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ABSTRACT: 

Lightweight unmanned aerial vehicle (UAV) loaded with novel sensors offers a low cost and minimum risk solution for data 

acquisition in complex environment. This study assessed the performance of UAV-based hyperspectral image and digital surface 

model (DSM) derived from photogrammetric point clouds for 13 species classification in wetland area of Hong Kong. Multiple 

feature reduction methods and different classifiers were compared. The best result was obtained when transformed components from 

minimum noise fraction (MNF) and DSM were combined in support vector machine (SVM) classifier. Wavelength regions at 

chlorophyll absorption green peak, red, red edge and Oxygen absorption at near infrared were identified for better species 

discrimination. In addition, input of DSM data reduces overestimation of low plant species and misclassification due to the shadow 

effect and inter-species morphological variation. This study establishes a framework for quick survey and update on wetland 

environment using UAV system. The findings indicate that the utility of UAV-borne hyperspectral and derived tree height 

information provides a solid foundation for further researches such as biological invasion monitoring and bio-parameters modelling 

in wetland. 

* Corresponding author

1. INTRODUCTION

An accurate species distribution survey is required for effective 

coastal wetland ecosystem management and preservation. To 

this end, satellite and airborne remote sensing data has been 

widely used for wetland species classification (Dronova, 2015; 

Fabian Ewald Fassnacht et al., 2016). Hyperspectral sensors 

provides narrow-band and contiguous spectral data, which 

allows better examination and discrimination of vegetation 

types (Adam, Mutanga, & Rugege, 2010). Many attempts have 

been successfully made to classify wetland species or 

monitoring invasive species by high resolution hyperspectral 

data (Hestir et al., 2008; Kamal & Phinn, 2011; Papeş, 

Tupayachi, Martínez, Peterson, & Powell, 2010). Meanwhile, 

tree height information derived from LiDAR data was combined 

with hyperspectral image to improve the species classification 

(Ghosh, Fassnacht, Joshi, & Koch, 2014). However, limited by 

spatial and spectral resolution of satellite image and the high 

cost of manned airborne data acquisition, detail survey and 

monitoring of complex wetland environment is sometimes 

prohibited. In recent years, lightweight unmanned aerial vehicle 

(UAV) loading with novel sensors offers a low cost and flexible 

approach for data acquisition. UAV with flexible sensors is able 

to collect high-resolution, hyperspectral and multi-angle images 

for 3D terrain reconstruction. Successful researches have been 

conducted by utilizing UAV-borne images for tree species 

mapping, structure or biophysical parameter estimation and 

individual tree detection in forestry area (Berni, Zarco-Tejada, 

Suárez, & Fereres, 2009; Hill et al., 2016; Huang et al., 2016; 

Nevalainen et al., 2017). 

Due to inter-band correlation in hyperspectral data, feature 

selection or extraction are usually performed to reduce data 

dimension and noise to improve classification efficiency. 

Feature selection methods select a subset from the original 

bands. Common selection methods include stepwise 

discriminate analysis, hierarchical clustering, support vector 

machine (SVM), partial least square discriminate analysis 

(PLSDA) and  genetic algorithms (Fabian E. Fassnacht et al., 

2014; Fung, Fung, Ma, & Siu, 1997; Pal & Foody, 2010). 

Feature extraction methods reduce the number of band data 

through data transformation with the aim to extract maximal 

information from the original data. Minimum noise fraction 

(MNF) transformation and principal component analysis (PCA) 

are  widely applied in hyperspectral image (Burai, Deák, Valkó, 

& Tomor, 2015; Marcinkowska-Ochtyra et al., 2017). MNF is 

reported yielding higher accuracy than feature selection result 

or full band used result (Fabian E. Fassnacht et al., 2014).  

In terms of classification, probability-based Maximum 

Likelihood Classifier (MLC) is a widely used traditional 

supervised classification algorithm that offers reasonable 

classification accuracy (Binaghi, Gallo, Boschetti, & Brivio, 

2005; Burai et al., 2015). Machine-learning classifiers such as 

decision tree, artificial neural network and support vector 

machine (SVM) are becoming popular due to their relatively 

accurate and robust performance in classification exercise 

(Dalponte, Orka, Gobakken, Gianelle, & Naesset, 2013; Wong 

& Fung, 2014).  SVM is a commonly used classifier for 

hyperspectral image. SVM separates the classes with a decision 

surface that maximizes the margin between the classes. SVM 

was reported to outperform when cope with high dimension, 
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limited samples and multi-source data representing complex 

environments (Jones, Coops, & Sharma, 2010).  

 

The aim of study is to assess the utility of UAV-borne 

hyperspectral image and photogrammetry derived 3D data for 

detail wetland species mapping. The following aspects are 

considered and analysed: 1) to identify spectral regions for 

effective wetland species classification, 2) to examine the effect 

of photogrammetry-derived height data in mapping dense and 

complex wetland species, 3) to evaluate various classifiers for 

wetland species mapping. 

 

2. METHODS 

2.1 Study Area 

Mai Po Inner Deep Bay is located at the northwestern New 

Territories of Hong Kong (22°28′–22°32′N and 113°59′–

114°04′E). It was declared as nature conservation area in 1975 

and Site of Special Scientific Interest (SSSI) in the year 

followed. In 1995, it was designated as Ramsar site due to its 

important inter-tidal habitats. There are six main habitats in Mai 

Po Nature Reserve: gei wais (shrimp ponds), freshwater ponds, 

inter-tidal mudflats, mangroves, reedbeds and fishponds 

(WWF). The test site is part of gei wais area, a semi-natural 

wetland landscape with various wetland species. In recent years, 

gei wai areas suffer from species invasion, which is challenging 

for native wetland species monitoring and preservation.    

 

2.2 Flight Campaign and Fieldwork 

Two flight campaigns were conducted in sunny and windless 

weather covering an area of approximately 20000m2. An 

autonomously flying hexacopter Aibot X6 equipped with a 

pushbroom Headwall Nano-Hyperspec sensor was used to 

acquire a 270-band image. The UAV and specifications of  

hyerspectral sensor are shown in the Table 1. 

 

Aibot X6 Specification of Sensor 

 

 

Wavelength range  400-1000 nm 

Spectral bands  270 

FWHM  6nm 

Scan mode  Push-broom 

Lens  FOV 22 °, 12mm 

Output  16 bit digital data 

Table 1. Aibot X6 and specification of hyperspectral sensor 

 

The first flight campaign was conducted in 8th December, 2016 

using Aibot X6 to collect hyperspectral images. The flight 

altitude was 100 meters above ground with an equivalent spatial 

resolution of 0.06 meter. 

The second flight campaign together with species distribution 

survey were carried out in 29th March 2017. Normal RGB 

images were acquired using a DJI Phantom 4 quadcopter from 

five angles to the same site. The end-lap and side-lap were both 

set to 75%. The quadcopter flied at 50 meters above ground and 

the spatial resolution is 0.02 meter. Ground truth survey was 

implemented by combining field investigation to UAV-borne  

RBG image visual interpretation due to limited accessibility in 

the site. Major species included reed bed and three types of 

mangrove: Kandelia obovata, Aegiceras corniculatum and 

Acrostichum aureum. Other species include a pioneer 

mangrove: Acanthus ilicifolius, various graminaceous plants, 

three arbor species, one shrub species and one invasive species. 

In particular, invasive species Mikania micrantha climbed up to 

the mangrove canopy causing morphology change to mangrove 

(AFCD. 2006), which might hinder effective mapping of 

mangrove species.  

 

2.3 UAV Data Processing 

2.3.1 Hyperspectral Data: SpectralView software 

(Headwall Photonics Inc., MA, U.S.) was used for radiative and 

geometric correction. Radiative correction was processed with 

the radio calibration file, which recorded the corresponding 

exposure time and dark current reference. The file was used to 

create radiance cube from raw data. The first eight bands were 

removed due to severe information loss and noise. Ortho-

rectification was then conducted using information generated 

from inertial motion sensor that communicated with the Nano-

hyperspec sensor during the scanning process. GPS and frame 

index records were used to adjust orientation while IMU/GPS 

offsets were used for image correction and orientation. In 

addition, the altitude of the scan and DEM were input to adjust 

the geometric distortion. UTM Zone 50 projection was applied 

to the hyperspectral data.  

 

2.3.2 3D Data Generation: Generally, canopy height is 

estimated by subtracting digital terrain model from digital 

surface model (DSM). As the test site was part of shallow bay 

with flat terrain, variation of canopy height can be well 

represented by the DSM. The Agisoft PhotoScan Professional 

commercial software (AgiSoft LLC, St. Petersburg, Russia), 

was used for multi-view RGB data mosaic and point cloud 

generation. A total of 1,340 RGB images were loaded in Agisoft 

PhotoScan. After defining the camera position and orientation, 

images were automatically stitched together and highly dense 

point clouds and mesh were generated (3D polygonal model). 

As for the reconstruction parameter, ultra high quality was set to 

process original images and a mild depth filtering mode was 

used to automatically remove points with large uncertainty 

errors. An ortho-mosaic image was generated for map 

registration. Dense point clouds were loaded into ENVI LiDAR 

(Exelis Visual Information Solutions, Inc, U.S.). A 5-cm grid 

resolution DSM was generated in order to retain detail spatial 

feature. A number of ground control points were selected to 

apply to map registration among hyperspectral image, 

orthomosaic RBG image and the DSM layer.  

 

2.4 Sample Data Selection 

Based on the knowledge of fieldwork and visual interpretation, 

16 classes involving  13 species, and 2 other land covers were 

identified. Invasive species Mikania micrantha in normal and 

dry growth morphology was classified as two classes. 

Representative training samples were manually selected. 

Validating samples was approximately half of training samples. 

150 points were randomly extracted from training samples in 

each class as feature reduction test samples. Classes and sample 

number are shown in the appendix.   
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2.5 Feature Reduction  

Multiple feature reduction methods were compared in this 

study. They include traditional statistic approach stepwise 

discriminant analysis (SDA), machine learning algorithm 

support vector machine (SVM) and data extraction method 

minimum noise fraction (MNF) transformation. The objective is 

to identify the high performance method for species 

classification and to explore spectral bands for better species 

discrimination.  

 

Stepwise discriminant analysis (SDA) is a common statistic 

method to automatically select the best spectral band based on F 

value. Image bands would be selected by the model if the F 

value large than 3.84 and they would be removed if F value less 

than 2.71 (Fung et al., 1997). Subsequently, the predictive 

importance of each band was calculated to indicate the relative 

importance of each band in estimating the model. Support 

vector machine (SVM) is a robust classification and regression 

technique by mapping data to a high-dimensional feature space 

so that data points can be categorized in maximum predictive 

accuracy without overfitting the training data (Chang & Lin, 

2001). In this experiment, a radial basis function (RBF) kernel 

was applied. Several SVM operations were run with slight 

tuning of input parameters RBF gamma and stopping criteria. 

Predictor importance was calculated to determine significant 

bands for species classification. Both feature selection methods 

were implemented in SPSS Modeler software (IBM 

Corporation, New York, U.S.).  

 

Minimum noise fraction (MNF) transformation resembles 

principal component analysis to remove noise and determine the 

inherent dimension. It uses principal components derived from 

the original image data after they were noise-whitened by the 

first principal components rotation and were then rescaled by 

the noise standard deviation (Green et al.,1988). MNF 

transformation was implemented in the ENVI 5.1 software. 

Noise statistics was estimated in full hyperspectral bands. A 

vegetation mask was created from normalized difference 

vegetation index (NDVI). NDVI was calculated using ρNIR = 

800nm, ρRed = 679nm (Yu, Qiu, Wang, Sun, & Wang, 2016) 

and threshold between 0.16 and 1.00 was considered as 

vegetation area through visual interpretation. In MNF 

transformation, non-vegetated area masked out so that the first 

few MNF components extracted the spectral variances from 

vegetation species (Fabian E. Fassnacht et al., 2014).  

 

2.6 Classification 

Two supervised classification algorithms MLC and SVM with 

radial basis function (RBF) kernel were tested. To be 

comparable, each classification algorithm used the same set of 

training and validating samples. The classification process was 

conducted in ENVI 5.1 and the default parameters of classifier 

in the software were used. Previous studies (Fabian E. 

Fassnacht et al., 2014; Fung et al., 1997; Raczko & Zagajewski, 

2017) suggested that about 15-20 input bands produced the best 

classification result. Spectral subsets comprising the first 15-20 

most importance bands extracted from SDA, SVM and MNF 

feature selection and extraction results were served as input. 

DSM was also input into classifier as auxiliary data. In addition 

to subset bands, all 265 bands were also input into the SVM 

classifier as a base for comparison. As MLC requires the 

number of training sample for each class to be larger than the 

number of input band, the all band option is not available. 

Using the validating samples, classification accuracy and 

reliability were evaluated by confusion matrix and Kappa 

coefficient respectively.  

 

3. RESULT 

3.1 Spectral Region of Selected Bands 

Considering the predictor importance scores of SDA, SVM and 

eigenvalue plot of MNF transformation, the first 20 most 

important bands were selected and extracted for subsequent 

processing. Band contribution to the first 20 MNF components 

was calculated by ENVI 5.1 and contribution weight large than 

0.5 was regarded as important band in MNF transformation. 

Figure 1 shows the important band positions and selected 

frequency by the three data reduction methods. As shown in the 

frequency bar chart, selected bands frequently laid along the 

green peak (530-550nm), red (650-700nm), red edge (700-

730nm) and oxygen absorption near infrared region (760-

780nm). Compared to SVM, SDA selected chlorophyll 

absorption red band (650-700nm) and yellow band (570-

590nm). The MNF components showed quite a different result. 

The first several green bands (410-490nm) contributed most 

instead of green peak (530-550nm). Other significant bands 

include red band, red edge band and near infrared oxygen 

absorption bands around 760-780nm, which were similar to the 

results from the other two band selection methods. 

 
Figure 1. Important band position and selected frequency by 

three data reduction methods 

 

3.2 Classification Results 

3.2.1 Feature Reduction Methods: Extracted subsets of 

three feature reduction methods were input into the classifiers 

and the results were compared. Table 2 summarized the overall 

classification accuracy of different subsets. As this main 

objective of this study is to assess UAV-borne data for species 

mapping, only vegetation classes were included to calculate the 

overall accuracy. Classification results of both classifiers 

showed that subsets of MNF transformation performed the best 

(MLC: 88.91%; SVM: 88.02%), followed by SDA (MLC: 

76.95%; SVM: 73.74%) and SVM with RBF kernel and gamma 

value at 0.1 performed the worst (MLC: 64.41%; SVM: 

65.07%). MNF transformation accuracy was even better than 

the results using all bands. 
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 Input bands/Classifier MLC SVM 

 OA Kappa OA Kappa 

SDA 20 bands 76.95% 0.748 73.74% 0.712 

SVM 20 bands 64.41% 0.611 65.07% 0.616 

MNF 20 components 88.91% 0.880 88.02% 0.868 

All 265 bands   79.84% 0.779 

SDA 20 bands + DSM 81.20% 0.794 77.97% 0.758 

MNF 20 components 

+ DSM 

89.07% 0.880 89.07% 0.880 

Table 2. Overall classification accuracy of different subsets 

(OA: overall accuracy)  

 

3.2.2 Auxiliary DSM Data: Since MNF and SDA subsets 

obtained acceptable classification accuracy, DSM data was 

added in these two spectral subsets for subsequent comparison. 

As shown in Table 2, overall accuracy and Kappa coefficient 

have been improved after adding DSM data. Figure 2 compares 

the overall classification accuracy and producer’s accuracy of 

each species with and without input of DSM data to MNF and 

SDA subset in SVM classifier. Generally, the DSM data 

improves overall accuracy and producer’s accuracy and this 

improvement was more obvious when combining with SDA 

subset than MNF subset. For SDA subset, the overall accuracy 

enhanced from 76.95% to 81.20% and from 73.74% to 77.97% 

for MLC and SVM classifiers respectively. For MNF subset, the 

enhancement is not as significant as that of SDA with less than 

1% increase in overall accuracy. Among all of the classification 

runs, subset of MNF 20 components and DSM yielded the best 

classification accuracy.   

 

 
Figure 2. Overall and producer’s accuracy of before and after 

adding DSM data by SVM Classifier 

 

Besides, visual interpretation of classification maps showed in 

Figure 3 indicated that DSM data enhanced the discriminant 

capacity among low plants such as Acanthus ilicifolius and 

Acrostichum aureum, arbor and mangrove species Kandelia 

obovata. Meanwhile, DSM reduced misclassification due to the 

shadow effect and morphological variation of mangrove 

Kandelia obovata. 

 

 
 

 
Figure 3. SVM classification map before and after adding DSM 

data (a: MNF 20 components; b: MNF 20 components + DSM; 

c: SDA 20 bands; d: SDA 20 bands + DSM) 

 

3.2.3 Classifiers: As shown in the Table 2, both classifier 

obtained approximate overall accuracy and Kappa coefficient 

with the same input subset. While MLC obtained a slightly 

higher overall accuracy than SVM Classifier when using the 

MNF components (MLC: 88.91%, SVM: 88.02%) and SDA 

selected bands (MLC: 76.95%, SVM: 73.74%). 

  

Apart from quantitative accuracy assessment, visual 

interpretation of classification maps was also carried out. Figure 

4 shows the areal proportion of each class based on the output 

from compared classifier. Although both classifiers showed an 

overestimation in less common species such as non-mangrove 

arbor and Gramineae, SVM classifier gave better classification 

result than MLC as shown in Figure 5. Specifically, in terms of 

mangrove species, MLC overestimated the Acanthus ilicifolius 

and underestimated Kandelia obovata. The adjacent boundary 

between mangrove and water were misclassified to reed and dry 

Mikania micrantha. Similar misclassification occurred in MNF 

and SDA band subsets. Moreover, map comparison results 

indicated that SVM classifier reduced scattered patches and 

eliminated salt-and-pepper effect that were noticeable in MLC 

result. Last but not the least, SVM classifier made better use of 

DSM data than MLC when identified different mangrove 

species as misclassification due to shadow effect and 

morphological variation of inter-species were reduced 

effectively in SVM classification result.  As shown in the Table 

3, SVM classifier yielded higher producer accuracy than MLC 

in four mangrove species Kandelia obovata, Aegiceras 

corniculatum, Acrostichum aureum and Acanthus ilicifolius. 

 

Based on the above analysis, SVM classifier was more 

preferable than MLC when combining hyperspectral and DSM 

data for species mapping. 
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Figure 4. Areal proportion of 16 classes based on classification 

result 

 

 
Figure 5. Classification map of MNF 20 components + DSM (a: 

SVM classifier; b: MLC) 

 

Classifier SVM MLC 

Prod. 

Acc. 

User 

Acc. 

Prod. 

Acc. 

User 

Acc. 

(Percent) (Percent) 

Kandelia obovata 98.66 94.15 96.36 96.55 

Aegiceras corniculatum 96.00 98.46 94.50 98.10 

Acrostichum aureum 88.22 92.19 72.38 97.40 

Acanthus ilicifolius 70.80 68.38 66.37 49.67 

Reed 90.62 98.98 91.93 99.80 

Bidens alba (L.) DC 97.39 86.42 97.07 94.90 

Gramineae1 75.84 92.8 86.55 97.63 

Gramineae2 96.73 82.05 96.22 82.51 

Mikania micrantha 96.76 82.96 98.70 83.24 

Macaranga tanarius 62.59 89.44 62.12 88.49 

Sapium sebiferum (L.) Roxb 80.00 55.07 90.53 57.72 

Rhaphiolepis indica 75.44 87.76 71.93 91.11 

Ficus subpisocarpa Gagnep 93.33 99.45 98.46 98.46 

Dry Mikania micrantha 96.12 79.74 97.29 69.72 

Table 3. Producer and user accuracy for each class using MNF 

20 components and DSM as input 

4. DISCUSSION 

4.1 Feature Reduction Methods 

Results from feature reduction analyses suggested that four 

spectral regions were important for wetland species 

discrimination.  Consistent with previous researches (Clark et 

al., 2005; Fabian E. Fassnacht et al., 2014; Fung et al., 1997), 

spectral wavelengths at 520-620nm and 690-770nm included 

the chlorophyll absorption green peak, red, red edge and O2 

absorption region, which are related to pigment contents and 

cell structure were useful in species classification.  

 

In terms of feature reduction methods, SVM selected bands 

clustered around green peak, red edge and NIR region but 

omitted information from other spectral regions. In contrast, 

bands selected by SDA indicated other significant regions such 

as O2 absorption regions around 760nm and NIR around 

900nm. Additionally, SDA selected yellow bands to help 

distinguish withered plants like reed and Dry invasive Mikania 

micrantha. Therefore, SDA subset was able to obtain better 

accuracy than SVM subset. Particularly, bands at 410-490nm 

contribute significantly to MNF components, which suggested 

significance of green bands in species classification.  

 

Same as the result from (Fabian E. Fassnacht et al., 2014), 

feature selected methods are not comparable with MNF feature 

extraction methods. MNF transformation produced the best 

classification map and accuracy by removing noise and 

retaining the most of the significant spectral feature at the same 

time. One drawback of MNF method was that the 

transformation components were unable to represent the 

physical objects. Although band contribution in each 

component can be analyzed, it was still hard to study the species 

distinguishing mechanism in view of the selected components. 

More sophisicated feature selection methods  such as partial 

least square discriminant analysis (PLSDA) (Fabian E. 

Fassnacht et al., 2014) and improved SVM (Pal & Foody, 2010) 

should be used to identify the significant and robust spectrum 

for species classification and bio-parameters modelling in future 

work. 

 

4.2 3D Data Digital Surface Model (DSM) 

There were two obvious and significant improvement after 

adding DSM data to classifier. Firstly, DSM largely reduced 

misclassification due to the shadow effect and morphological 

variation of inter-species in the study area. In some areas, 

invasive species such as Mikania micrantha covered the 

mangrove canopy, which made mangrove sparse or even die. 

On one hand, the diseased mangroves cause morphological 

change, which resulted in larger variation of spectral 

reflectance. For instance, Kandelia obovata suffered invasion 

appears more sparse and darker than healthy Kandelia obovata. 

On the other hand, the spreading vines of invasive species 

covering the mangrove canopy results in mixed pixels. 

Therefore, most of the invaded areas were unclassified or 

misclassified as low radiance species such as Acrostichum 

aureum. With DSM added, the height information somehow 

offset these impacts and assigned diseased mangrove pixels to 

correct class. Secondly, canopy height information was 

especially useful in distinguishing species with large height 

difference such as Kandelia obovata, and Acrostichum aureum 

and thus reduced the overestimation of low species such as 

Acanthus ilicifolius and Acrostichum aureum. 
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4.3 Classifier  

The visual interpretation and accuracy assessment result 

indicated that SVM classifier is more applicable than MLC 

when hyperspectral subset and terrain data were combined. 

SVM classifier produced more reasonable classification map 

although it did not obtain the highest classification accuracy in 

most of the classification runs. Previous researches also 

suggested that SVM classifier outperformed conventional 

approaches to classify high-dimensional and multi-source data 

in complex environments (Jones, Coops, & Sharma, 2010). Due 

to non-linear and adaptive fitting capacities of RBF kernel, 

SVM was powerful to cope with high dimension data (Verrelst 

et al., 2015). However, the drawback of SVM classifier was the 

relatively long execution time in the model building process. 

Other factors that affected the classification accuracy and 

stability such as pixel number of training sample, parameters 

tuning of classifier etc. should be explored in future study.  

 

5. CONCLUSION 

This study established a framework of using UAV system for 

quick mapping of 13 species in a mixed and complex wetland 

environment with desirable classification accuracy. With the 

assistance of UAV system, it offered a solution for detail 

species survey of wetland area in relatively low cost of time and 

labour. Significant spectral regions were identified, effect of 

terrain data were assessed and classifiers were evaluated. The 

findings suggested that the utility of UAV-borne hyperspectral 

and photogrammetry-derived 3D data help to characterize and 

monitor wetland environment, which provide basic information 

for further researches such as biological invasion monitoring 

and bio-parameters modelling. 
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APPENDIX 

Summary of sample data 

Classes Training 

samples 

(Pixel) 

Validating 

samples 

(Pixel) 

Test samples 

for feature 

reduction 

(Pixel) 

Kandelia 

obovata 

1102 552 150 

Aegiceras 

corniculatum 

997 600 150 

Reed 1005 533 150 

Acrostichum 

aureum 

1014 362 150 

Acanthus 

ilicifolius 

258 113 150 

Bidens alba (L.) 

DC 

711 307 150 

Gramineae1 1078 476 150 

Gramineae2 1106 397 150 

Mikania 

micrantha 

1016 463 150 

Macaranga 

tanarius 

985 433 150 

Sapium 

sebiferum (L.) 

Roxb 

283 95 150 

Rhaphiolepis 

indica 

158 57 150 

Ficus 

subpisocarpa 

Gagnep 

330 195 150 

Dry Mikania 

micrantha 

696 258 150 

Road 616 317 150 

Water 1016 497 150 
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