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ABSTRACT:

Structure from Motion techniques provides low-cost and flexible methods that can be adopted in arial surveying to collect topographic
data with accurate results. Nevertheless, the so-called “doming effect”, due to unfortunate acquisition conditions or unreliable modeling
of radial distortion, has been recognized as a critical issue that disrupts the quality of the attained 3D reconstruction. In this paper we
propose a novel method, that works effectively in the presence of a nearly flat soil, to tackle a posteriori the doming effect: an automatic
ground detection method is used to capture the doming deformation flawing the reconstruction, which in turn is wrapped to the correct
geometry by iteratively enforcing a planarity constraint through a Bundle Adjustment framework. Experiments on real word datasets
demonstrate promising results.

1. THE DOMING EFFECT

In recent years Structure from Motion techniques have enjoyed
increasing popularity in the context of aerial surveying – where
have been used in several applicative scenarios, ranging from
earth science to heritage documentation – thanks to their ability
to provide detailed imagery and accurate 3D models, by exploit-
ing a flexible and low cost equipment, such as consumer-grade
cameras.

Unfortunately, despite this appealing feature, Structure from Mo-
tion methods may be affected with two major problems. First,
the incremental nature of Structure from Motion, which itera-
tively builds up a 3D model by alternating between camera pose
and scene points estimates, suffers from drifting (Cornelis et al.,
2004): i.e. the propagation of errors, due to noisy measurements,
accumulated through the reconstruction process. As a remedy,
Bundle Adjustment is routinely adopted to jointly refine the 3D
structure of the scene together with the viewing parameters of
the acquisition setup. Second, inaccuracies in modeling the ra-
dial distortion of camera lens (Fryer and Mitchell, 1987) (which
may commonly occur in many self-calibration procedure) are re-
flected in the so called “doming” effect: a broad-scale systematic
deformation of the reconstructed surface which often appears as
a rounded-vault-distortion of flat surface – as recognized exper-
imentally for example in (Rosnell and Honkavaara, 2012, Javer-
nick et al., 2014, Ouédraogo et al., 2014). Interestingly, from a
theoretical point of view, this phenomenon is related to critical
loci arisen in the context of radial distortion self calibration (Wu,
2014). In practice, (James and Robson, 2014, Smith and Ver-
icat, 2015) observe that the doming effect is particular evident
for UAV systems that take images from near-parallel directions,
causing systematic errors in the associated DEM. The rundown
of these studies is that the doming effect may be alleviated with
a careful design of a distributed network of ground points or by
taking slightly off-vertical convergent imagery. However, even if
these solutions succeed in reducing the amount of deformation,
they do not remove its systematic nature and are limited only to
laborious controlled setting.
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Contributions In this work we present a novel solution to deal
with the doming effect that mitigates the need of these precau-
tions during the acquisition phase by correcting the deformation
during the reconstruction step. In particular, under the assump-
tion of a known geometry of the terrain, e.g. an approximate flat
soil, we show how it is possible to compensate the doming defor-
mation by enforcing a planarity constraint over a set of automati-
cally selected points on the ground within the Bundle Adjustment
framework. The main idea is to extract the relevant information
to guide the Bundle Adjustment optimization by leveraging on
a simple-to-implement robust model fitting technique that auto-
matically assess and quantify the amount of doming deforma-
tion. In this way, we are able to allow accurate reconstructions
in a wider array of circumstances. For example, this method will
increase the quality of the attained 3D model when the adopted
cameras manifest some unavoidable radial distortion or have been
modeled in a defective way. In addition, the proposed approach
can also deal with challenging acquisition scenarios, e.g. when
oblique images are not available, or when it is difficult to define
a careful designed net of control points.

This manuscript is structured as follows, a first overview of the
method in Section 2 is followed by the description of the two
main steps of the suggested solutions, namely ground detection
in Section 3 and constrained Bundle Adjustment in Section 4.
Sample results attained on real datasets are provided in Section
5.

2. OVERVIEW

Our method in a nutshell can be presented as follows. Starting
from a tentative 3D reconstruction of the scene, before Bundle
Adjustment is carried on, a robust model fitting technique is used
to detect the ground, which is geometrically approximate either
as a plane or as a second order surface, depending on the amount
of the deformation. In this work we employ elliptic paraboloids
to describe the domed deformation of the terrain, and we derive
an ad hoc constrained-type least square fitting method.
As far as ground detection is concerned, the points of the scene
that do not belong to the terrain must be regarded as outliers,
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Figure 1. An overview of the main steps of the proposed method. At first the domed terrain is extracted from the point cloud via
a robust paraboloid fitting technique. Hence points on the ground are selected and used to enforce a planarity constraint within an
iterative Bundle Adjustment framework.

therefore, we exploits a robust framework, based on LMedS, com-
bined with an outlier diagnostic criterion, to extract from the
3D point cloud the ground, either in the form of a plane or a
paraboloid. The structure that has the least median of squared
residuals is used to approximate the soil geometry. Residuals be-
tween points and the attained structures are computed, hence, a
Forward Search procedure, based on the scrutiny of this residual
distribution, is used to prune outliers and identify points laying on
the ground. If the recovered structure happens to be a plane, the
doming effect can be considered negligible, otherwise some of
the inliers of the estimated paraboloid are used as control points
and constrained to be coplanar in the subsequent Bundle Adjust-
ment optimization. The procedure is iteratively repeated until the
detected ground happen to be correctly flattened to the soil plane.
An high-level illustration of this strategy is pictorially sketched
in Figure 1.

3. GROUND DETECTION

We split up the problem of automatically extract the terrain from
a 3D reconstruction of a scene in two sub-problems which are re-
spectively addressed in the following two sections.
The first issue is the geometric description of the deformed ter-
rain. While flat soil can be straightforwardly represented by a
plane, fitting a second order surface to a domed terrain is a more
challenging task, because, without further restraints, the estima-
tion of a generic quadric surface may yield, in presence of noise
and occlusions, to different kinds of quadrics and may also get
stuck in degenerate cases that do not capture adequately the dom-
ing effect. For these reasons, in the next section, we conceive a
simple and direct specific-paraboloid least-square fitting method
that avoids these difficulties.
The second problem to deal with is robustness, which is discussed
in Section 3.2 where LMedS and Forward Search are presented.

3.1 Specific paraboloid fitting

Elliptic paraboloids are manageable parametric models that well
represent the doming deformation. They are special instances of
quadric surfaces. A general quadric surface can be represented as
the vanishing locus of a second order polynomial of the form

F (Q,X) = X>QX = 0 (1)

where Q is a 4 × 4 real symmetric matrix and X = [x, y, z, 1]>

denotes a point in the euclidean space in homogeneous coordi-
nates. F (Q,X) represents the algebraic distance of a point X to
the quadric Q. Given a sparse cloud of n points X = {Xi}ni=1,
the general problem of fitting a quadric may be tackled via a least
square approach by minimizing the sum of squared algebraic dis-
tances

argmin
Q

∑
xi∈X

F (Q,Xi)
2. (2)

In order to avoid the trivial solution Q ≡ 0, the entries of Q may
be constrained to satisfy a relation of some kind. We recall that
two matrices Q,Q′ that differ for a multiplicative factor, repre-
sent the same quadric, therefore we have the freedom to arbitrar-
ily scale the entries of Q.
This feature can be favorably exploited to derive a quadratic con-
strain to force the quadric to be an elliptic paraboloid. This idea
was firstly suggested by (Fitzgibbon et al., 1999) for the problem
of fitting an ellipse in the plane. Here we revisit and generalize
to our paraboloid fitting scenario this approach. The main advan-
tages are: (i) ensure some desirable features∗ that well describe
the geometry of the soil to the fitted surface – namely, the sur-
face is composed by a single connected component, the nature
of the points is elliptical (i.e. a point of the surface is elliptic if
the surface in its neighborhood is on the same side of the tangent
plane) (ii) avoid degenerate cases in the presence of noise and
occlusions.

We recall that Q represents an elliptic paraboloid if and only if the
following two conditions on the so called orthogonal invariants
hold

I4 = det(Q) < 0, and I3 = det

q11 q12 q13
q12 q22 q23
q12 q22 q33

 = 0. (3)

We confine our discussion to paraboloids having the principal
axis vertically aligned, as we assume that the reference system
has the z-axis pointing towards the zenith. In this case Equa-
tion (1) can be further simplify as

a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6z + a7 = 0, (4)

and the corresponding quadric matrix turns out to be

Q =


a1 a2/2 0 a4/2
a2/2 a3 0 a5/2
0 0 0 a6

a4/2 a5/2 a6 a7

 , (5)

in this way the condition I3 = 0 is always satisfied. As regards
the constraint I4 < 0, with some calculations, it can be reduced
to

a1a3 −
a22
4
> 0. (6)

Rather than working with this inequality, which in general is dif-
ficult to deal with, we take advantage of the freedom to arbitrarily
scale the entries of Q: we simply integrate the scaling factor into

∗ Also ellipsoids can be used to describe the terrain, and similar method
can be derived also for these surfaces. Here we prefer elliptic paraboloid
as they depend on fewer parameters.
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Equation (6) by enforcing the equality

a1a3 −
(a2
2

)2
= 1. (7)

By wrapping up the quadric parameters in vectorial form as a =
[a1, a2, a3, a4, a5, a6, a7]

>, we can rephrase more compactly this
condition as a quadratic constraint a>Ca = 1 of the form

a>



0 0 2 0 0 0 0
0 −1 0 0 0 0 0
2 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


a = 0. (8)

In summary, starting from the problem in Equation (2), we end
up with the following constrained fitting problem

min ‖Da‖2 constrained to a>Ca = 1 (9)

where D is the n× 7 design matrix

D =

x
2
1 x1y1 y21 x1 y1 z1 1
...

...
...

...
...

...
...

xn2 xnyn y2n xn yn zn 1

 . (10)

This problem can be efficiently solved, as explained in (Fitzgib-
bon et al., 1999), by retaining as a solution the eigenvector â that
corresponds to the single negative generalized eigenvalue of the
associated generalized eigenproblem{

D>Da = λCa

a>Ca = 1.
(11)

3.2 Robust estimation technique

The reconstructed scene may include many structured points that
do not lie on the soil and that act as outliers during the terrain
extraction phase, as illustrated at the top of Figure 2. In presence
of such outlying measurements, our specific-paraboloid fitting
method, being a simple constrained least squares technique, will
break down. Therefore, in order to compensate for its fragility,
we integrate the ground detection step in a robust estimation frame-
work based on the Least Median of Squares (LMedS) coupled
with Forward Search to prune outliers at the end. An example
of the results yielded by this robust approach on an instance of
synthetic data is depicted at the bottom of Figure 2.

Least Median of Squares LMedS is a robust regression tech-
nique that achieves the maximum theoretical breakdown point of
0.5, i.e., it can tolerate up to 50% percent of outliers in the data
without being affected. At high level, if we denote by ri,a the
Euclidean distance between the i-th point xi and a model deter-
mined by a, the LMedS estimate is given by:

â = argmin
a

medianxi∈Xr
2
i,a, (12)

that is, the estimate must yield the smallest value for the median
of squared residuals computed for the entire data set.

The parameters a are obtained via random sampling: a number
of subsets S ⊂ X composed by the minimum number of points

3D point cloud

Estimated paraboloid

outliers
ground points

Figure 2. Ground detection with robust paraboloid fitting. A toy
example with synthetic data TOP: the input data are given by the
points on a paraboloid and points on a box lying on top of it
(colored for visualization purpose). Gaussian noise is added on
point coordinates BOTTOM: the paraboloid estimated via LMedS
is displayed in green. Forward Search is used to dichotomize
between inliers in light blue and outliers in red.

necessary to instantiate a model (e.g. 3 points for instantiate a
plane or 7 to fit a paraboloid) are randomly selected from the
data, and a parameter vector aS is fitted to the points in each sub-
set. Hence, each aS is tested by calculating the squared residual
distance r2i,aS

of each of the n− k points in X − S and the me-
dian of the residuals is computed. The aS corresponding to the
smallest median is chosen as the estimate â. If n is the number
of points in the initial set of data, there are

(
n
k

)
different subsets

of k points that should be considered. In order to speed up the
process, the number of subsets to test can be reduced to

M =
log(1− p)

log(1− (1− ε)k) , (13)

where p is the probability of calculating the correct estimate and
ε is the percentage of outliers.

In our scenario we found beneficial to adopt a simple bucketing
technique to encourage the sampling of well separated points, in
order to reduce the standard error on the estimated parameter by
leveraging on data that are more spread out.

It is known that, when in addition to outliers, Gaussian noise is
present, the relative statistical efficiency of LMedS is low.

Therefore, to compensate for this deficiency, it is important to re-
fine the fit on a outliers-free set of data. To this end, a common
practice is to adopt scale estimation strategies to dichotomize be-
tween noisy inliers and gross outliers. Along this line, common
solutions consist in univariate single-step outlier detection pro-
cedures that reject those points whose residuals are greater than
a certain threshold. This threshold can be fixed in advance or
computed adaptively from the data, for example using the me-
dian absolute deviation (MAD). Other solutions involve the use
of sequential procedures that monitor the distribution of residu-
als either by inward testing, that performs successive elimination
of points with high residual, or by outward testing, that adds se-
quentially points to the inlier set until a certain criterion is met.

Forward Search Forward Search (FS) (Hadi and Simonoff,
1993, Atkinson and Riani, 2000) is an outlier detection method
that can be ascribed to the latter category. The algorithm starts
from an initial subset of observations of sizem < n that is known
to be outlier free. In our case this is the minimum sample set Ŝ
that corresponds to the â obtained by LMedS, and m = k. Then,
the iterative process starts and at every ith iteration the s samples
(s = m + i − 1) with the lowest residual are used to estimate
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Figure 3. The distribution of the residuals computed w.r.t. the
paraboloid estimated from LMedS on the toy example of Figure
2, together with the inlier threshold (red line) obtained via For-
ward Search.

the parameters of the model as and the s + 1 residual rs+1,as

is checked to detect the point when the iteration starts including
outliers.

Among the several monitoring heuristics proposed in literature,
we consider here one of the simplest, that dates back to (Hadi
and Simonoff, 1993). The forward search stops when:

r2s+1,as
≥ (t(1−α/2(s+1),s−k)σs)

2 (14)

where t(1−α/2(s+1),s−k) is the 1 − α/2(s + 1) quantile of the
t-distribution with s − k degrees of freedom, and σs is the stan-
dard deviation of the least s residuals (the residual divided by σs
is also called “studentized” residual). The main idea is to recog-
nized the first point whose residual does not follow the gaussian
distribution of the inlier to the model.

The i-th iteration of the algorithm can be summarized as follows:

1. Estimate the parameters of the model as using the s = m+
i− 1 points in the clean subset;

2. Calculate the residuals rs+1,as of all the n points and ar-
range them in ascending order;

3. Test the (s+ 1)th residual:

If r2s+1,as
≥ (t(1−α/2(s+1),s−k)σs)

2 then declare all
the remaining n− s observations as outliers and stop.

Otherwise increment i (include the (s+ 1)th point in
the inliers).

4. If m+ i− 1 = n, then stop, otherwise go to step 1.

We applied this procedure to the synthetic data presented in Fig-
ure 2, and the results achieved are presented in Figure 3 where it
can be appreciated the multi-modality of the residual distribution
and how the estimated inlier threshold accurately dichotomized
between inliers and structured outliers.

3.3 Model selection: flat or domed?

Our objective is to enforce a linear constraint on the domed ground,
warping progressively into a plane the inliers points of the paraboloid
retrieved by FS. Due to the iterative nature of this wrapping pro-
cess, we need a mechanism to automatically assess when points

xi

⇡

�(t)

Figure 4. The distance between a point and a paraboloid is re-
duced to computing the distance between a point and a parabola
in the plane.

on the paraboloid happen to be planar, or in other words, we need
the ability to robustly detect both elliptic paraboloid and planes∗.

In general, this issue turns to be a tricky model selection problem
that requires some kind of regularization based on suitable model
complexity measures. Fortunately, for our purpose, we find that
a simple extension of the LMedS framework, aimed at handling
at the same time different kind of parametric models, works prof-
itably. Specifically, we tailor LMedS to simultaneously instanti-
ate tentative paraboloids and planes. In this way, by expressing
residuals in the same geometric unit of measure, we are able to
neatly compare the goodness of fit of sampled structures and to
choose the proper geometric primitive. Please note that the adop-
tion of our specific-paraboloid fitting method is crucial for the
success of this approach: a generic quadric fitting method would
produce a degenerate estimate in case of flat terrain leading to
inconsistent results.

Mixed sampling strategy: The adjustments to LMedS apply
exclusively to the sampling step. Paraboloids are instantiated
from minimum sample set of 7 points whereas 3D planes are ob-
tained by sampling triplets of points. The geometric residual be-
tween a point xi and a plane, that is represented as a 4 parameter
vector a, is easily computed as

ri,a =
|a>xi|√

a21 + a22 + a23
. (15)

When an elliptic paraboloid is considered, a becomes a 7 pa-
rameter vector, and the geometric residual of xi is computed as
follows (for reference see Figure 4):

1. the plane π passing through the axis of the paraboloid and
the point xi is computed;

2. the parabola given by the intersection of π and the paraboloid
is determined and parametrized as φ(t);

3. the distance between xi and the parabola is calculated by
finding the minimum of the squared norm f(t) = ‖φ(t) −
xi‖2. This boils down to finding the roots of the third degree
polynomial obtained by differentiating f(t) with respect to
t, that can be easily computed in closed form.

In order to avoid 7-tuple of bad conditioned points, every time
a minimum sample set is drawn, a planarity check is performed
∗ As a byproduct we will be able to determine if the input cloud of points
is not affected by the doming distortion and there is no need of correction.
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and, if it is deemed as planar, a plane is instantiated and added to
the pool of putative models.

LMedS, aside from the described mixed sampling strategy, is im-
plemented in a straightforward way. The model selection simply
boils down to select the structure, either plane or paraboloid, that
obtains the least median of squares, which in turn is used to ap-
proximate the ground and feed to Forward Search.

4. BUNDLE ADJUSTMENT WITH PLANAR
CONSTRAINT

It is customary to adopt Bundle Adjustment (Triggs et al., 1999)
to minimize the propagation of errors in Structure from Motion
techniques in order to provide a jointly optimal estimate of 3D
structure and viewing parameters. The terms “bundle” comes
from the bundle of light rays that connects each camera center
with the set of visible 3D points of the scene. This bundle of
rays is adjusted via a proper optimization routine aimed at min-
imizing the overall residual error, i.e., the distance between the
re-projected 3D points and the corresponding measured image
points, in formulas:

min
Xi,Pj

∑
i,j

wi,jd(PjXi,xi,j)
2. (16)

Pj is a 3× 4 matrix encapsulating the interior and exterior orien-
tations together with the radial distortion parameters of the j-th
camera, Xi represents the i-th points of the scene and xi,j its
2D homogeneous coordinates in the j-th image, d() indicates the
Euclidean distance in the image plane. The coefficients wi,j are
weights that indicates if a points Xi is seen by a camera Pj and
can also be used to mitigate the effect of gross measurements,
down-weighting the influence of outliers (Zach, 2014). This non
linear least weighted square problem can be efficiently resolved
through several numerical implementations rooted in Gauss-Newton
methods, that conveniently exploit the structure of the Jacobian
associated to Equation (16), see e.g. (Agarwal et al., 2010, Kono-
lige and Garage, 2010) for a review and a more detailed discus-
sion.

We want to modify Equation (16) in order to guide Bundle Ad-
justment to correct the camera parameters (including radial dis-
tortion values) and the point locations towards a reconstruction
in which the terrain is plane. Under the flat soil assumption, the
positions of the inliers of the attained paraboloid are certainly in-
accurate. Therefore, enforcing a planarity constraint on their lo-
cations, is a useful cues that can be encompassed in the optimiza-
tion process. With this idea in mind, we perform the following
three steps:

1. At first we automatically pick a subset of ground points
Xi∈U indexed by U ⊂ {1, . . . , n} among the inliers ob-
tained via Forward Search.

2. Then, we linearly project the selected points onto a designed
plane τ , obtaining new 3D positions – say Yi with i ∈ U .

3. At the end, we force the bundle of rays corresponding to the
selected points to pass through the 3D positions Yi.

This means that Bundle Adjustment minimizes the re-projection
error with respect to both the camera parameters and the 3D point
positions for all the points, except the selected Xi i ∈ U for

LMedS

Forward Search

Ground points 
selection

plane or maxiter 
reached ?start

end

Ground Detection

yes

no

Constrained 
Bundle Adjustment

Projection on plane

Bundle Adjustment 
with constraints

Figure 5. The flow chart of the proposed method

which the coordinates are kept fixed and equal to their planar pro-
jections Yi. Thus Equation (16) becomes

min
Xi,Pj

∑
i6∈U,j

wi,jd(PjXi,xi,j)
2 +

∑
i∈U,j

wi,jd(PjYi,xi,j)
2.

(17)

Selection of ground points The subset U corresponding to the
selected ground points is obtained through a decimation heuristic
based on a bucketing technique. Only points that are inliers to
the attained quadric are taken into account. Hence, the space of
the scene is divided in regular cells with predetermined width.
For each nonempty cell the point that is nearest to the cell-center
is selected and the corresponding index is put in U . In this way
the selected points are well spread through the whole scene. An
example of selected ground points in a real scene is presented in
Figure 7.

Planar projection The plane τ onto which points are projected
is chosen to be the tangent plane to the estimated quadric Q at a
certain point M on Q. The point M can be picked in several
ways: the vertex of the paraboloid is a good candidate, alterna-
tively it can be specified by the user. Given the coordinates of M,
the coefficients of the plane τ are simply found as t = M>Q.
The projection Yi on τ are computed via matrix multiplication
Yi = HXi, where

H = (td> − (t>d)I)>, (18)

d represents a direction of projection expressed in homogeneous
coordinates, e.g. v = [0, 0, 1, 0]>, and I denotes the 4×4 identity
matrix.

Weights setting If the i-th points is visible from the j-th cam-
era, the corresponding addend that appears in Equation (17) is
robustly weighted by the coefficients wi,j . The weight is defined
in terms of the re-projection error so to reduce the influence of
contributions higher than a certain tolerance εi:

wi,j(u) =

{
1 if u < εi

1/u otherwise.
(19)

We set an higher tolerance εi for i ∈ U because we want to in-
crease the importance of the error relative to the selected ground
points. In this way we are able to guide Bundle Adjustment
towards a planar solutions. In practice, if we express the re-
projection error in pixel, we fix εi = 5 if i ∈ U and εi = 1
otherwise.

The whole process is iterative, and can be summarized through
the block diagram shown in Figure 5.
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5. EXPERIMENTAL VALIDATION

Most Structure from Motion pipelines are either sequential –i.e. a
two-view reconstruction is sequentially augmented by adding in
a new image at each iteration – or hierarchical: input images are
at first organized in a dendrogram based on a similarity measure
and then, following the order defined by this structure, smaller re-
constructions are progressively merged in a complete 3D model.
In order to assess the results of our constrained Bundle Adjust-
ment, we used a Structure from Motion technique belonging to
the latter category. Specifically, we employed 3DF Zephyr Aerial
which implements the hierarchical approach of SAMANTHA –
a state-of-the-art Structure from Motion technique described in
(Toldo et al., 2015). It is worth noting that, the camera parame-
ters were kept fixed and jointly optimize by Bundle Adjustment
for blocks of similar images grouped together by Samantha.

We took in consideration three datasets of sparse reconstructions
obtained from aerial survey: village composed by 6.323 points
captured by 136 cameras, country lane composed by 18.059 points
registered by 49 cameras, and buildings made up of 18.655 points
and 103 cameras. The first two acquisitions were taken from an
higher distance with respect to the last one. In all the three cases
the internal orientations of the cameras were flawed, in particu-
lar, the radial distortion parameters were erroneously estimated.
These unfavorable conditions resulted in a set of 3D points af-
fected by the doming deformation, as can be seen in the first col-
umn of Figure 6 where a top view of the three scenes together
with the color-coded elevation of the points is presented. In vil-
lage, where the vertex of the paraboloid of the doming effect is
in the middle of the scene, it is particular easy to recognize the
parabolic geometry of the terrain.

The point cloud obtained by our constrained Bundle Adjustment
are collected in the right column of Figure 6, from which it can be
appreciated that the doming effect has been considerably attenu-
ated, confirming the usefulness of this approach. One can also
observe that, at the same time, the overall details and the other
structures of interest present in the scene have been preserved
thanks to the careful choice of ground points to guide Bundle Ad-
justment. For example, one can compare, the bottom-right corner
of the building dataset and recognized that the positions of the
yellow points – which corresponding to a roof in the scene – have
not been moved by Bundle Adjustment as they have been deemed
as outliers with respect to the ground paraboloid.

In Figure 7 a comparison between the input and the output point
cloud on the village datasets, qualitatively illustrate the transfor-
mation induced by Bundle Adjustment which wraps the points
towards a flat-soil geometry.

6. CONCLUSION AND FUTURE WORK

We have presented an effective method aimed at mitigating the
doming effect. Our approach recover a correct reconstruction by
properly integrating geometric clues in an iterative Bundle Ad-
justment framework. Further investigations about the connec-
tions between inaccuracies in the estimation of radial distortion
parameters and the induced geometry of the deformed scene are
in plan for future work. Moreover, a further advancement of this
approach would be the introduction of a rematching phase of the
keypoints at the end of the whole process. Also a careful study
of the direction d thorugh which the planar projection is realized,
would increase the accuracy of the attained reconstruction.

Figure 6. Top views of the doming effect on three datasets. The
elevation values of the points is color-coded.

3D point cloud

selected ground points

after constrained bundle adjustment

comparison domed
corrected

Figure 7. Sample results on the village dataset. TOP: the sparse
data given in input, selected points on the ground Xi, i ∈ U are
denoted as blue dots. MIDDLE: constrained Bundle Adjustment
succeeds in mitigating the doming effect. BOTTOM: comparison
between the input and the output point clouds.
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