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ABSTRACT:

With the emergence of small consumer Unmanned Aerial Vehicles (UAVs), the importance and interest of image-based
depth estimation and model generation from aerial images has greatly increased in the photogrammetric society. In
our work, we focus on algorithms that allow an online image-based dense depth estimation from video sequences, which
enables the direct and live structural analysis of the depicted scene. Therefore, we use a multi-view plane-sweep algorithm
with a semi-global matching (SGM) optimization which is parallelized for general purpose computation on a GPU
(GPGPU), reaching sufficient performance to keep up with the key-frames of input sequences. One important aspect
to reach good performance is the way to sample the scene space, creating plane hypotheses. A small step size between
consecutive planes, which is needed to reconstruct details in the near vicinity of the camera may lead to ambiguities in
distant regions, due to the perspective projection of the camera. Furthermore, an equidistant sampling with a small step
size produces a large number of plane hypotheses, leading to high computational effort. To overcome these problems,
we present a novel methodology to directly determine the sampling points of plane-sweep algorithms in image space.
The use of the perspective invariant cross-ratio allows us to derive the location of the sampling planes directly from the
image data. With this, we efficiently sample the scene space, achieving higher sampling density in areas which are close
to the camera and a lower density in distant regions. We evaluate our approach on a synthetic benchmark dataset for
quantitative evaluation and on a real-image dataset consisting of aerial imagery. The experiments reveal that an inverse
sampling achieves equal and better results than a linear sampling, with less sampling points and thus less runtime. Our
algorithm allows an online computation of depth maps for subsequences of five frames, provided that the relative poses
between all frames are given.

1. INTRODUCTION

In recent years, the importance and interest of image-
based depth estimation and model generation from aerial
images has greatly increased in the photogrammetric so-
ciety. This trend is especially due to the emergence of
small consumer Unmanned Aerial Vehicles (UAVs), which
easily and cost-effectively allow the capturing of images
from an aerial viewpoint. These images are used to gen-
erate three-dimensional models depicting our surrounding
and, in turn, using such models alleviates various appli-
cations such as urban reconstruction (Blaha et al., 2016;
Musialski et al., 2013; Rothermel et al., 2014), urban nav-
igation (Serna and Marcotegui, 2013), scene interpreta-
tion (Weinmann, 2016), security surveillance (Pollok and
Monari, 2016) and change detection (Taneja et al., 2013).
An important step in the process of model generation from
imagery is the image-based depth estimation, commonly
known as Structure-from-Motion (SfM). While the accu-
racy achieved by state-of-the-art SfM algorithms is quite
impressive, such results come at the cost of performance
and runtime, in particular when it comes to high resolution
dense depth estimation.

In our work, we focus on algorithms that allow an on-
line image-based dense depth estimation from video se-

quences. Online processing does not necessarily aim to
estimate depth maps for each input frame of the video
sequence, but rather for every key-frame which are typi-
cally generated at 1Hz - 2Hz. This enables the direct and
live structural analysis of the depicted scene. As video
sequences allow the use of multiple images for reconstruc-
tion, we employ a plane-sweep algorithm for image match-
ing. Apart from its ability of true multi-image matching
(Collins, 1995), the plane-sweep algorithm can efficiently
be optimized for general purpose computation on a GPU
(GPGPU), necessary in order to achieve sufficient per-
formance for online processing. Furthermore, urban sur-
roundings are well-suited for an approximation by planar
structures. The accuracy achieved and the runtime needed
by SfM algorithms mainly depend on two factors: One is
the optimization step employed after the image matching,
which determines the per-pixel depth value of the result-
ing depth map. The second factor is the sampling of the
scene space.

In general, the plane-sweep algorithm is parametrized by
the sweeping direction and the step size at which the planes
are swept through space, i.e. the location of the planes in
scene space. As we aim to achieve an online dense depth
estimation, it is important that the scene space is sam-
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pled efficiently, especially when it comes to oblique aerial
images due to the large scene depth. Moreover, a typi-
cal characteristic of perspective cameras is that sizes and
lengths of objects become smaller as these objects move
away from the camera. And as the input data are the im-
ages, it is vital that the sampling points are selected in
image space, instead of in scene space.

In this paper, we present a methodology to derive the sam-
pling points of plane-sweep algorithms directly from points
in image space. Our contributions are:

• The use of the perspective invariant cross-ratio to de-
rive the sampling points of plane-sweep algorithms
from correspondences in image space.

• The employment of a true multi-image plane-sweep
algorithm for the image-based depth estimation of ur-
ban environments from aerial imagery.

This paper is structured as follows: In Section 2, we
briefly summarize related work. Thereby, we give a short
overview of different sampling strategies in image-based
depth estimation, and we also explain how the plane-sweep
algorithm differs from tensor-based strategies. Further-
more, we introduce different work that has been done in re-
construction of urban environments, especially from aerial
imagery. In Section 3, we give a detailed description of
our methodology. We present our experimental results in
Section 4 and provide a discussion in Section 5. Finally,
we give a short summary and an outlook on future work
in Section 6.

2. RELATED WORK

In this section, we first provide a short introduction into
different methodologies for image-based depth estimation.
We explain how the plane-sweep algorithm differs from the
conventional exploitation of epipolar geometry and why it
is considered as a true multi-image matching algorithm. In
the second part of this section, we will give a brief overview
on previous work done in image-based reconstruction of
urban environments both from ground-based and aerial
imagery.

2.1 Image-Based Depth Estimation

A common approach for dense stereo reconstruction is to
exploit the epipolar geometry between two images. The
intrinsic calibration of the camera and the relative ori-
entation between both images allow to reduce the search
space for pixel correspondences to a one-dimensional path,
called the epipolar line. The so-called fundamental matrix
determines this epiploar line in the matching image, cor-
responding to a given pixel in the reference image. In the
past years, numerous algorithms with different optimiza-
tion strategies have been developed to compute optimal
disparity and depth maps from a two-view stereo setup.
Scharstein and Szeliski (2002) introduce a taxonomy that
groups these algorithms according to their strategies.

One drawback of using only two views is that a left-right
consistency check is required in order to find occlusions,

which inevitably increases the computational effort. To
overcome this problem, Kang et al. (2001) stated that by
using multiple views the consistency check can be omit-
ted, if a left and right subset with respect to the reference
image is independently used for image matching. If the
reference frame, for which the depth is to be computed, is
located in the middle, it can be assumed that if an object
is occluded in the matching image on the one side of the
reference frame, it is most likely visible in the image on
the other side. This is particularly applicable when recon-
structing 2.5D data, such as buildings and elevation, with
no overhanging objects.

The trifocal and quadrifocal tensors allow to extend the
epipolar geometry to three and four views respectively.
While the trifocal tensor can still be computed efficiently,
the quadrifocal tensor is rather unpractical (Hartley and
Zisserman, 2004). Furthermore, tensor-based methods are
restricted to a maximum of four views. To achieve a true
multi-image matching, Collins (1995) introduced the so-
called plane-sweep algorithm, in which a plane is swept
through space. For each position of the plane, the match-
ing images are perspectively warped into the reference
frame via the plane-induced homography. The idea is that
if the plane is close to an object in scene space, the warped
matching images and the reference image will align in the
corresponding areas. The optimal plane position for each
pixel can efficiently be found by minimizing the matching
costs. The final per-pixel depth is then computed by inter-
secting the ray through the pixel with the optimal plane.
This algorithm is suitable for different sweeping directions,
i.e. plane orientations, which can be aligned with the ori-
entation of objects which are to be reconstructed. The
approach of sampling the scene with different planes is of-
ten used in the image-based depth estimation, especially
when it comes to multi-image matching (Baillard and Zis-
serman, 2000; Pollefeys et al., 2008; Ruf and Schuchert,
2016; Sinha et al., 2014; Werner and Zisserman, 2002).

2.2 Urban Reconstruction

In recent years, much effort has been spent on the field
of urban reconstruction. We group the previous work into
two categories based on their input data. On the one hand
we consider work that is based on ground-based imagery,
and on the other hand we look at work which uses aerial
imagery for urban reconstruction. In their work, Werner
and Zisserman (2002) use a plane-sweep approach to re-
construct buildings from a ground-based viewpoint. A line
detection algorithm is used to determine plane orientations
by finding vanishing points. Given the orientations, the
planes are swept to estimate fine structures.

Pollefeys et al. (2008) as well as Gallup et al. (2007) intro-
duce a plane-sweep approach with multiple sweeping direc-
tions to reconstruct urban façades from vehicle-mounted
cameras. They utilize an inertia system and vanishing
points found in the input images to estimate the orien-
tation of the ground plane as well as the orientation of the
façade planes. While Pollefeys et al. (2008) find the opti-
mal planes by determining a Winner-Takes-It-All (WTA)
solution, Gallup et al. (2007) employ the optimization of
an energy functional to obtain the optimal planes.

Urban reconstruction from ground-based imagery is also
addressed by Furukawa et al. (2009). They perform a
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piecewise planar reconstruction under the assumption that
the building façades are standing perpendicular to each
other. Furthermore, the piecewise planar reconstruction
of urban scenery from ground-based imagery is done by
Sinha et al. (2009) and Gallup et al. (2010). They fit local
planes into sparse point clouds or initial depth maps and
determine the depth map by employing a final multi-label
MRF optimization.

Baillard and Zisserman (2000) apply a plane-fitting strat-
egy for a 3D reconstruction of buildings from aerial images
with a quasi-nadir view point. They extract the edges of
buildings by line detection and try to fit so-called half-
planes through these edges. In order to estimate the pitch
angle of these half-planes, they apply a similarity matching
between multiple views warped by homographies induced
by the half-planes. In a final step, they fuse adjacent half-
planes to compute the building models.

The use of Digital Elevation Models (DEMs) to reconstruct
urban buildings from aerial imagery is addressed by Zebe-
din et al. (2008). Their approach does not utilize image
matching but rather tries to extract the buildings from
the DEMs. They use line segments, which are determined
from the aerial imagery, to approximate the buildings with
geometric primitives.

In their work, Haala et al. (2015) describe an extraction
of 3D urban models from oblique aerial images. They in-
troduce a modification of the semi-global matching (SGM)
algorithm (Hirschmueller, 2008) that enables a coarse-to-
fine optimization, in order to overcome the problem of high
computational complexity due to occurring occlusions and
large viewpoint changes, inherent to oblique imagery.

Hofer et al. (2017) introduce an efficient abstraction of
3D modelling by using line segments. Their methodology
performs well in urban environments as buildings and man-
made objects are very suitable to be abstracted by line
segments.

PMVS (Furukawa and Ponce, 2010) and SURE (Rother-
mel et al., 2012) are examples of software tools for state-
of-the-art dense multi-view stereo (MVS) reconstruction.
PMVS reconstructs the scene with a large number of small
patches. Similar to plane-sweep depth estimation, it opti-
mizes the orientation and location of the patches by per-
forming multi-image matching. SURE, on the other hand,
performs a triangulation of pixel correspondences in multi-
ple views in order to reconstruct the depicted scene. These
software tools are typically designed for offline processing,
meaning that for the reconstruction all input images are
considered to be available. Furthermore, while offline re-
constructions commonly produce results with higher accu-
racy, their computation takes several minutes to hours, de-
pending on the size and complexity of the captured scene.
As we aim to perform an online depth estimation, i.e.
while the image sequence is captured, we can only assume
to have fewer input images and are restricted in the com-
plexity of optimization in order to keep up with the input
sequence.

3. METHODOLOGY

Our plane-sweep algorithm for image-based depth estima-
tion is based on the one described by Ruf and Schuchert

(2016). Given a set of five input images with correspond-
ing projection matrices Pi = K [Ri ti], we compute a depth
map for an identified reference frame which is typically the
middle frame of a short image sequence. As we are using
video imagery, the intrinsic camera matrix K is the same
for all images. The algorithm sweeps a plane through the
3D Euclidean scene space E3 and warps each matching im-
age by the plane-induced homography H into the reference
frame:

H = K · R − tnT

d
·K−1 (1)

where R, t = relative rotation and translation
n = plane normal vector
d = plane distance from the reference camera

This builds up a three-dimensional matching cost volume
of size W × H × |Γ|, where W and H correspond to the
image width and height, respectively. The set of planes,
which are used for reconstruction, is denoted by Γ ⊂ E3.
Thus, |Γ| denotes to the number of planes. We optimize
the cost volume with an eight path semi-global match-
ing (SGM) aggregation, as introduced by Hirschmueller
(2008), in order to determine the per-pixel optimal plane
and with it the depth. As similarity measures, we use
the sampling insensitive matching cost proposed by Birch-
field and Tomasi (1999). This is a sub-pixel accurate
absolute-difference cost function, which is cheep to com-
pute and yet provides good results for SGM-based methods
(Hirschmueller and Scharstein, 2007).

As stated by Equation 1 the plane-sweep algorithm is con-
figured by two parameters. One is given by n which de-
notes the orientation and thus the sweeping direction of
the planes. This parameter can be used to adjust the al-
gorithm to known scene structures. While the presented
methodology can be applied to any sweeping direction,
we use a frontoparallel plane orientation for the sake of
brevity and simplicity. The second parameter d represents
the distances of each plane from the optical centre of the
reference camera, i.e. the step sizes with which the planes
are swept through scene space along the normal vector.

p1 p2 p3 p4

l0

l1

l2

 Δ(p1, p2)

 δ(k, l)

C

a b c d

Figure 1. The cross-ratio between four collinear points is
invariant under the perspective projection.
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A straight-forward parametrization would be to select the
parameter in scene space according to the structure and
the resolution with which the scene is to be sampled.
While a small step size might suggest a thorough sam-
pling of the scene, it does not guarantee a higher accuracy.
Depending on the baseline between the cameras, multiple
sampling points might be projected onto the same pixel,
resulting in ambiguities between multiple plane hypothe-
ses. Furthermore, due to the perspective projection of the
cameras, it is necessary to decrease the sampling step as
the plane comes closer to the camera.

In order to reduce these ambiguities and sample the scene
according to the input data, it is a common approach in
state-of-the-art literature to sample the scene with an in-
verse depth. Yang and Pollefeys (2003) formulate the cal-
culation of inverse depth given the disparity for a stereo
setup with frontoparallel cameras. Even though their for-
mulation incorporates different camera setups, it is not
applicable for non-frontoparallel planes as the plane ori-
entation is not considered when computing the distances
of the planes with respect to the reference camera. While
Gallup et al. (2007) and Pollefeys et al. (2008) consider
different plane orientations, they determine the distance
of consecutive planes by comparing the disparity change
caused by the image warpings of the respective planes. In
order to reduce the complexity they only consider the im-
age borders, as they induce the largest disparity change.
Nonetheless, it requires a preliminary warping in order to
find the set of planes with which the scene is sampled.

In contrast, we aim to derive the locations of the sam-
pling planes directly from correspondences in image space
I ∈ R2. Given an homogeneous image point x̃ ∈ Iref in
the reference frame and multiple homogeneous sampling
points x̃′i ∈ Ik in one of the other camera frames, we aim
to find the plane distances di, with respect to the reference
camera, of the corresponding plane-induced homographies
Hi, so that x̃ = Hi · x̃′i holds. An intuitive approach to find
the corresponding planes would be to triangulate between
x̃ and x̃′i. Yet, the effort of triangulation can be avoided
by using the cross-ratio within the epipolar geometry to
determine the distance parametrization of the planes.

3.1 Cross-Ratio as Invariant Under Perspective
Projection

The cross-ratio describes the ratio of distances between
four collinear points. While the distances between these
points change under the perspective projection, their rela-
tionship relative to each other, i.e. the cross-ratio, is invari-
ant. Given are four points p1, p2, p3 and p4 on a straight
line l0 as depicted in Figure 1, which are perspectively
projected onto further non-parallel lines, such as l1 and l2.
With the known oriented distances ∆(pi, pj) between two
points pi and pj , the cross-ratio is determined according
to:

CR(p1, p2, p3, p4) = ∆(p1, p3)∆(p2, p4)
∆(p1, p4)∆(p2, p3) (2)

This ratio is the same on all three lines. Furthermore, with
the pairwise enclosed angles δ(k, l) between the rays a, b,

R, t

C2

C1

Iref

Πmin

Πmax

lx

Πi

cΠ

x

Xmin

Xi

Xmax

e1

x'min

x'i

x'max

Vx

Ve1

Vx'min

Vx'i

Vx'max

Figure 2. The use of the cross-ratio to determine the dis-
tance parameter of the sampling planes.

c and d, going through the centre of projection C and the
four points, the cross-ratio can be extended to:

CR(p1, p2, p3, p4) = CR(a, b, c, d)

= sin(δ(a, c)) sin(δ(b, d))
sin(δ(a, d)) sin(δ(b, c))

(3)

3.2 Determining Plane Distances with Cross-
Ratio

To determine the plane distances relative to the optical
centre of the reference camera with use of the cross-ratio,
we assume that two cameras C1 and C2 with known pro-
jection matrices are given, as depicted in Figure 2. We
select C1 to be the reference camera, centering the coor-
dinate system in its optical centre, so that P1 = K [I 0] .
In case of a multi-camera setup, we choose C2 to be the
camera inferring the largest image offset compared to the
reference frame. This is typically one of the most distant
cameras.

Furthermore, two planes Πmin and Πmax are known which
limit the Euclidean sweep space. With a given image
point x in the reference frame we can compute the ray
Vx through the camera centre and the image point. In-
tersecting Vx with the planes Πmin and Πmax gives us the
corresponding scene points Xmin and Xmax. Projecting
the optical centre of C1 as well as the scene points Xmin
and Xmax onto the image plane of C2 gives us the epipole
e1 and the two image points x′min and x′max which all lie
on the epipolar line lx corresponding to x.

Our aim is to find the distances di measured from C1 of all
planes Πi between Πmax and Πmin, so that lx is sampled
linearly with x′i between x′max and x′min. For each x′i ∈ lx,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017 
International Conference on Unmanned Aerial Vehicles in Geomatics, 4–7 September 2017, Bonn, Germany

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-2-W6-325-2017 | © Authors 2017. CC BY 4.0 License.

 
328



we apply Equations 2 and 3:

CR(Ve1 , Vx′
min

, Vx′
i
, Vx′

max )

=
sin(δ(Ve1 , Vx′

i
)) sin(δ(Vx′

min
, Vx′

max ))
sin(δ(Ve1 , Vx′

max )) sin(δ(Vx′
min

, Vx′
i
))

= ∆(C1, Xi)∆(Xmin, Xmax)
∆(C1, Xmax)∆(Xmin, Xi)

= CR(C1, Xmin, Xi, Xmax)

(4)

Resolving Equation 4 gives us Xi ∈ Vx. Furthermore, due
to CR(C1, Xmin, Xi, Xmax) = CR(C1, dmin, di, dmax), and
as the plane distance is given relative to C1, we can derive
di according to:

di · (dmax − dmin)
dmax · (di − dmin)

=
sin(δ(Ve1 , Vx′

i
)) sin(δ(Vx′

min
, Vx′

max ))
sin(δ(Ve1 , Vx′

max )) sin(δ(Vx′
min

, Vx′
i
)) .

(5)

As already stated, the presented approach is not re-
stricted to a frontoparallel plane orientation, but can be
applied to all kinds of orientations. It is important to use
CR(Ve1 , Vx′

min
, Vx′

i
, Vx′

max ) in Equation 4 to account for all
possible setups between C1 and C2, as e1 would flip to the
side of x′max if C1 is behind C2. Furthermore, to guarantee
a maximum disparity change between succeeding planes
for all pixels in Iref , x should be chosen as the pixel which
generates the largest disparity when warped from C1 to
C2. This is typically one of the four corner pixels of Iref .

4. EXPERIMENTS

To evaluate the performance of our methodology, we use
two different test datasets. First, we consider the New
Tsukuba Stereo Benchmark (NTSB) (Martull et al., 2012),
which provides a video of a camera flight through a syn-
thetic indoor scene. Due to the fact that this is a syn-
thetic test dataset, it provides a reference in the form of
camera poses and high-quality groundtruth depth maps
for each input frame. These are used for quantitative eval-
uation. To test our methodology on real scenario data,
we use aerial images of a transporter and container on our
premises, captured by a DJI Phantom 3.

In order to reduce image noise, the input images are down-
sampled by a factor of 0.8, which is determined empiri-
cally. Our algorithm runs on grayscale images. The image
matching, as well as the SGM optimization are parallelized
for general purpose computation on a GPU (GPGPU) with
OpenCL. All experiments are performed on a desktop com-
puter with an Intel Core i7-5820K CPU @ 3.30GHz and a
Nvidia GTX980 GPU. Please note that for a better map-
ping of our algorithm onto the architecture of the GPGPU
the number of sampling planes is always rounded up to the
nearest multiple of the warp size, which in case of the used
GPU is 32.

We evaluate the performance of our proposed methodology
for determining the sampling points of the plane-sweep al-
gorithm in image space against results obtained by a linear

sampling in scene space. For quantitative assessments of
the depth-error against the groundtruth of the NTSB, we
employ an averaged relative L1 accuracy measure:

L1-rel(z, ẑ) = 1
W × H

∑
i

|zi − ẑi|
ẑi

(6)

where z = depth estimate
ẑ = groundtruth
W,H = image size

The original image size of the images used within the
NTSB is 640 × 480 pixels. Figure 3 depicts a qualita-
tive comparison between a linear sampling in scene space
with a plane step size of 2 units and a linear sampling
in image space according to the proposed methodology
with a disparity change of maximum 1 pixel. We test our
methodology on three subsequences of five frames around
the Frames 295, 380 and 845 of the NTSB. These sub-
sequences provide similar views on the scene as can be
expected when performing image-based depth estimation
on aerial imagery with an oblique viewpoint. In addition
to the estimated depth maps, Figure 3 holds the refer-
ence frame as well as the corresponding groundtruth depth
map. The depth maps are color coded in the HSV color
space, going from red to blue. The penalization weights in
the SGM algorithm are set to P1 = 0.05 and P2 = 0.1 for
the NTSB. These weights have empirically been tested to
provide the best results for this dataset.

Table 1 holds a quantitative comparison between four dif-
ferent sampling configurations of the image-based depth
estimation performed on the NTSB. Besides the configura-
tions (a) and (d) which correspond to the results depicted
in Figure 3, configuration (b) lists the results of a linear
sampling in scene space with the same number of planes
as used in (d). Furthermore, we list the results of config-
uration (c) in which the linear sampling in image space is
reduced to a maximum disparity change of 2 pixels.

In terms of our evaluation on aerial imagery, we provide a
qualitative evaluation in Figure 4. We test on two refer-
ence frames depicting the same scene, but captured from
different heights. For reference Frame 41 we use a linear
sampling in image space of 0.04 units, while for Frame 66
we use a step size of 0.02 units. The original frame size
we use is 960× 720 pixels. The weights of the SGM opti-
mization are empirically set to P1 = 10 and P2 = 20. To
account for changes in exposure, we perform a histogram
equalization on the input images. A quantitative compar-
ison listing the number of planes used and the runtime is
given in Table 2.

5. DISCUSSION

One key aspect of employing a plane-sweep algorithm for
image-based depth estimation is determining the rate with
which the scene is sampled. Especially when using oblique
aerial imagery as input data, it is important to consider the
change of size and distances under the perspective projec-
tion of the camera due to the possibly larger scene depth.
The sampling rate should decrease with increasing scene
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Figure 3. Qualitative evaluation on three sequences of the New Tsukuba Stereo Benchmark (NTSB). Row 1: Frame
295. Row 2: Frame 380. Row 3: Frame 845. Column 1: Reference frame. Column 2: Groundtruth depth map.
Column 3: Estimated depth map with linear sampling of 2 units in scene space. Column 4: Estimated depth map
with linear sampling of <1 pixel along the epipolar line in image space.

Table 1. Quantitative evaluation between four different
configurations on the NTSB. (a) Linear sampling in scene
space, with a step size of 2 units. (b) Linear sampling in
scene space with 96 planes. (c) Linear sampling in image
space with a disparity change of max. 2 pixels. (d) Linear
sampling in image space with a disparity change of max.
1 pixel.

Frame (a) (b) (c) (d)

295
L1-rel 0.094 0.094 0.096 0.095
# planes 160 96 64 96
runtime (ms) 277 152 92 145

380
L1-rel 0.223 0.153 0.130 0.126
# planes 224 96 64 96
runtime (ms) 452 142 93 142

845
L1-rel 0.169 0.129 0.109 0.109
# planes 224 96 64 96
runtime (ms) 465 138 95 142

depth. Employing a linear sampling in scene space could
lead to ambiguities in distant regions as multiple sampling
points would project onto the same pixel if the step size
is too small. The objective of our methodology is to use
the available data, i.e. the images, to directly determine
the sampling points of the plane-sweep algorithm. Thus,
reducing the runtime without a loss in accuracy by elimi-
nating unnecessary sampling points.

Figure 3 depicts a comparison between the results obtained
by a linear sampling in scene space with a step size of 2
units (Column 3) and a linear sampling in image space
with a maximum disparity change of 1 pixel (Column 4),
which is equivalent to an inverse sampling in scene space.
While the results for the subsequence around Frame 295
(Row 1) do not reveal a considerable change in the qual-
ity between both sampling methods, a comparison of the
results for the other subsequences shows a great difference
in the depth maps. Especially in close regions our pro-

posed method achieves depth maps with higher quality.
This is due to the inverse sampling of the scene, leading
to smaller step sizes between consecutive planes when ap-
proaching the camera. The graph in Figure 5 depicts the
sampling points which are obtained by a linear and in-
verse sampling in scene space with the same number of
planes. It clearly shows that inverse sampling achieved by
the presented methodology uses less planes in distant re-
gions, while increasing the sampling density with decreas-
ing scene depth. Furthermore, as evaluated by Gallup et
al. (2008), it is important to sample more thoroughly in
areas of high-frequency textures, as can be seen when con-
sidering the table cloth in Row 3 of Figure 3.

Table 1 confirms the results depicted in Figure 3. For
Frame 295, the accuracy does not notably change between
configurations (a) and (d) when using less planes. This
can be attributed to the small number of objects that are
in near vicinity of the camera. Yet, the runtime is clearly
reduced, which is important when considering online ap-
plications. In case of the subsequences around Frame 380
and Frame 845, an inverse sampling achieves considerably
better results, while using less planes. This can also be ob-
served by a comparison in Figure 3. The results for con-
figuration (b) show that linear sampling with a reduced
number of planes achieves slightly better results than con-
figuration (a) due to less ambiguities, yet still doesn’t per-
form better than inverse sampling. An increase in the
maximum disparity change between consecutive planes, as
tested in configuration (c), slightly reduces the accuracy,
but nonetheless still achieves better results than a linear
sampling.

Figure 4 depicts the results obtained when running the
plane-sweep image-based depth estimation algorithm on
aerial imagery. Again we compare a linear sampling in
scene space (Column 2) against our methodology used to
derive the sampling points from points in image space (Col-
umn 3). Furthermore, we test two different off-nadir an-
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Figure 4. Qualitative evaluation on aerial imagery between. Row 1: Frame 41. Row 2: Frame 66. Column 1:
Reference frame. Column 2: Estimated depth map with linear sampling in scene space. Column 3: Estimated depth
map with linear sampling along the epipolar line in image space.

Figure 5. Comparison between linear and inverse sampling
in scene space.

gles. While the algorithm achieves adequate results on the
first configuration with a slight oblique view (Row 1), a
greater off-nadir angle (Row 2) leads to higher noise, due to
the visible background. Furthermore, as we sample with a
frontoparallel plane orientation, the ground in front of the
container also leads to false estimations as the grass could
not be matched properly due to the great difference in ori-
entation between the planes and the ground. In a qualita-
tive comparison between the different sampling methods,
the inverse sampling proposed by our approach achieves
results with slightly less variations and noise. This can
be observed on the roof of the van in Row 1, as well as
above the container in Row 2. Especially with respect
to the reduction in runtime, as listed in Table 2, inverse
sampling has shown to produce considerably better results
than simple linear sampling.

6. CONCLUSION & FUTURE WORK

In this paper, we introduced a methodology to determine
sampling points for image-based plane-sweep depth esti-
mation directly in image space. Plane-sweep algorithms
are typically parametrized by the direction and the step
size at which the plane is swept through scene space. We
utilize the cross-ratio, which is invariant under the per-

Table 2. Quantitative evaluation between four different
configurations on aerial imagery. (a) Linear sampling in
scene space with 160 planes. (b) Linear sampling in image
space with a disparity change of max. 1 pixel.

Frame (a) (b)

41 # planes 160 96
runtime (ms) 1292 987

66 # planes 160 96
runtime (ms) 1484 1091

spective projection of cameras, to derive the position of
the planes relative to the reference camera directly from
points in image space. This allows us to sample the scene
space between two delimiting plane configurations, given
a maximum disparity displacement invoked by two con-
secutive planes along the epipolar line. Our methodology
generates an inverse sampling of the scene space, achiev-
ing higher sampling density in areas which are close to the
camera and a lower density in distant regions. This guar-
antees a more thorough sampling in areas which allow a
more detailed reconstruction, while reducing unnecessary
sampling points in areas where less disparity is induced.
Such an inverse sampling is particularly important when
considering scenes with large scene depth such as those de-
picted in oblique aerial imagery. The experiments reveal
that an inverse sampling achieves equal and better results
than a linear sampling with less sampling points and thus
less runtime.

In future work, we want to extend our algorithm to allow
different plane orientations in one depth map. Thereby,
the selection of different plane orientations should be per-
formed automatically with respect to available model data,
such as DEMs and city models. Due to a lack of available
test data and benchmarks for aerial imagery, we quantita-
tively evaluated our approach on a synthetic benchmark
depicting an indoor scene. Yet, with the announcement of
the new TorontoCity Benchmark (Wang et al., 2016), also
providing aerial imagery, we expect this to change.
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