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ABSTRACT: 

The Unmanned Aerial Vehicles (UAV) and its applications are growing for both civilian and military purposes. The operability of an 

UAV proved that some tasks and operations can be done easily and at a good cost-efficiency ratio. Nowadays, an UAV can perform 

autonomous missions. It is very useful to certain UAV applications, such as meteorology, vigilance systems, agriculture, environment 

mapping and search and rescue operations. One of the biggest problems that an UAV faces is the possibility of collision with other 

objects in the flight area. To avoid this, an algorithm was developed and implemented in order to prevent UAV collision with other 

objects. “Sense and Avoid” algorithm was developed as a system for UAVs to avoid objects in collision course. This algorithm uses a 

Light Detection and Ranging (LiDAR), to detect objects facing the UAV in mid-flights. This light sensor is connected to an on-board 

hardware, Pixhawk’s flight controller, which interfaces its communications with another hardware: Raspberry Pi. Communications 

between Ground Control Station and UAV are made via Wi-Fi or cellular third or fourth generation (3G/4G). Some tests were made 

in order to evaluate the “Sense and Avoid” algorithm’s overall performance. These tests were done in two different environments: A 

3D simulated environment and a real outdoor environment. Both modes worked successfully on a simulated 3D environment, and 

“Brake” mode on a real outdoor, proving its concepts. 

1. INTRODUCTION

Humans are always searching for a better solution to resolve day-

to-day problems. There is always something that needs to be 

more practical, efficient, affordable or even easier to interact with 

human beings. Due to that fact, there was a necessity of creating 

something that resolve those problems in a way that can 

guarantee same operational functions as human operators or even 

new ways to do the same thing with less effort. To accomplish 

that, Unmanned Aerial Vehicles (UAVs) were developed to 

preform actions that were difficult for human beings to execute. 

They are different from Manned Aerial Vehicles. UAVs are 

remotely controlled and Manned Aerial Vehicles are locally 

controlled. UAVs are characterized by their size, weight and 

maneuver. They are very small and light-weighted when 

compared to real manned aerial vehicles, such as commercial 

travel planes or even civil aircrafts. Their initial purpose was to 

serve the military for executing scout and surveillance missions, 

and even to preform aerial attacks in Gulf War and more recent, 

Iraq (Cocaud, 2007). Nowadays, UAVs are used to perform 

several tasks that require fast and efficient methods, such as 

analyzing crash sites, firefighting, search and rescue processes 

and so on (Scherer, 2015). There are various types of UAVs, each 

one with its limitations, functionalities and purposes. In order to 

control those UAVs, it’s necessary to have a ground control 

station (GCS), where communication is established between 

UAV and GCS, via wireless connection. There are several ways 

to communicate wirelessly, which can be via Radio, Satellite or 

Mobile Networks (Murilhas, 2015; Saraiva, 2015). They can 

perform autonomous actions, given by manned remote control, 

such as executing missions that are global positioning system 

(GPS) - guided through waypoints marked in a map. In a mission, 

user controller orders UAV to flight through pre-defined GPS 

coordinates. However, like every other manned control 

processes, error could occur. Consequently, there is a necessity 

to develop intelligent systems that can mitigate, or even avoid 

completely human-caused problems. An UAV, in order to make 

decisions by itself, has to be prepared to take emergency actions. 

Data indicators can trigger an emergency state status such as fast 

altitude drop, communication failure, low battery and risk of 

collision (for object collision avoidance). 

2. UNMANNED AERIAL VEHICLE

UAVs are aircrafts controlled by a manned ground control 

station, which can send and receive commands between GCS and 

UAVs with the absence of a present pilot on an UAV. The UAVs 

have a wide range of applications. Companies have developed 

hardware components in order to make an UAV fly with 

maximum stability and performance. Software projects were 

made to communicate with hardware components, in order to 

give a user-friendly interface, to read data and easily 

communicate with an UAV. 

There are some different structural types for UAVs, each one has 

its way of taking off, landing, aerodynamics and usability: 

Fixed-wing: These UAVs have some benefits that doesn’t exist 

in any other UAV types. They benefit from their designed two-

winged aerodynamics. Their wings help the wind flow through 

the UAV. Because of that, they can achieve greater air speeds and 

glide without losing too much height. This leads to a much less 

power consumption and that allows much more autonomy for 

long range flights. Fixed-wing UAVs lift and land horizontally, 

and they can’t hover in a certain position like other UAVs. Due 

to increased range, these structural type of UAV is most used by 

the military (Scherer, 2015). 

Multi-rotor: Unlike fixed-wing UAVs, these multi-rotor UAVs 

are capable of hovering, standing still in the air. They do not have 

wings. Their behavior is similar to a helicopter, but with more 

propellers. The most common multi-rotor UAVs are: 

Quadcopters, Hexacopters and Octacopters. They lift off and land 
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vertically. Compared with fixed-wing UAVs, they fly at lower 

speeds but have more action control. For being a multi-rotor 

UAVs, they consume much more power and have a shorter 

autonomy (Scherer, 2015). 

 

2.1 Companion Hardware 

In order to control hardware components, read data and send 

commands, an UAV needs to be equipped with an on-flight board 

control. That component is described as a flight controller. To 

provide autonomous tasks, extended wireless communication 

features and on-board situation control, an UAV needs additional 

hardware component: a mini-computer. Both flight controller 

and mini-computer are connected internally through serial 

connection and they exchange data between them. These 

components are categorized as Companion Hardware. 

 

2.2 Raspberry Pi 

Raspberry Pi is a credit-card sized micro-computer, developed in 

2012 at the University of Cambridge's Computer Laboratory, 

Runs Linux as operating system with the option to have a 

graphical user interface, and provide some useful inputs, such as 

USB ports, HDMI port, RJ45 port, audio port and GPIO (General 

Purpose Input / Output) connectors. These GPIO connectors 

allows developers to attach other hardware components, such as 

sensors, motors, leds and displays. 

Raspberry Pi can be used for a variety of things, such as a 

personal computer, a web server, or a device controller where the 

setup steps are simple. The operating system is downloaded to an 

SD card, then user configures some minor variables, such as 

operating system language, keyboard layout and drive setup 

management. After that, additional packages, such as compilers 

and libraries, can be added (Brock, Bruce, & Cameron, 2013). 

It’s a powerful computer, and when compared to desktop 

increased-sized solutions, it’s relatively cheap. This companion 

hardware it’s really useful because of its size, price and included 

functionalities (Saraiva, 2015). 

 

2.2.1 Flight controller: Some UAV flight controllers use 

hardware configurations based on existing projects and 3DR 

Pixhawk is one of them. ArduPilot is a full-featured open source 

project, licensed by GNU General Public License version 3 

(GPLv3) that supports “from conventional airplanes, multirotors, 

and helicopters, to boats and even submarines” (Ardupilot Dev 

Team, n.d.). ArduPilot supports several types of UAV’s such as 

fixed wings, multi-rotors and Unmanned Ground Vehicles 

(UGVs). Each type is configured in a single firmware file, which 

is installed on the Pixhawk main processor. This flight control 

board has some embedded sensors to provide useful data to 

Ground Control Station (GCS): a gyroscope, an accelerometer, a 

barometer and a magnetometer (Saraiva, 2015). It has the option 

to add a Global Position System (GPS) sensor to provide location 

data, such as latitude, longitude, altitude and speed. To perform 

guided missions, a GPS module is required in order to specify 

waypoints. This autopilot is fully programmable and can have 

First-Person View (FPV) camera gimbal support and control, 

Radio Controlled (RC) channel inputs and other sensors. The 

built-in hardware failsafe uses a separate circuit to transfer 

control from the RC system to the autopilot and back again. This 

prevents crashes by safely land on the ground (Bin & Justice, 

2009). In this work, a 3DR Pixhawk flight controller was used 

with ArduPilot available firmware. In order to transfer data to 

Raspberry Pi, Pixhawk uses an USB connection. 

 

2.3 Control and communication 

In order to control an UAV, it’s necessary to have intermediary 

components between UAV itself and piloting user. Such 

components are essential for piloting because they determine the 

behavior of an UAV.  

 

2.3.1 Radio Controller: Piloting an UAVs can be quite a 

challenge for novice pilots, because an UAV can fly in various 

3D space directions: left and right, to the front and back, up and 

down. The simplest and fastest way to start controlling an UAV 

is using a radio controller. A radio receiver on the UAV is needed 

to receive radio frequency (RF) data. This data is transmitted by 

a radio transmitter, controlled by the user, to control UAV’s 

attitude.  

 

2.3.2 Ground Control Station: A Ground Control Station 

(GCS) is an essential UAV monitoring and controlling tool. It 

provides user relevant flight data, read by flight controller 

sensors. Can be used to track down UAV location by reading 

GPS data, perform autonomous tasks, calibrate sensors, pre-

flight tests, and so on. It’s a required tool for ground operation 

tasks, used before, during and after UAV flights. There are 

various Ground Control Stations software available for Windows 

and Linux operating system environments, such as Mission 

Planner, APM Planner and QGroundControl. In order to send and 

receive data between UAVs and GCS, both must have telemetry 

equipment, such as Wi-Fi or Radio Frequency transmitters and 

receivers. This data is encrypted and sent by a common message 

type via MAVLink protocol. 

 

2.3.3 MAVLink message protocol: MAVLink is a header-

only message protocol that uses group of messages to transmit 

data between the UAV and GCS. It is designed to be reliable, fast 

and safe against transmission errors. It was first released in 2009 

by Lorenz Meier under the LGPL license (Murilhas, 2015; 

Scherer, 2015). Each message is byte-encrypted with sensor 

related content, which can be interpreted by Ground Station 

Control or by Raspberry Pi, which will serve as a message 

intermediary between Pixhawk and GCS. Commands like take 

off, raise or decrease altitude (throttle increase or decrease, 

respectively) are sent by GCS and interpreted by Pixhawk to 

perform desired action. 

 

2.4 Distance sensing 

Distance sensing can be useful for many UAV applications, such 

as ground altitude measurement, UAV terrain shape following, 

object detection and environment mapping. The use of distance 

sensors on an UAV extends its features for user determined 

purposes. There are various types of distance sensors, and each 

one has its features, restrictions and limitations. 
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2.4.1 Light Detection and Ranging (LiDAR): A Light 

Detection and Ranging (LiDAR) sensor is a measurement 

technology, which is based on a precise measurement of the time 

delay between the transmission of a pulsed optical laser light 

signal and its reception (Duh, n.d.). This allows UAV to produce 

environment mapping, by analyzing objects that are close or far 

from UAV current position. This sensor produces two types of 

light signals: Reference signal fed from the transmitter and a 

received signal reflected from the target. The time delay bet-ween 

these two signals is calculated through a signal processing 

method, known as correlation. These correlation process 

accurately calculates the time delay, which is translated into 

distance based on the speed-of-light constant (“LIDAR - 

Technology and System Hardware Overview,” n.d.). Each 

LiDAR for each application works at different electromagnetic 

wavelengths. Meteorology LiDARs usually work on ultraviolet 

(250 nm) and infrared (1500 nm to 2000 nm) wavelengths. For 

terrestrial mapping, at near-infrared wavelengths (Duh, n.d.). For 

pulsed LiDAR lasers, to obtain object distances and range 

resolutions, the equations are (1) and (2) are used: 

 

                                    𝑅 = 𝑐
𝑡

2
  (1) 

 

where 𝑅 means the distance, 𝑐 the speed of light value 

(~299,792,458 m/s) and 𝑡 the time delay between transmitting 

and receiving the light pulse (in ns), and 

 

                                           ∆𝑅 = 𝑐
∆𝑡

2
 (2) 

 

where ∆𝑅 is the range resolution, 𝑐 the speed of light and ∆𝑡 

resolution of time measurement (in ns) (Duh, n.d.). Range 

resolution is not the same thing as accuracy. Accuracy is the 

difference of measured distances between values read by LiDAR 

and real and true distance values. For example, if LiDAR 

measures a distance of 1,01 m from an object or surface and the 

real distance value is 1 m, the LiDAR reading accuracy is 1 cm 

(Value read - Real value = LiDAR accuracy). Range resolution 

is, for example, on environment mapping, a LiDAR sensor can 

generate a graph called “point cloud”. And each point means a 

read distance. Range resolution is the difference between points 

on a point cloud graph and for a terrain elevation model, “it’s the 

accuracy of the elevation”, or by other words, how far is the 

model measurements are from the real terrain elevation (Schmid, 

Hadley, & Wijekoon, 2011). 

 

 

3. SENSE AND AVOID ALGORITHM 

 

The Sense and Avoid algorithm was developed to achieve this 

article’s main goal: an autonomous avoidance system for UAVs 

in object collision course to use in search and rescue operations. 

This algorithm was designed to work fully on outdoor 

environments only. It was developed in Java programming 

language, for any operating system that supports Java VM and 

any flight controller that supports MAVLink messages and 

ArduPilot ArduCopter (for multirotors) firmware. In order to 

generate MAVLink messages in a way that MAVProxy could 

interpret as commands, there was the need of a MAVLink 

interpreter that uses Java as same programming language as 

“Sense and Avoid” algorithm. A Java library named MAVLink 

Java was used and it was developed by GitHub’s username 

Ghelle (Ghelle, n.d.). It is an essential tool in order to read 

messages generated from Pixhawk and to send MAVLink 

commands programmatically. This algorithm was tested on 3D 

simulated environments and on real outdoor environments. 

“Sense and Avoid” algorithm relies only in LiDAR external 

sensor readings to calculate objects in collision course and then, 

making decisions. These decisions are based on how an UAV is 

being controlled. For each different way of controlling an UAV, 

the algorithm behaves according to the situation. This algorithm 

needs to be always running in order to work. So, in this case and 

since it’s installed on Raspberry Pi’s OS, the “Sense and Avoid” 

algorithm always runs at Raspberry Pi’s boot, by running a 

startup script. In this chapter, every “object” word denomination 

can not only be referred as an object itself. An “object” can be a 

person, animal, wall, tree or other “instrument” that has an 

opaque surface. The flow chart depicted in figure 1 describes how 

“Sense and Avoid” algorithm works. This chart was developed 

by Bizagi Process Modeler, a free-to-use software for Windows 

environments developed by Bizagi company, that allow users to 

create process models for business purposes. In this case, this 

software was used for modeling a cycling process, which 

accurately describes the internal functionality of “Sense and 

Avoid” algorithm. 

 

Figure 1. “Sense and Avoid” internal functions.  

 

“Sense and Avoid” algorithm starts by receiving LiDAR readings 

from Pixhawk’s flight controller through MAVProxy. Then 

proceeds by running a cycling (threaded) code that runs every 

0.25s (this value was chosen as an example initial value and 

worked on experimental purposes). On every cycle, “Sense and 

Avoid” algorithm checks LiDAR distance read (that 

automatically outputs object distance in meters). If LiDAR 

doesn’t detect an object that has a distance inferior or equal to 7 

m, it means no action is required and UAV doesn’t change its 

behavior. This ends cycle process and starts a new one. But, if 

LiDAR detects an object that has a distance inferior or equal to 7 

m, the algorithm rapidly detects which controlling mode active at 

the moment: RC control method or autonomous methods such as 

“Auto” or “Guided” flight modes. If an UAV is being RC 

controlled, then the algorithm activates “Brake” feature. Or, if the 

UAV is flying on “Auto” or “Guided” flight modes, the algorithm 

will activate “Avoid and Continue” feature. At the end of 

“Brake” or “Avoid and Continue” features, the process cycle 

ends. The previous controlling method is resumed and new cycle 

begins, as it can be seen on the flow chart. The 7 m LiDAR 

distance is the maximum value that the UAV can be distanced of 

an object on collision course before activating one of the 

algorithm’s features. Inferior distance values were considered as 

well in order to predict instant object appearing which could 

cause UAV collision with that object. The 7 value is not a 

threshold value, but was given as an example. It was initially 

chosen when performing experimental tests on a 3D simulator 

and there were no complications on achieving tests goals. The 

“Sense and Avoid” algorithm has two modes: “Brake” and 

“Avoid and Continue”. Each mode is enabled accordingly to 

UAV’s current controlling method. The “Brake” mode is for RC 

controlling only and “Avoid and Continue” mode is for 

autonomous tasks, such as “Guided” flight mode and “Auto” 

flight mode. 
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3.1.1  Brake mode: The “Brake” mode is only engaged if 

LiDAR “sees” an object at a distance, e.g. 7 m or inferior, and if 

the UAV is currently being controlled by an RC controller. 

“Brake” mode is an essential feature for users that want an UAV 

with an object collision avoidance system. This features prevents 

RC controlled UAV from object collision, activating the “Brake” 

flight mode available on Pixhawk’s Copter firmware.  

This mode will only work if UAV has GPS position enabled, 

because Brake flight mode depends on GPS. This mode switches 

UAV’s current flight mode to “Brake” flight mode. This flight 

mode will stop the UAV mid-air and holding the same altitude 

the UAV had upon “Brake” flight mode switching. This will 

cause UAV to drift until hold position. Higher speeds mean 

higher brake times. After activation, any other form of 

controlling the UAV is disabled, and this means RC attitude 

control. Then, UAV proceeds to fly backwards until LiDAR 

measures object distance greater than 7 m. When that reading 

occurs, previous flight mode is activated and RC control is 

resumed. GPS is required to save current position. This position 

refers to the UAV’s actual position when Brake flight mode was 

activated. In case of drifting, this mode will readjust UAV’s 

position to the position when Brake flight mode was activated. 

The flow chart represented by figure 2 demonstrates how 

“Brake” mode changes UAV behaviors. 

 

Figure 2. “Brake” mode flow chart. 

3.1.2 Avoid and Continue mode: This mode is useful for 

fully autonomous tasks, such as missions. Implementing this 

feature not only guarantee object collision avoidance, but also 

resumes previous established goals. This mode was developed 

for search and rescue missions that require object collision 

maneuvers. The flow chart represented by figure 3 describes how 

“Avoid and Continue” mode behaves. 

 

 

Figure 3. “Avoid and Continue” mode flow chart. 

 

When “Avoid and Continue” mode is triggered, it comes from an 

autonomous flight mode: “Guided” or “Auto” flight mode. Those 

modes use pre-defined GPS positions. These positions are also 

called waypoints, and it sets a fly course for the UAV. This fly 

course is called mission. Missions are performed autonomously, 

flying orderly from the first waypoint created until the last one. 

A mission can have multiple waypoints. But, if in between these 

waypoints there’s an obstacle in collision course, the algorithm 

will be triggered. Firstly, the algorithm will stop the mission, in 

order to prevent collision. Then, will orderly save the list of non-

traveled waypoints, i.e., the next mission waypoints. This step is 

very important, because the UAV needs to keep record of its 

mission main goals. After saving waypoints, the UAV proceeds 

to Roll to the right or left. This UAV direction change (left or 

right) is chosen randomly, because the LiDAR sensor has a 

narrow beam (SF11/C beam divergence is 0.2º) and it can only 

sense the object at one small point in UAV’s front. For that 

reason, it is impossible to know the width of the object in order 

to choose direction that the UAV should take for a fast avoidance 

(shortest path to an open area). But, a low divergence beam can 

be useful, because it makes object distance measurement more 

accurate. If the object on sight is at a distance greater than 10 m, 

then the algorithm will resume mission by loading previous saved 

waypoints. If the distance is between 7 m and 10 m, the UAV 

will repeat the same Roll attitude in the same direction. This 

prevents the cases when the Roll attitude duration of 1 s is not 

enough to continue mission safely. These 3 m distance value is 

also called “threshold”. But, if the distance is not greater than 7 

m, there is the need of changing actual Roll direction. For 

example, if the UAV’s LiDAR is reading an object at 7 m, then 

it proceeds to Roll right, and that distance increases even more, 

the UAV could be facing the object with a certain angle that will 

rapidly increase the distance between UAV and that object. To 

avoid that, the UAV will invert the previous Roll rotation until 

distance is higher than 7 m so it can resume mission as described.  

 

 

4. SIMULATION AND EXPERIMENTAL RESULTS 

 

4.1 Environments 

 “Sense and Avoid” algorithm experimental tests were made on 

two different environments. Firstly, and for security reasons, 

there was a need to find a solution that was secure, easy to deploy 

and close to real UAV behaviors. A 3D simulated environment 

was the perfect solution for test “Sense and Avoid” algorithm. 

After a series of trial-and-error tests, resulting on many 

successful results on “Sense and Algorithm” main features made 

on a 3D environment, some tests were made on the custom UAV 

built on an outdoor environment. The following subsections 

describe the two test environments and what tests were made on 

each one.  

 

4.1.1 3D simulation: In order to test the “Sense and Avoid” 

algorithm on a 3D simulated environment, it was necessary to 

find a solution that represented real outdoor environments and 

UAV “close-to-real” behaviors. Gazebo is an Apache 2.0 

licensed open-source 3D environment simulator that is capable 

of simulating multi-robot behaviors on indoor or outdoor 

environments. It also features sensor readings (for object 

awareness) and “physically plausible interactions” between rigid 

objects (“Gazebo,” n.d.; Gomes Carreira, 2013). This simulator 

operates on Robot Operating System (ROS), which is BSD 

licensed open source library toolbox to develop robot-based 

applications. The ROS toolbox allows installing third-party 

plugins in order to add extra features useful to simulate all UAV’s 

flying requirements, such as control and communication methods 

(Gomes Carreira, 2013; Open Source Robotics Foundation, 

2014). The Gazebo simulator makes it possible to test “Sense and 

Avoid” algorithm because it provides realistic scenarios, with 3D 

model inclusions and real physics simulation. The ROS/Gazebo 

implementation will work as an external simulator for Pixhawk’s 

ArduCopter firmware. Its main features are:  

• Simulate 3D UAV’s physical stability and user command 

responses;  

• Read sensor data from the virtual-created UAV; 

• Communicate between user inputs and UAV model; 

• GPS information and SoNAR / LiDAR distance readings. 

Gazebo features the 3D environment, including the UAV model 

and an example indoor scenario. ROS contains a list of plugins 

that can be used in order to develop the UAV 3D solution. The 

ArduPilot SITL Gazebo plugin is responsible for interfacing the 
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virtual-created UAV (ArduPilot SITL simulation) with Gazebo 

simulation. The MAVROS plugin package, or Micro Air Vehicle 

ROS, provides communication features between ArduPilot 

firmwares (ArduCopter in this case). It uses the MAVLink 

communication protocol to exchange data. Additionally, 

MAVROS provides a bridge for MAVProxy GCS, which will be 

useful to “Sense and Avoid” algorithm, since it relies mainly on 

MAVProxy GCS to stablish a communication and control 

gateway. The Rotors Simulation plugin provides Gazebo 

simulator the UAV kinematics and sensor readings (IMU and 

LiDAR / SoNAR) (Furrer, Burri, Achtelik, & Siegwart, 2016; 

Robotics, n.d.). With these plugins, it is possible to test “Sense 

and Avoid” algorithm by experiencing real UAV responses to 

algorithm decisions. The LiDAR sensor simulation on Gazebo 

can read real distances from rigid 3D objects on the presented 

scenario, which gives an approximate real-feel experience from 

outdoor UAV flights and LiDAR readings. Since this test main 

goal is to use “Sense and Avoid” algorithm on a Search and 

Rescue approach, there was the need to create a scenario that 

includes the UAV facing an object in collision course. In early 

test stages, a 3D cube was used as an object-to-avoid scenario 

model. All Gazebo and ROS installation procedures and some 3D 

models were made by Erle-Robotics company, which presents a 

well-made guide that was essential in order to start our 3D UAV 

model in an outdoor environment. 

 

 

Figure 4. Quadcopter UAV model in a simple environment. 

 

In early algorithm development stages, a simpler environment 

was made to test algorithm’s efficiency.  The figure 4 presents 

the UAV 3D model, with a LiDAR sensor installed and is facing 

a concrete wall model. All models are available to use upon 

Gazebo installation. The UAV model named “Erle-Copter” was 

created by Erle-Robotics company. In order to add the laser 

“effect” on the UAV 3D model, some additional configurations 

were made. This simple environment served as the main field test 

of the “Brake” mode of “Sense and Avoid” algorithm. By 

receiving LiDAR readings of wall distance, it was possible to 

perform RC-based inputs, and therefore, acting like a real user 

sending RC controller commands. The RC-based inputs were 

sent via MAVProxy console. The simulation on this test scenario 

is a user-deliberated UAV control in order to collide with the 

concrete wall. The “Brake” mode will prevent it, and when 

compared with real cases, it relates to non-intentional collisions, 

classified as human errors. The figure 5 shows a more realistic 

environment. This environment was the base environment to test 

“Avoid and Continue” mode. 

 

 

Figure 5. 3D Outdoor environment simulation. 

 

This environment was created to test “Avoid and Continue” 

mode of the “Sense and Avoid” algorithm. In order to simulate a 

Search and Rescue scenario, this simulation represents an UAV 

flight using Pixhawk’s Auto flight mode (waypoint navigation), 

flying from point A to point B in order to perform a certain SAR 

mission. Since it doesn’t have a clear path, the UAV must avoid 

the object in collision course and proceed to reach B point 

successfully. The point A is at UAV’s current position and point 

B is behind the brown house model. 

 

4.1.2 Real outdoor: In order to test “Sense and Avoid” 

algorithm, using the custom built UAV, some experimental tests 

were made on an outdoor environment. Firstly, some Guided and 

Auto missions were made to ensure UAV’s stability and to avoid 

erranous behaviors when testing the algorithm. This tests were 

performed in an open-air area and obstacle-free environment. 

After ensuring UAV’s stability on autonomous missions, a 

obstacle was needed to test “Brake” mode. Unfortunatly, only 

“Brake” mode was tested on a real environment, because tests 

location was on a urban environment, and UAV failures could 

result on damaging the UAV or the object itself in case of 

crashing.  

 

4.2 Results and performance evaluation 

The subsections below show the best-case scenarios when 

testing one of each “Sense and Avoid” modes in both 3D and 

real outdoor environments. 
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4.2.1 Brake mode: In “Brake” mode This model will be 

used as object in collision course with the UAV. The parameters 

are totally configurable, such as LiDAR minimum and maximum 

distance measure, field of view, update rate and actual sensor 

distance measure. Replicating as much as possible a real case 

scenario of LiDAR readings, the parameters were adjusted 

according to the SF11/C LiDAR altimeter specifications, used in 

the custom-built UAV. The start point distance from the wall is 

approximately 12.77 m. The value was chosen as an example. 

The UAV is on LOITER flight mode and is hovering at 2 m 

altitude from ground plane. In order to reproduce an UAV 

movement towards the wall, a RC input simulation was needed. 

This means simulating a Pitch attitude to the front. For this test, 

only RC channel 3 was used to change UAV’s Pitch attitude. By 

running the command “RC 3 1480”, will perform a smooth UAV 

Pitch to the front. It’s smooth because RC channel’s PWM 

neutral value is 1500 µs, and the difference was only 20 µs. 

Maximum and minimum PWM values are 1000 µs and 2000 µs, 

respectively. These values can vary according to RC transmitter 

used (Ardupilot Dev Team, 2014). That’s why an RC calibration 

is always needed to establish limits on RC maximum and 

minimum values. The “Brake” mode is configured to change to 

“Brake” flight mode when UAV is being controlled by RC inputs 

and LiDAR reads a distance inferior than 7 m. Since it was a very 

slow and smooth Pitch movement, and wind is not a problem on 

a 3D environment, the UAV stayed at distance of approximately 

6.95 m from the concrete wall. “Brake” mode is prepared to 

“null” the drift effect movement by flying on a symmetric way. 

In this case, and to raise the distance again to a value higher than 

7 m, a symmetric Pitch attitude is done. Since UAV is on “Brake” 

flight mode, simulated RC inputs are disabled. To overcome this, 

the algorithm used a MAVLink command called 

“RC_CHANNEL_OVERRIDE” to programmatically gain 

control of the UAV (ETHZ, 2014). In order to obtain the Pitch 

value to nullify the drift behavior, the equation (3) was used: 

 

𝑆 = 𝑅𝐶𝑛 + [𝑅𝐶𝑛 − 𝑅𝐶𝑖]                      (3)    

 

where 𝑆 means the symmetric PWM value, 𝑅𝐶𝑛 corresponds to 

the nominal value of the RC channel (which is a constant value 

of 1500), and 𝑅𝐶𝑖 represents the RC PWM value when “Brake” 

mode was activated. In this case,  𝑆 = 1520. 

The test scenario was made by a human UAV pilot on the 

environment presented on figure 6 and the LIDAR distance 

readings can be observed on figure 7. 

 

 

Figure 6. UAV facing the “Impact zone”. 

 

Figure 7. LiDAR distance readings. Retrieved from Mission 

Planner software logs. 

 

The test was made at a distance of approximately 16 m from the 

“Impact zone”, on a day with a wind speed of 19 km/h. 

 

4.2.2 Avoid and Continue Mode: The “Avoid and 

Continue” mode was only tested in a 3D simulated environment. 

Tests on real outdoor environment were not performed for 

security reasons only. Since it was an urban environment, a slight 

non-expected behavior could cause damage on the objects around 

test area, including human beings, or on the UAV itself. This test 

was one of the successful tests made with “Avoid and Continue” 

mode. If the Roll attitude lowers even more the distance from the 

object, then the “Avoid and Continue” mode will change the Roll 

direction, by performing the symmetric Roll attitude of the 

previous one. For example, if the right Roll attitude was chosen 

by the algorithm and the distance from object lowered, if the RC 

Roll attitude had a PWM value of 1400, the symmetric Roll 

attitude will be 1600 µs. This follows the principle explained in 

the “Brake” mode, but in that case, it was for reducing UAV 

drifting effects. After the Roll attitude, the UAV is not facing the 

brown house anymore and it can proceed with the mission safely.  

The “Avoid and Continue” mode, which previously saved the 

waypoint behind the house model, will change to Guided flight 

mode again and proceeds to fly to the mission waypoint. The 

“Avoid and Continue” was developed for city environment 

purposes, where buildings are tall enough to discard the “flying 

above the object” solution. This was the reason why the Roll 

attitude was considered in “Avoid and Continue” mode. This 

mode performance was like expected but it requires some 

improvements. If the UAV encounters a concave wall, it will be 

trapped forever and occasionally it will cause the UAV to crash. 

The Roll attitude behaviors can cause the collision with side 

objects, since LiDAR sensor is pointed to the front and has no 

visibility to the other sides. Also on Roll attitude behaviors, the 

path chosen can be the farthest one to an object-free area being 

caused by the limitations of the LiDAR sensor used. These 

problems can be solved adding a system that analyzes the 

environment in every 3D direction. 

 

 

5. CONCLUSIONS  

 

The main goal of this work was to develop a system that was 

capable of taking control of an UAV autonomously if an object 

in collision course was detected. Therefore, “Sense and Avoid” 

algorithm, considering “Brake” and “Avoid and Continue” 

modes, was developed to avoid UAV collisions and to ensure 

autonomous object collision avoidance maneuvers. The 

algorithm was tested in two different test environments: a 3D 

simulation with realistic physics and collision simulations, and a 

real outdoor environment. A custom-built UAV was made in 
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order to test algorithm on a real aircraft. All the work and research 

done, and after test results and performance analysis, some 

conclusions were made: 

• The LiDAR sensor proved to be a reliable distance

measurement sensor. The accuracy of SF11/C LiDAR was

outstanding and it was the best solution to detect with precision

objects in collision course;

• The “Brake” mode of “Sense and Avoid” algorithm worked

flawlessly after a long number of trial-and-error tests. The

successful results on a 3D simulated environment proved that

same behavior should be expected on a real outdoor experiment.

The UAV maneuvers were as expected on real outdoor

environment.

• The “Avoid and Continue” mode proved to be useful feature

for every UAV on autonomous missions. Unfortunately, its

results showed some flaws caused by SF11/C LiDAR’s

capabilities and limitations. The main reason of this is because

the algorithm was developed and adjusted according to the

LiDAR capabilities. “Avoid and Continue” mode potential

should be expanded by improving current system (for example, a

360º LiDAR environment sweep) or implementing another

distance sensing system.
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