engel et al. (2017) 

proposed direct sparse VO, which used intensity gradient of 

pixels instead of features to construct ego-motion.   

 

1.3 Motivation 

Since cameras are cheap and light-weight, VO is an ideal 

solution to assist in pose estimation (Hirschmüller et al., 2015). 

Figure 1 shows the common work flow of MMS integrated VO 

and INS. The basic equipment of MMS is Inertial Measurement 

Unit (IMU) and two forwards taken cameras. The Interior 

Orientation Parameters (IOPs) and Relative Orientation 

Parameters (ROPs) of cameras should be known in advance. 

Mapping and pose estimation are implemented individually in 

the work flow. First up, sequential stereo image pairs are 

derived and are rectified. Then, stereo matching is applied for 

dense image matching, and VO is integrated with IMU to 

construct ego-motion. Stereo matching is to calculate pixel-wise 

disparity in one image, and then to search the corresponding 

points in another one according to the disparity. Since the 

disparity is in pixel level or even sub-pixel level, the density of 

point cloud is usually high enough to store detailed spatial data 

around the environment. 

 

 
Figure 1. Common work flow of MMS integrated VO add INS 

(Hirschmüller et al., 2015) 

  

This paper intends to integrate disparity based VO and stereo 

matching to accomplish SLAM for land based vehicle. Though 

stereo matching calculates pixel-wise disparity for dense image 

matching, the quality of disparity is unstable, especially at 

disparity discontinuity. On the other hand, disparity based VO 

determines 6-DOF of MMS by disparity changing, which is 

derived by features, but the features may be sparse in outdoor 

environment. As long as the integration of disparity based VO 

and stereo matching is achieved, former one provides robust 

disparity for mapping, while latter one gives high redundancy 

for pose estimation. Therefore, it is worthy to combine stereo 

matching and disparity based VO to accomplish SLAM for land 

based MMS. 

 

1.4 Purpose 

SFM is well-developed for camera tracking and 3D 

reconstruction in wild area (Agarwal et al., 2011), and feature 

based VO is commonly applied to achieve SLAM for land 

based MMS (Geiger et al., 2011). By contrast, disparity based 

VO is seldom discussed in past studying. Only Hirschmüller et 

al. (2002) applied disparity based VO for indoor robot 

navigation, and there is no research in outdoor environment so 

far. Therefore, before developing the integration of disparity 

based VO and stereo matching, the performance of pose 

estimation by disparity based VO in outdoor environment 

should be discussed. 

 

In this thesis. disparity based VO (DBVO) is performed to 

determine the pose of cameras on MMS. Since single camera 

cannot obtain disparity and multiple camera system is too 

complex, dual forwards taken cameras are selected in this 

research. Dual cameras should be calibrated to obtain their IOPs 

and ROPs in advance. The Exterior Orientation Parameters 

(EOPs) of cameras at first exposure station are known to 

transform the ego-motion derived by DBVO from local 

coordinates system to mapping frame. In the experiment, ego-

motion construction is accomplished by DBVO only without 

integrating additional information, such as GNSS, INS and 

control points.  

 

This research aims to analyze the precision of pose of dual 

forwards photographing cameras on MMS estimated by DBVO. 

The posteriori Standard Deviations (STDs) of 6-DOF obtained 

by DBVO are adopted to assess the process. Besides, Ground 

Truth (GT) trajectory derived by photo triangulation (PT) is 

applied to evaluate the precision of 6-DOF of cameras 

determined by DBVO. Furthermore, the baseline length of dual 

cameras on MMS is much shorter than the distance between 

object point and cameras, which results in poor intersection 

geometry. The relation between the intersection geometry and 

the pose estimation by DBVO is discussed. 

 

2. DBVO 

The concept of DBVO is to construct the ego-motion of camera 

according to the disparity changing. First up, keypoint detection 

and matching have to be conducted to obtain tie points which 

connect sequential images. Then, all points are transformed to 

epipolar image space after image rectification. In epipolar image 

space, parallax equation is applied to estimate the 3D 

coordinates of interest points located at left epipolar image 

space. Since their image points have different disparity in 

neighboring stereo pairs, the 3D coordinates of interest points in 

neighboring left epipolar image space are different as well. 

Therefore, 3D conformal transformation is implemented to 

derive the 6-DOF between neighboring pairs according to the 

changing of 3D coordinates of the interest points. Each step is 

described in detail in following section. 

 

2.1 Keypoint Detection and Matching 

Scale Invariant Feature Transform (SIFT) is adopted for 

keypoint detection and matching. Since it is a post-processing 

procedure to determine the pose of cameras, all images are 

conducted keypoint detection and matching entirely to obtain 

tie points connecting consecutive stereo pairs. Practically 

speaking, however, it is recommended that keypoint detection 

and matching should be implemented incrementally in the 

future. The lens distortion of image coordinates of tie points is 

removed by using additional parameters from priori IOPs. 

  

2.2 Image Rectification 

The purpose of this step is to transform the image coordinates of 

tie points from original image space to epipolar one. 

Homography based image rectification method proposed by 

Fusiello et al. (2000) is adopted, which is divided into 2 steps. 

One is to transform the stereo pair into coplanarity to become 

truly vertical pair. Another step is to rotate the image plane and 

image row direction to be parallel to the baseline. The former 

step of rotation can be achieved by rotation matrix R consists of 

ROPs or EOPs of original stereo pair. The latter step is to 

directly form the rotation matrix RN by (1) to (4). After RN is 
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derived, the homography matrix H is obtained: H= RN RT. After 

image rectification, corresponding tie points, whose y parallax 

is more than 1 pixel, are regarded as outliers because the correct 

conjugate points should not have y parallax after image 

rectification (Wolf et al., 2014). 

 

                                                                  (1) 

 

                                                                           (2) 

 

                                                                         (3) 

 

                                                             (4) 

 

where  

 = X-axis of epipolar image,  

 which is parallel to baseline 

  = the Y-axis of epipolar image,  

  which is orthogonal to  and . 

  = an arbitrary unit vector to fix Y-axis position.  

  Original Z-axis is selected as . 

  = the Z-axis of epipolar image,  

  which is orthogonal to  and . 

 

2.3 Parallax Equation for MMS 

Parallax equation is useful for aerial stereo pair to estimate 3D 

coordinates of object points by similar triangle in truly vertical 

situation (Wolf et al., 2014). However, the geometry of forward 

taken cameras on MMS is different from that of aerial stereo 

pair. The datum of parallax equation for aerial stereo pair is 

mapping frame, but the datum of parallax equation for MMS is 

left epipolar image space. In left epipolar image space, the 

origin is set at the projection center of left image. X-axis is 

along to image row direction, and Y-axis is along to image 

column direction. Z-axis is in the depth direction. Figure 2 

illustrates the geometry of MMS, and the parallax equation for 

MMS is described by (5), (6) and (7). 

 

 
Figure 2. The geometry of MMS 

 

                                                                          (5) 

 

                                                                          (6) 

 

                                                                           (7) 

 

2.4 3D Conformal Transformation 

In this section, 3D conformal transformation with scale 

invariant is introduced. The unknown transformation parameters 

include 6-DOF (3 translations and 3 rotation angles), and the 

transformation is shown as (8).  

 

                  (8) 

 

where  

 , , , = object coordinates of point A. 

 ,  = left image coordinates of point A. 

 ,  = right image coordinates of point A. 

  = disparity of point A. 

 ,  = baseline and flying height. 

 

Since (8) is non-linear equation, Taylor series expansion is 

applied to linearize the equation by taking terms with 0 order 

and 1st order. The initial approximate values of unknowns are 

set as zero in this case. After that, a linearized observation 

equation system is constructed, and least squares adjustment is 

applied to obtain the most probable transformation parameters. 

Since the observation equation system is approximated by 

Taylor series expansion, the adjustment has to be conducted 

iteratively until the increments of unknowns are lower than the 

given threshold. Each point is assumed as equal weight, so the 

weight matrix is identity one. 

 

3. EXPERIMENT & ANALYSIS 

This paper aims to analyze the precision of pose of dual 

forwards taken cameras determined by DBVO. Section 3.1 

represents the testing data and pre-processing step. Section 3.2 

shows evaluation of ego-motion constructed by DBVO. Section 

3.3 describes the relation between precision of pose estimated 

by DBVO and moving distance. Last but not least is that the 

relation between the intersection geometry and precision of 

pose estimated by DBVO are discussed in section 3.4. 

 

3.1 Materials and Pre-processing 

In this thesis, 22 stereo pairs (44 images totally) taken by dual 

forwards taken cameras on MMS are chosen as testing data. The 

cameras equipped on MMS is A102K industrial ones produced 

by Basler, and the lens is produced by Computar whose focal 

length is regarded as constant (Wu, 2009). The MMS drove 

along a straight street, and the moving direction is almost 

parallel to Y axis in mapping frame (Figure. 3). The distance of 

the path is about 50 m. 
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Figure 3. The trajectory of testing data (from Google Earth) 

Yellow line represents the trajectory of MMS. 

 

In the pre-processing step, self-calibration bundle adjustment is 

implemented by software Pix4DMapper and Australis. After 

adjustment, the IOPs of cameras and ROPs of each stereo pair 

are derived as priori information displayed in Table 1. 

 

 Cam 1 Cam 2 

Image size (pixel) 1392 * 1040 

Pixel size (μm) 6.45 * 6.45 

Focal length (mm) 8.259 ± 0.003 8.266 ± 0.002 

Principal point (mm) (0.109 ± 0.007, 

0.027 ± 0.007) 

(0.016 ± 0.003, 

0.058 ± 0.003) 

Baseline length (m) About 1.6 

Table 1. Priori information of 2 forward cameras on MMS 

 

3.2 Evaluation of Ego-motion Construction by DBVO 

In this section, each ego-motion is constructed by two 

neighboring stereo pairs only. Therefore, every ego-motion is 

regarded as independent pattern to one another. First up, after 

3D conformal transformation, the posteriori STDs of ego-

motions are derived. Table 2 shows the RMS of posteriori STDs 

of ego-motion parameters. Theoretically speaking, the precision 

along depth direction should be worse than other directions 

because of intersection geometry. However, the posteriori STD 

in moving direction (Y-axis) is lower than other directions, and 

κ (heading angle) has the best precision of the three. 

 

Translations Posteriori 

STD (cm) 

Posteriori 

STD (degree) 

Rotation 

angles 

X 4.3 0.0325 Ω 

Y 1.8 0.0220 Φ 

Z 6.8 0.0191 Κ 

Table 2. RMS of posteriori STDs of ego-motion 

 

Then, each ego-motion is evaluated by ground truth trajectory, 

respectively. The ground truth data is calculated by photo 

triangulation. Figure 6 describes the difference between ego-

motion by DBVO and ground truth in translations. The 

differences in X and Z seems random, but there is a significant 

negative bias in in Y-axis. Table 3 represents the statistic values 

of the differences in translations. The maximal absolute 

differences in X and Z are lower than 0.2 meter, and the mean 

errors are in centimeter level. The systematic bias in Y-axis is 

about -1 meter. The difference of rotation angles of ego-motion 

is in Figure 7, which shows that there are negative systematic 

biases in 3 rotation angles. In Table 4, the statistic values of the 

differences in rotations is listed, and κ (heading angle) has the 

biggest RMSD of the three.  

 

The posteriori STDs are at centimeter level in the translations 

and about 0.01° in the rotations. Y-axis (viewing direction) and 

κ (heading angle) has the lowest STD, respectively. However, 

the comparison with ground truth shows that the translation of 

ego-motion in viewing direction is actually shorter than real 

trajectory for about 1 m, and difference of κ is about 10°, which 

is the worst of the three rotation angles. To sum up, the 

posteriori STDs given by 3D conformal transformation are too 

optimistic. Moreover, they cannot detect significant mistakes of 

ego-motion. 

 

 
Figure. 6 Difference of translations between ego-motion and 

ground truth 

 

 Min Max Mean  RMSD 

X (m) -0.133  0.103 -0.029 0.069 

Y (m) -1.311 -0.810 -1.051 1.056 

Z (m)  0.000  0.155  0.068 0.080 

Table 3. The statistic values of difference of translations 

 

 
Figure 7. Difference of rotations between ego-motion and 

ground truth 

 

 Min Max Mean  RMSD 

ω (degree)  -4.8646  0.5263 -2.3327 2.6118 

φ (degree)  -5.0928  1.6174 -2.0323 2.6546 

κ (degree) -11.7216 -8.1003 -9.7213 9.7954 

Table 4. The statistic values of difference of rotation angles 

 

 

3.3 Quality between DBVO and distance 

In this section, every independent ego-motion derive by DBVO 

is combined together to generate a track, which represents the 

result of DBVO on navigation application. Trajectories of 

ground truth and INS/GPS are given for evaluation. 

 

Figure 8 shows the cumulative translation differences between 

ego-motion by DBVO and ground truth trajectory. Error 

propagation is not significant in X-axis and is a little in Z-axis. 

However, the more distances, the higher accumulation of 
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difference in moving direction (Y-axis). Figure 9 describes the 

ratio of difference and distance. The ratios in X, Y and Z 

direction are stable at 2%, -40% and -3%. The error distance 

ratio does not increase when distance becomes longer. 

 

 
Figure 8. Cumulative errors of translations 

 

 
Figure 9. Error distance ratio 

 

Figure 10 and Figure 11 illustrate the horizontal and vertical 

trajectories derive by DBVO, photo triangulation (ground truth) 

and INS/GPS. In the horizontal trajectory, the trajectory of 

INS/GPS is very similar to the ground truth at the beginning, 

but the trajectory of INS/GPS drifts away in the middle of the 

street. By contrast, the trajectory of DBVO is much shorter than 

ground truth at the beginning, and becomes more similar until 

MMS drove through the middle of the street. At the beginning 

of the street, the MMS was driving through the crossroad. Since 

there are few obstructions at the intersection, the result of 

INS/GPS is precise and stable. On the other hand, the 

intersection lacks textures, which are important for keypoint 

detection. Therefore, the trajectory of DBVO is worse and 

unstable. In the middle of the street, the MMS was surrounded 

by buildings. In this case, the signals of GPS are easily blocked, 

which is easily make the INS/GPS result drift. However, since 

the texture becomes abundant, the result of DBVO is improved. 

In the vertical trajectory, the performance of INS/GPS is similar 

to ground truth. Though the bias of DBVO enlarges as distance 

increases, it is admissible because the relative error is only 3%. 

 

 
Figure 10. Horizontal trajectory 

 

 
Figure 11. Vertical trajectory 

 

3.4 The Influence of MMS Geometry 

Above discussion represents that ego-motion constructed by 

DBVO has significant negative bias in viewing direction of 

translation and 3 rotation angles, but the performance of 

translations in non-viewing direction is fine (relative error is 

lower than 3%). Since ego-motion is constructed by difference 

of tie points coordinates determined by parallax equation, this 

section takes insight into the precision of parallax equation 

calculation. 

 

In MMS geometry, the baseline length is much shorter than the 

distance between camera and object points. In the case of this 

testing data, the baseline length is about 1.6 meters and the 

average depth is around 40 meters. Therefore, the base-to-

height ratio is only 0.04, which is much lower than 0.3 (the 

standard base-to-height ratio for national mapping by aerial 

photogrammetry in 1/1000 scale in Taiwan). 

 

The most probable object coordinates of tie points given by 

ground truth are applied to evaluate the precision of parallax 

equation calculation. The ground truth coordinates are 

transformed from mapping frame to epipolar image 3D space, 

which is the same as parallax equation result. Table 5 describes 

the statistic values of difference between parallax equation and 

ground truth. The RMSD is 3 meters in baseline direction. In 

direction of image column, the RMSD is 7.2 meters because the 

maximal difference is about 28 meters, which is regarded as 

blunders. In depth direction, the minimal and maximal 

differences are negative, which represents the depths of tie 

points estimated by parallax equation are totally shorter, and the 

bias is about 8.4 meters. 
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 Min (m) Max (m) Mean 

(m) 

RMSD 

(m) 

Row  -8.667  1.105 -2.454 3.007 

Column  -4.798 27.957  4.421 7.203 

Depth -30.031 -0.372 -6.816 8.365 

Table 5. Difference between parallax equation and ground truth 

 

Next, the influence by distribution and number of tie points is 

discussed. Image is divided into 13*10 sub-regions and the 

number of tie points in each sub-region is classified into 4 

categories according to the quartile respectively in Figure 12. 

Category 1 is the sub-regions whose tie points are fewer than 12, 

which means that those sub-regions lack textures. By contrast, 

sub-regions in category 3 have abundant textures for keypoint 

matching because numbers of points in those regions are more 

than 59. Figure 13 represents the mean difference between 

parallax equation and ground truth in each category. There is a 

positive bias in column direction, and negative ones in other 

direction. Figure 14 describes the RMSD of parallax equation 

result. The mean differences and RMSDs in different categories 

are similar. To sum up, the calculation of parallax equation is 

independent to the textures and tie point distribution. 

 

 
Figure 12. The distribution of tie points in image frame 

Gray means no tie point in sub-region. Blue means number of 

points in sub-region is between 1 and 12. Orange means number 

of tie points in sub-region is between 13 and 58. Green means 

that number of tie points in sub-region is more than 59. 

 

 
Figure 13. Mean difference in case of different number of tie 

points 

 

 
Figure 14. RMSD in case of different number of tie points 

 

The standard base-to-height ratio for national mapping by aerial 

photogrammetry in 1/1000 scale in Taiwan is 0.3, and its 

intersection angle is about 17°. Therefore, the intersection 

angles of tie points are classified into 4 categories (≤ 8.5°, 8.5° 

~ 17°, 17° ~ 25.5° and > 25.5°). Number of tie points in each 

category is in Table 6. The mean difference and RMSD of 

parallax equation result in each category are calculated 

respectively in Figure 15 and Figure 16. Theoretically speaking, 

as the intersection angle increases, the depth precision is 

improved but non-depth ones become worse. In the studying 

case, however, the intersection angle between 8.5° and 17° is 

better than other angles. Moreover, the difference becomes 

greater when intersection angle is larger than 17°. Although the 

intersection angles are at least 28°, their base-to-height ratios 

are merely 0.03 to 0.09. Therefore, the intersection angle is not 

suitable to evaluate the quality of geometry. 

 

Intersection 

angle 

≤ 8.5° 8.5° ~ 

17° 

17° ~ 

25.5° 

> 25.5° 

# of tie points 3685 208 24 7 

Table 6. Number of tie points in different intersection angles 

 

 
Figure 15. Mean difference in case of different intersection 

angles 

 

 
Figure 16. RMSD in case of different intersection angles 
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4. CONCLUSIONS

This paper aims to analyze the precision of pose of dual 

forwards taken cameras determined by DBVO. In this research, 

dual forwards taken cameras are applied to obtain a sequence of 

stereo pairs and DBVO is proposed for positioning and 

navigation without additional control data. 

In conclusion, ego-motion constructed by DBVO has 2% and 

3% of relative errors in horizontal no-viewing direction and 

vertical one, which is good enough for navigation application. 

The influence of error propagation is not significant. Besides, 

INS/GPS performs well in open area, while DBVO have good 

performance in complex environment. Therefore, it is 

recommended that INS should integrate both GPS and DBVO 

for localization. However, translation in viewing direction and 

rotation angles derived by DBVO remain significant systematic 

error about 1 m, 3°, 3° and 10° respectively. The reason is that 

the coordinates estimated by parallax equation is unstable 

because of poor intersection geometry. Therefore, it is 

suggested that side viewing cameras should be added to 

improve poor geometry of forward cameras on MMS. 
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