
USING DISTANCE SENSORS TO PERFORM COLLISION AVOIDANCE MANEUVRES

ON UAV APPLICATIONS

A. Raimundo a b, D. Peres a b, N. Santos a b, P. Sebastião a b, N. Souto a b

a ISCTE-Instituto Universitário de Lisboa, DCTI, Avenida das Forças Armadas, 1649-026 Lisboa
b Instituto de Telecomunicações, Av. Rovisco Pais 1, 1049-001 Lisboa

aslro@iscte.pt, drbps@iscte.pt, nmass@iscte.pt; pedro.sebastiao@iscte.pt; nuno.souto@iscte.pt;

KEY WORDS: UAV, object collision avoidance, distance sensing, LiDAR, 3D environment, drone, 3D vehicle.

ABSTRACT:

The Unmanned Aerial Vehicles (UAV) and its applications are growing for both civilian and military purposes. The operability of an

UAV proved that some tasks and operations can be done easily and at a good cost-efficiency ratio. Nowadays, an UAV can perform

autonomous missions. It is very useful to certain UAV applications, such as meteorology, vigilance systems, agriculture, environment

mapping and search and rescue operations. One of the biggest problems that an UAV faces is the possibility of collision with other

objects in the flight area. To avoid this, an algorithm was developed and implemented in order to prevent UAV collision with other

objects. “Sense and Avoid” algorithm was developed as a system for UAVs to avoid objects in collision course. This algorithm uses a

Light Detection and Ranging (LiDAR), to detect objects facing the UAV in mid-flights. This light sensor is connected to an on-board

hardware, Pixhawk’s flight controller, which interfaces its communications with another hardware: Raspberry Pi. Communications

between Ground Control Station and UAV are made via Wi-Fi or cellular third or fourth generation (3G/4G). Some tests were made

in order to evaluate the “Sense and Avoid” algorithm’s overall performance. These tests were done in two different environments: A

3D simulated environment and a real outdoor environment. Both modes worked successfully on a simulated 3D environment, and

“Brake” mode on a real outdoor, proving its concepts.

1. INTRODUCTION

Humans are always searching for a better solution to resolve day-

to-day problems. There is always something that needs to be

more practical, efficient, affordable or even easier to interact with

human beings. Due to that fact, there was a necessity of creating

something that resolve those problems in a way that can

guarantee same operational functions as human operators or even

new ways to do the same thing with less effort. To accomplish

that, Unmanned Aerial Vehicles (UAVs) were developed to

preform actions that were difficult for human beings to execute.

They are different from Manned Aerial Vehicles. UAVs are

remotely controlled and Manned Aerial Vehicles are locally

controlled. UAVs are characterized by their size, weight and

maneuver. They are very small and light-weighted when

compared to real manned aerial vehicles, such as commercial

travel planes or even civil aircrafts. Their initial purpose was to

serve the military for executing scout and surveillance missions,

and even to preform aerial attacks in Gulf War and more recent,

Iraq (Cocaud, 2007). Nowadays, UAVs are used to perform

several tasks that require fast and efficient methods, such as

analyzing crash sites, firefighting, search and rescue processes

and so on (Scherer, 2015). There are various types of UAVs, each

one with its limitations, functionalities and purposes. In order to

control those UAVs, it’s necessary to have a ground control

station (GCS), where communication is established between

UAV and GCS, via wireless connection. There are several ways

to communicate wirelessly, which can be via Radio, Satellite or

Mobile Networks (Murilhas, 2015; Saraiva, 2015). They can

perform autonomous actions, given by manned remote control,

such as executing missions that are global positioning system

(GPS) - guided through waypoints marked in a map. In a mission,

user controller orders UAV to flight through pre-defined GPS

coordinates. However, like every other manned control

processes, error could occur. Consequently, there is a necessity

to develop intelligent systems that can mitigate, or even avoid

completely human-caused problems. An UAV, in order to make

decisions by itself, has to be prepared to take emergency actions.

Data indicators can trigger an emergency state status such as fast

altitude drop, communication failure, low battery and risk of

collision (for object collision avoidance).

2. UNMANNED AERIAL VEHICLE

UAVs are aircrafts controlled by a manned ground control

station, which can send and receive commands between GCS and

UAVs with the absence of a present pilot on an UAV. The UAVs

have a wide range of applications. Companies have developed

hardware components in order to make an UAV fly with

maximum stability and performance. Software projects were

made to communicate with hardware components, in order to

give a user-friendly interface, to read data and easily

communicate with an UAV.

There are some different structural types for UAVs, each one has

its way of taking off, landing, aerodynamics and usability:

Fixed-wing: These UAVs have some benefits that doesn’t exist

in any other UAV types. They benefit from their designed two-

winged aerodynamics. Their wings help the wind flow through

the UAV. Because of that, they can achieve greater air speeds and

glide without losing too much height. This leads to a much less

power consumption and that allows much more autonomy for

long range flights. Fixed-wing UAVs lift and land horizontally,

and they can’t hover in a certain position like other UAVs. Due

to increased range, these structural type of UAV is most used by

the military (Scherer, 2015).

Multi-rotor: Unlike fixed-wing UAVs, these multi-rotor UAVs

are capable of hovering, standing still in the air. They do not have

wings. Their behavior is similar to a helicopter, but with more

propellers. The most common multi-rotor UAVs are:

Quadcopters, Hexacopters and Octacopters. They lift off and land

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017
International Conference on Unmanned Aerial Vehicles in Geomatics, 4–7 September 2017, Bonn, Germany

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W6-303-2017 | © Authors 2017. CC BY 4.0 License. 303

vertically. Compared with fixed-wing UAVs, they fly at lower

speeds but have more action control. For being a multi-rotor

UAVs, they consume much more power and have a shorter

autonomy (Scherer, 2015).

2.1 Companion Hardware

In order to control hardware components, read data and send

commands, an UAV needs to be equipped with an on-flight board

control. That component is described as a flight controller. To

provide autonomous tasks, extended wireless communication

features and on-board situation control, an UAV needs additional

hardware component: a mini-computer. Both flight controller

and mini-computer are connected internally through serial

connection and they exchange data between them. These

components are categorized as Companion Hardware.

2.2 Raspberry Pi

Raspberry Pi is a credit-card sized micro-computer, developed in

2012 at the University of Cambridge's Computer Laboratory,

Runs Linux as operating system with the option to have a

graphical user interface, and provide some useful inputs, such as

USB ports, HDMI port, RJ45 port, audio port and GPIO (General

Purpose Input / Output) connectors. These GPIO connectors

allows developers to attach other hardware components, such as

sensors, motors, leds and displays.

Raspberry Pi can be used for a variety of things, such as a

personal computer, a web server, or a device controller where the

setup steps are simple. The operating system is downloaded to an

SD card, then user configures some minor variables, such as

operating system language, keyboard layout and drive setup

management. After that, additional packages, such as compilers

and libraries, can be added (Brock, Bruce, & Cameron, 2013).

It’s a powerful computer, and when compared to desktop

increased-sized solutions, it’s relatively cheap. This companion

hardware it’s really useful because of its size, price and included

functionalities (Saraiva, 2015).

2.2.1 Flight controller: Some UAV flight controllers use

hardware configurations based on existing projects and 3DR

Pixhawk is one of them. ArduPilot is a full-featured open source

project, licensed by GNU General Public License version 3

(GPLv3) that supports “from conventional airplanes, multirotors,

and helicopters, to boats and even submarines” (Ardupilot Dev

Team, n.d.). ArduPilot supports several types of UAV’s such as

fixed wings, multi-rotors and Unmanned Ground Vehicles

(UGVs). Each type is configured in a single firmware file, which

is installed on the Pixhawk main processor. This flight control

board has some embedded sensors to provide useful data to

Ground Control Station (GCS): a gyroscope, an accelerometer, a

barometer and a magnetometer (Saraiva, 2015). It has the option

to add a Global Position System (GPS) sensor to provide location

data, such as latitude, longitude, altitude and speed. To perform

guided missions, a GPS module is required in order to specify

waypoints. This autopilot is fully programmable and can have

First-Person View (FPV) camera gimbal support and control,

Radio Controlled (RC) channel inputs and other sensors. The

built-in hardware failsafe uses a separate circuit to transfer

control from the RC system to the autopilot and back again. This

prevents crashes by safely land on the ground (Bin & Justice,

2009). In this work, a 3DR Pixhawk flight controller was used

with ArduPilot available firmware. In order to transfer data to

Raspberry Pi, Pixhawk uses an USB connection.

2.3 Control and communication

In order to control an UAV, it’s necessary to have intermediary

components between UAV itself and piloting user. Such

components are essential for piloting because they determine the

behavior of an UAV.

2.3.1 Radio Controller: Piloting an UAVs can be quite a

challenge for novice pilots, because an UAV can fly in various

3D space directions: left and right, to the front and back, up and

down. The simplest and fastest way to start controlling an UAV

is using a radio controller. A radio receiver on the UAV is needed

to receive radio frequency (RF) data. This data is transmitted by

a radio transmitter, controlled by the user, to control UAV’s

attitude.

2.3.2 Ground Control Station: A Ground Control Station

(GCS) is an essential UAV monitoring and controlling tool. It

provides user relevant flight data, read by flight controller

sensors. Can be used to track down UAV location by reading

GPS data, perform autonomous tasks, calibrate sensors, pre-

flight tests, and so on. It’s a required tool for ground operation

tasks, used before, during and after UAV flights. There are

various Ground Control Stations software available for Windows

and Linux operating system environments, such as Mission

Planner, APM Planner and QGroundControl. In order to send and

receive data between UAVs and GCS, both must have telemetry

equipment, such as Wi-Fi or Radio Frequency transmitters and

receivers. This data is encrypted and sent by a common message

type via MAVLink protocol.

2.3.3 MAVLink message protocol: MAVLink is a header-

only message protocol that uses group of messages to transmit

data between the UAV and GCS. It is designed to be reliable, fast

and safe against transmission errors. It was first released in 2009

by Lorenz Meier under the LGPL license (Murilhas, 2015;

Scherer, 2015). Each message is byte-encrypted with sensor

related content, which can be interpreted by Ground Station

Control or by Raspberry Pi, which will serve as a message

intermediary between Pixhawk and GCS. Commands like take

off, raise or decrease altitude (throttle increase or decrease,

respectively) are sent by GCS and interpreted by Pixhawk to

perform desired action.

2.4 Distance sensing

Distance sensing can be useful for many UAV applications, such

as ground altitude measurement, UAV terrain shape following,

object detection and environment mapping. The use of distance

sensors on an UAV extends its features for user determined

purposes. There are various types of distance sensors, and each

one has its features, restrictions and limitations.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017
International Conference on Unmanned Aerial Vehicles in Geomatics, 4–7 September 2017, Bonn, Germany

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W6-303-2017 | © Authors 2017. CC BY 4.0 License.

304

2.4.1 Light Detection and Ranging (LiDAR): A Light

Detection and Ranging (LiDAR) sensor is a measurement

technology, which is based on a precise measurement of the time

delay between the transmission of a pulsed optical laser light

signal and its reception (Duh, n.d.). This allows UAV to produce

environment mapping, by analyzing objects that are close or far

from UAV current position. This sensor produces two types of

light signals: Reference signal fed from the transmitter and a

received signal reflected from the target. The time delay bet-ween

these two signals is calculated through a signal processing

method, known as correlation. These correlation process

accurately calculates the time delay, which is translated into

distance based on the speed-of-light constant (“LIDAR -

Technology and System Hardware Overview,” n.d.). Each

LiDAR for each application works at different electromagnetic

wavelengths. Meteorology LiDARs usually work on ultraviolet

(250 nm) and infrared (1500 nm to 2000 nm) wavelengths. For

terrestrial mapping, at near-infrared wavelengths (Duh, n.d.). For

pulsed LiDAR lasers, to obtain object distances and range

resolutions, the equations are (1) and (2) are used:

 𝑅 = 𝑐
𝑡

2
 (1)

where 𝑅 means the distance, 𝑐 the speed of light value

(~299,792,458 m/s) and 𝑡 the time delay between transmitting

and receiving the light pulse (in ns), and

 ∆𝑅 = 𝑐
∆𝑡

2
 (2)

where ∆𝑅 is the range resolution, 𝑐 the speed of light and ∆𝑡

resolution of time measurement (in ns) (Duh, n.d.). Range

resolution is not the same thing as accuracy. Accuracy is the

difference of measured distances between values read by LiDAR

and real and true distance values. For example, if LiDAR

measures a distance of 1,01 m from an object or surface and the

real distance value is 1 m, the LiDAR reading accuracy is 1 cm

(Value read - Real value = LiDAR accuracy). Range resolution

is, for example, on environment mapping, a LiDAR sensor can

generate a graph called “point cloud”. And each point means a

read distance. Range resolution is the difference between points

on a point cloud graph and for a terrain elevation model, “it’s the

accuracy of the elevation”, or by other words, how far is the

model measurements are from the real terrain elevation (Schmid,

Hadley, & Wijekoon, 2011).

3. SENSE AND AVOID ALGORITHM

The Sense and Avoid algorithm was developed to achieve this

article’s main goal: an autonomous avoidance system for UAVs

in object collision course to use in search and rescue operations.

This algorithm was designed to work fully on outdoor

environments only. It was developed in Java programming

language, for any operating system that supports Java VM and

any flight controller that supports MAVLink messages and

ArduPilot ArduCopter (for multirotors) firmware. In order to

generate MAVLink messages in a way that MAVProxy could

interpret as commands, there was the need of a MAVLink

interpreter that uses Java as same programming language as

“Sense and Avoid” algorithm. A Java library named MAVLink

Java was used and it was developed by GitHub’s username

Ghelle (Ghelle, n.d.). It is an essential tool in order to read

messages generated from Pixhawk and to send MAVLink

commands programmatically. This algorithm was tested on 3D

simulated environments and on real outdoor environments.

“Sense and Avoid” algorithm relies only in LiDAR external

sensor readings to calculate objects in collision course and then,

making decisions. These decisions are based on how an UAV is

being controlled. For each different way of controlling an UAV,

the algorithm behaves according to the situation. This algorithm

needs to be always running in order to work. So, in this case and

since it’s installed on Raspberry Pi’s OS, the “Sense and Avoid”

algorithm always runs at Raspberry Pi’s boot, by running a

startup script. In this chapter, every “object” word denomination

can not only be referred as an object itself. An “object” can be a

person, animal, wall, tree or other “instrument” that has an

opaque surface. The flow chart depicted in figure 1 describes how

“Sense and Avoid” algorithm works. This chart was developed

by Bizagi Process Modeler, a free-to-use software for Windows

environments developed by Bizagi company, that allow users to

create process models for business purposes. In this case, this

software was used for modeling a cycling process, which

accurately describes the internal functionality of “Sense and

Avoid” algorithm.

Figure 1. “Sense and Avoid” internal functions.

“Sense and Avoid” algorithm starts by receiving LiDAR readings

from Pixhawk’s flight controller through MAVProxy. Then

proceeds by running a cycling (threaded) code that runs every

0.25s (this value was chosen as an example initial value and

worked on experimental purposes). On every cycle, “Sense and

Avoid” algorithm checks LiDAR distance read (that

automatically outputs object distance in meters). If LiDAR

doesn’t detect an object that has a distance inferior or equal to 7

m, it means no action is required and UAV doesn’t change its

behavior. This ends cycle process and starts a new one. But, if

LiDAR detects an object that has a distance inferior or equal to 7

m, the algorithm rapidly detects which controlling mode active at

the moment: RC control method or autonomous methods such as

“Auto” or “Guided” flight modes. If an UAV is being RC

controlled, then the algorithm activates “Brake” feature. Or, if the

UAV is flying on “Auto” or “Guided” flight modes, the algorithm

will activate “Avoid and Continue” feature. At the end of

“Brake” or “Avoid and Continue” features, the process cycle

ends. The previous controlling method is resumed and new cycle

begins, as it can be seen on the flow chart. The 7 m LiDAR

distance is the maximum value that the UAV can be distanced of

an object on collision course before activating one of the

algorithm’s features. Inferior distance values were considered as

well in order to predict instant object appearing which could

cause UAV collision with that object. The 7 value is not a

threshold value, but was given as an example. It was initially

chosen when performing experimental tests on a 3D simulator

and there were no complications on achieving tests goals. The

“Sense and Avoid” algorithm has two modes: “Brake” and

“Avoid and Continue”. Each mode is enabled accordingly to

UAV’s current controlling method. The “Brake” mode is for RC

controlling only and “Avoid and Continue” mode is for

autonomous tasks, such as “Guided” flight mode and “Auto”

flight mode.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017
International Conference on Unmanned Aerial Vehicles in Geomatics, 4–7 September 2017, Bonn, Germany

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W6-303-2017 | © Authors 2017. CC BY 4.0 License.

305

3.1.1 Brake mode: The “Brake” mode is only engaged if

LiDAR “sees” an object at a distance, e.g. 7 m or inferior, and if

the UAV is currently being controlled by an RC controller.

“Brake” mode is an essential feature for users that want an UAV

with an object collision avoidance system. This features prevents

RC controlled UAV from object collision, activating the “Brake”

flight mode available on Pixhawk’s Copter firmware.

This mode will only work if UAV has GPS position enabled,

because Brake flight mode depends on GPS. This mode switches

UAV’s current flight mode to “Brake” flight mode. This flight

mode will stop the UAV mid-air and holding the same altitude

the UAV had upon “Brake” flight mode switching. This will

cause UAV to drift until hold position. Higher speeds mean

higher brake times. After activation, any other form of

controlling the UAV is disabled, and this means RC attitude

control. Then, UAV proceeds to fly backwards until LiDAR

measures object distance greater than 7 m. When that reading

occurs, previous flight mode is activated and RC control is

resumed. GPS is required to save current position. This position

refers to the UAV’s actual position when Brake flight mode was

activated. In case of drifting, this mode will readjust UAV’s

position to the position when Brake flight mode was activated.

The flow chart represented by figure 2 demonstrates how

“Brake” mode changes UAV behaviors.

Figure 2. “Brake” mode flow chart.

3.1.2 Avoid and Continue mode: This mode is useful for

fully autonomous tasks, such as missions. Implementing this

feature not only guarantee object collision avoidance, but also

resumes previous established goals. This mode was developed

for search and rescue missions that require object collision

maneuvers. The flow chart represented by figure 3 describes how

“Avoid and Continue” mode behaves.

Figure 3. “Avoid and Continue” mode flow chart.

When “Avoid and Continue” mode is triggered, it comes from an

autonomous flight mode: “Guided” or “Auto” flight mode. Those

modes use pre-defined GPS positions. These positions are also

called waypoints, and it sets a fly course for the UAV. This fly

course is called mission. Missions are performed autonomously,

flying orderly from the first waypoint created until the last one.

A mission can have multiple waypoints. But, if in between these

waypoints there’s an obstacle in collision course, the algorithm

will be triggered. Firstly, the algorithm will stop the mission, in

order to prevent collision. Then, will orderly save the list of non-

traveled waypoints, i.e., the next mission waypoints. This step is

very important, because the UAV needs to keep record of its

mission main goals. After saving waypoints, the UAV proceeds

to Roll to the right or left. This UAV direction change (left or

right) is chosen randomly, because the LiDAR sensor has a

narrow beam (SF11/C beam divergence is 0.2º) and it can only

sense the object at one small point in UAV’s front. For that

reason, it is impossible to know the width of the object in order

to choose direction that the UAV should take for a fast avoidance

(shortest path to an open area). But, a low divergence beam can

be useful, because it makes object distance measurement more

accurate. If the object on sight is at a distance greater than 10 m,

then the algorithm will resume mission by loading previous saved

waypoints. If the distance is between 7 m and 10 m, the UAV

will repeat the same Roll attitude in the same direction. This

prevents the cases when the Roll attitude duration of 1 s is not

enough to continue mission safely. These 3 m distance value is

also called “threshold”. But, if the distance is not greater than 7

m, there is the need of changing actual Roll direction. For

example, if the UAV’s LiDAR is reading an object at 7 m, then

it proceeds to Roll right, and that distance increases even more,

the UAV could be facing the object with a certain angle that will

rapidly increase the distance between UAV and that object. To

avoid that, the UAV will invert the previous Roll rotation until

distance is higher than 7 m so it can resume mission as described.

4. SIMULATION AND EXPERIMENTAL RESULTS

4.1 Environments

 “Sense and Avoid” algorithm experimental tests were made on

two different environments. Firstly, and for security reasons,

there was a need to find a solution that was secure, easy to deploy

and close to real UAV behaviors. A 3D simulated environment

was the perfect solution for test “Sense and Avoid” algorithm.

After a series of trial-and-error tests, resulting on many

successful results on “Sense and Algorithm” main features made

on a 3D environment, some tests were made on the custom UAV

built on an outdoor environment. The following subsections

describe the two test environments and what tests were made on

each one.

4.1.1 3D simulation: In order to test the “Sense and Avoid”

algorithm on a 3D simulated environment, it was necessary to

find a solution that represented real outdoor environments and

UAV “close-to-real” behaviors. Gazebo is an Apache 2.0

licensed open-source 3D environment simulator that is capable

of simulating multi-robot behaviors on indoor or outdoor

environments. It also features sensor readings (for object

awareness) and “physically plausible interactions” between rigid

objects (“Gazebo,” n.d.; Gomes Carreira, 2013). This simulator

operates on Robot Operating System (ROS), which is BSD

licensed open source library toolbox to develop robot-based

applications. The ROS toolbox allows installing third-party

plugins in order to add extra features useful to simulate all UAV’s

flying requirements, such as control and communication methods

(Gomes Carreira, 2013; Open Source Robotics Foundation,

2014). The Gazebo simulator makes it possible to test “Sense and

Avoid” algorithm because it provides realistic scenarios, with 3D

model inclusions and real physics simulation. The ROS/Gazebo

implementation will work as an external simulator for Pixhawk’s

ArduCopter firmware. Its main features are:

• Simulate 3D UAV’s physical stability and user command

responses;

• Read sensor data from the virtual-created UAV;

• Communicate between user inputs and UAV model;

• GPS information and SoNAR / LiDAR distance readings.

Gazebo features the 3D environment, including the UAV model

and an example indoor scenario. ROS contains a list of plugins

that can be used in order to develop the UAV 3D solution. The

ArduPilot SITL Gazebo plugin is responsible for interfacing the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017
International Conference on Unmanned Aerial Vehicles in Geomatics, 4–7 September 2017, Bonn, Germany

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W6-303-2017 | © Authors 2017. CC BY 4.0 License.

306

virtual-created UAV (ArduPilot SITL simulation) with Gazebo

simulation. The MAVROS plugin package, or Micro Air Vehicle

ROS, provides communication features between ArduPilot

firmwares (ArduCopter in this case). It uses the MAVLink

communication protocol to exchange data. Additionally,

MAVROS provides a bridge for MAVProxy GCS, which will be

useful to “Sense and Avoid” algorithm, since it relies mainly on

MAVProxy GCS to stablish a communication and control

gateway. The Rotors Simulation plugin provides Gazebo

simulator the UAV kinematics and sensor readings (IMU and

LiDAR / SoNAR) (Furrer, Burri, Achtelik, & Siegwart, 2016;

Robotics, n.d.). With these plugins, it is possible to test “Sense

and Avoid” algorithm by experiencing real UAV responses to

algorithm decisions. The LiDAR sensor simulation on Gazebo

can read real distances from rigid 3D objects on the presented

scenario, which gives an approximate real-feel experience from

outdoor UAV flights and LiDAR readings. Since this test main

goal is to use “Sense and Avoid” algorithm on a Search and

Rescue approach, there was the need to create a scenario that

includes the UAV facing an object in collision course. In early

test stages, a 3D cube was used as an object-to-avoid scenario

model. All Gazebo and ROS installation procedures and some 3D

models were made by Erle-Robotics company, which presents a

well-made guide that was essential in order to start our 3D UAV

model in an outdoor environment.

Figure 4. Quadcopter UAV model in a simple environment.

In early algorithm development stages, a simpler environment

was made to test algorithm’s efficiency. The figure 4 presents

the UAV 3D model, with a LiDAR sensor installed and is facing

a concrete wall model. All models are available to use upon

Gazebo installation. The UAV model named “Erle-Copter” was

created by Erle-Robotics company. In order to add the laser

“effect” on the UAV 3D model, some additional configurations

were made. This simple environment served as the main field test

of the “Brake” mode of “Sense and Avoid” algorithm. By

receiving LiDAR readings of wall distance, it was possible to

perform RC-based inputs, and therefore, acting like a real user

sending RC controller commands. The RC-based inputs were

sent via MAVProxy console. The simulation on this test scenario

is a user-deliberated UAV control in order to collide with the

concrete wall. The “Brake” mode will prevent it, and when

compared with real cases, it relates to non-intentional collisions,

classified as human errors. The figure 5 shows a more realistic

environment. This environment was the base environment to test

“Avoid and Continue” mode.

Figure 5. 3D Outdoor environment simulation.

This environment was created to test “Avoid and Continue”

mode of the “Sense and Avoid” algorithm. In order to simulate a

Search and Rescue scenario, this simulation represents an UAV

flight using Pixhawk’s Auto flight mode (waypoint navigation),

flying from point A to point B in order to perform a certain SAR

mission. Since it doesn’t have a clear path, the UAV must avoid

the object in collision course and proceed to reach B point

successfully. The point A is at UAV’s current position and point

B is behind the brown house model.

4.1.2 Real outdoor: In order to test “Sense and Avoid”

algorithm, using the custom built UAV, some experimental tests

were made on an outdoor environment. Firstly, some Guided and

Auto missions were made to ensure UAV’s stability and to avoid

erranous behaviors when testing the algorithm. This tests were

performed in an open-air area and obstacle-free environment.

After ensuring UAV’s stability on autonomous missions, a

obstacle was needed to test “Brake” mode. Unfortunatly, only

“Brake” mode was tested on a real environment, because tests

location was on a urban environment, and UAV failures could

result on damaging the UAV or the object itself in case of

crashing.

4.2 Results and performance evaluation

The subsections below show the best-case scenarios when

testing one of each “Sense and Avoid” modes in both 3D and

real outdoor environments.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017
International Conference on Unmanned Aerial Vehicles in Geomatics, 4–7 September 2017, Bonn, Germany

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W6-303-2017 | © Authors 2017. CC BY 4.0 License.

307

4.2.1 Brake mode: In “Brake” mode This model will be

used as object in collision course with the UAV. The parameters

are totally configurable, such as LiDAR minimum and maximum

distance measure, field of view, update rate and actual sensor

distance measure. Replicating as much as possible a real case

scenario of LiDAR readings, the parameters were adjusted

according to the SF11/C LiDAR altimeter specifications, used in

the custom-built UAV. The start point distance from the wall is

approximately 12.77 m. The value was chosen as an example.

The UAV is on LOITER flight mode and is hovering at 2 m

altitude from ground plane. In order to reproduce an UAV

movement towards the wall, a RC input simulation was needed.

This means simulating a Pitch attitude to the front. For this test,

only RC channel 3 was used to change UAV’s Pitch attitude. By

running the command “RC 3 1480”, will perform a smooth UAV

Pitch to the front. It’s smooth because RC channel’s PWM

neutral value is 1500 µs, and the difference was only 20 µs.

Maximum and minimum PWM values are 1000 µs and 2000 µs,

respectively. These values can vary according to RC transmitter

used (Ardupilot Dev Team, 2014). That’s why an RC calibration

is always needed to establish limits on RC maximum and

minimum values. The “Brake” mode is configured to change to

“Brake” flight mode when UAV is being controlled by RC inputs

and LiDAR reads a distance inferior than 7 m. Since it was a very

slow and smooth Pitch movement, and wind is not a problem on

a 3D environment, the UAV stayed at distance of approximately

6.95 m from the concrete wall. “Brake” mode is prepared to

“null” the drift effect movement by flying on a symmetric way.

In this case, and to raise the distance again to a value higher than

7 m, a symmetric Pitch attitude is done. Since UAV is on “Brake”

flight mode, simulated RC inputs are disabled. To overcome this,

the algorithm used a MAVLink command called

“RC_CHANNEL_OVERRIDE” to programmatically gain

control of the UAV (ETHZ, 2014). In order to obtain the Pitch

value to nullify the drift behavior, the equation (3) was used:

𝑆 = 𝑅𝐶𝑛 + [𝑅𝐶𝑛 − 𝑅𝐶𝑖] (3)

where 𝑆 means the symmetric PWM value, 𝑅𝐶𝑛 corresponds to

the nominal value of the RC channel (which is a constant value

of 1500), and 𝑅𝐶𝑖 represents the RC PWM value when “Brake”

mode was activated. In this case, 𝑆 = 1520.

The test scenario was made by a human UAV pilot on the

environment presented on figure 6 and the LIDAR distance

readings can be observed on figure 7.

Figure 6. UAV facing the “Impact zone”.

Figure 7. LiDAR distance readings. Retrieved from Mission

Planner software logs.

The test was made at a distance of approximately 16 m from the

“Impact zone”, on a day with a wind speed of 19 km/h.

4.2.2 Avoid and Continue Mode: The “Avoid and

Continue” mode was only tested in a 3D simulated environment.

Tests on real outdoor environment were not performed for

security reasons only. Since it was an urban environment, a slight

non-expected behavior could cause damage on the objects around

test area, including human beings, or on the UAV itself. This test

was one of the successful tests made with “Avoid and Continue”

mode. If the Roll attitude lowers even more the distance from the

object, then the “Avoid and Continue” mode will change the Roll

direction, by performing the symmetric Roll attitude of the

previous one. For example, if the right Roll attitude was chosen

by the algorithm and the distance from object lowered, if the RC

Roll attitude had a PWM value of 1400, the symmetric Roll

attitude will be 1600 µs. This follows the principle explained in

the “Brake” mode, but in that case, it was for reducing UAV

drifting effects. After the Roll attitude, the UAV is not facing the

brown house anymore and it can proceed with the mission safely.

The “Avoid and Continue” mode, which previously saved the

waypoint behind the house model, will change to Guided flight

mode again and proceeds to fly to the mission waypoint. The

“Avoid and Continue” was developed for city environment

purposes, where buildings are tall enough to discard the “flying

above the object” solution. This was the reason why the Roll

attitude was considered in “Avoid and Continue” mode. This

mode performance was like expected but it requires some

improvements. If the UAV encounters a concave wall, it will be

trapped forever and occasionally it will cause the UAV to crash.

The Roll attitude behaviors can cause the collision with side

objects, since LiDAR sensor is pointed to the front and has no

visibility to the other sides. Also on Roll attitude behaviors, the

path chosen can be the farthest one to an object-free area being

caused by the limitations of the LiDAR sensor used. These

problems can be solved adding a system that analyzes the

environment in every 3D direction.

5. CONCLUSIONS

The main goal of this work was to develop a system that was

capable of taking control of an UAV autonomously if an object

in collision course was detected. Therefore, “Sense and Avoid”

algorithm, considering “Brake” and “Avoid and Continue”

modes, was developed to avoid UAV collisions and to ensure

autonomous object collision avoidance maneuvers. The

algorithm was tested in two different test environments: a 3D

simulation with realistic physics and collision simulations, and a

real outdoor environment. A custom-built UAV was made in

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017
International Conference on Unmanned Aerial Vehicles in Geomatics, 4–7 September 2017, Bonn, Germany

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W6-303-2017 | © Authors 2017. CC BY 4.0 License.

308

order to test algorithm on a real aircraft. All the work and research

done, and after test results and performance analysis, some

conclusions were made:

• The LiDAR sensor proved to be a reliable distance

measurement sensor. The accuracy of SF11/C LiDAR was

outstanding and it was the best solution to detect with precision

objects in collision course;

• The “Brake” mode of “Sense and Avoid” algorithm worked

flawlessly after a long number of trial-and-error tests. The

successful results on a 3D simulated environment proved that

same behavior should be expected on a real outdoor experiment.

The UAV maneuvers were as expected on real outdoor

environment.

• The “Avoid and Continue” mode proved to be useful feature

for every UAV on autonomous missions. Unfortunately, its

results showed some flaws caused by SF11/C LiDAR’s

capabilities and limitations. The main reason of this is because

the algorithm was developed and adjusted according to the

LiDAR capabilities. “Avoid and Continue” mode potential

should be expanded by improving current system (for example, a

360º LiDAR environment sweep) or implementing another

distance sensing system.

ACKNOWLEDGEMENTS

The work developed and presented in this paper was produced in

Instituto de Telecomunicações Laboratories - ISCTE-IUL. The

equipment used was supported by IT and ISCTE-IUL.

REFERENCES

Ardupilot Dev Team. (n.d.). About ArduPilot. Retrieved from

http://ardupilot.org/about

Ardupilot Dev Team. (2014). Radio Control Calibration in

Mission Planner. Retrieved from

http://ardupilot.org/copter/docs/common-radio-control-

calibration.html

Bin, H., & Justice, A. (2009). The Design of an Unmanned

Aerial Vehicle Based on the ArduPilot. Indian Journal of

Science and Technology, 2(4), 12–15. Retrieved from

http://www.indjst.org/index.php/indjst/article/view/29423

Brock, J. D., Bruce, R. F., & Cameron, M. E. (2013). Changing

the world with a Raspberry Pi. Journal of Computing

Sciences in Colleges, 29(2), 151–153. Retrieved from

http://dl.acm.org/citation.cfm?id=2535418.2535441

Cocaud, C. (2007). Autonomous tasks allocation and path

generation of UAV’s. ProQuest Dissertations and

Theses. University of Ottawa, Ottawa, Ontario, Canada.

Retrieved from

https://www.ruor.uottawa.ca/bitstream/10393/27508/1/M

R34061.PDF

Duh, G. (n.d.). Light Detection and Ranging (LiDAR) Types of

aerial sensors. Retrieved October 21, 2016, from

http://code.google.com/creative/radiohead/

ETHZ. (2014). MAVLINK Common Message Set. Retrieved

from https://pixhawk.ethz.ch/mavlink/

Furrer, F., Burri, M., Achtelik, M., & Siegwart, R. (2016).

RotorS---A Modular Gazebo MAV Simulator

Framework. In A. Koubaa (Ed.), Robot Operating System

(ROS): The Complete Reference (Volume 1) (pp. 595–

625). Cham: Springer International Publishing.

https://doi.org/10.1007/978-3-319-26054-9_23

Gazebo. (n.d.). Retrieved from http://gazebosim.org/

Ghelle. (n.d.). MAVLink Java generator and library. Retrieved

from https://github.com/ghelle/MAVLinkJava

Gomes Carreira, T. (2013). Quadcopter Automatic Landing on a

Docking Station.

LIDAR - Technology and System Hardware Overview. (n.d.).

Retrieved January 13, 2016, from

http://lidarlite.com/docs/v2/technology_and_system_over

view/

Murilhas, L. (2015). New system to drive future ground

vehicles supported by heterogeneous wireless networks.

Open Source Robotics Foundation. (2014). Documentation -

ROS Wiki. Retrieved from http://wiki.ros.org/

Robotics, E. (n.d.). Simulation | Erle Robotics Docs. Retrieved

from http://docs.erlerobotics.com/simulation

Saraiva, T. (2015). Reliable Air-to-Ground Communication for

Low Altitude Unnamed Aerial Vehicles. ISCTE-IUL.

Scherer, M. (2015). Development and Implementation of an

Unmanned Aerial Vehicle with Stereoscopic Cameras

Controlled via a Virtual Reality Head-Mounted Display.

Frankfurt University of Applied Sciences. Retrieved from

http://baun-

vorlesungen.appspot.com/Abschlussarbeiten/Marcus_Sch

erer_Masterthesis_2015.pdf

Schmid, K. A., Hadley, B. C., & Wijekoon, N. (2011). Vertical

Accuracy and Use of Topographic LIDAR Data in

Coastal Marshes. Journal of Coastal Research, 275(6),

116–132. https://doi.org/10.2112/JCOASTRES-D-10-

00188.1

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017
International Conference on Unmanned Aerial Vehicles in Geomatics, 4–7 September 2017, Bonn, Germany

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W6-303-2017 | © Authors 2017. CC BY 4.0 License. 309

