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ABSTRACT: 

Collecting vast amount of data does not solely help to fulfil information needs related to crowd monitoring, it is rather important to 

collect data that is suitable to meet specific information requirements. In order to address this issue, a prototype is developed to 

facilitate the combination of UAV-based RGB and thermal remote sensing datasets. In an experimental approach, image sensors 

were mounted on a remotely piloted aircraft and captured two video datasets over a crowd. A group of volunteers performed diverse 

movements that depict real world scenarios. The prototype is deriving the movement on the ground and is programmed in MATLAB. 

This novel detection approach using combined data is afterwards evaluated against detection algorithms that only use a single data 

source. Our tests show that the combination of RGB and thermal remote sensing data is beneficial for the field of crowd monitoring 

regarding the detection of crowd movement. 

* Corresponding author

1 INTRODUCTION 

During major events (like music festivals, demonstrations or 

shopping events) the gathering of large crowds might cause 

dangerous situations if the density of persons in an area reaches 

a critical level. The mass panic during the Love Parade 2010 in 

Duisburg is an example for this. Twenty-one festival visitors 

lost their lives. According to Lynskey (2011), G Keith Still 

states that “Accidents don't just happen, they're caused, every 

disaster we've researched was avoidable". It is often assumed 

that it is the peoples fault when a mass panic occurs, but in fact 

the reality is just the opposite. Organisers of large scale events 

have the responsibility to assure the safety of their guests. They 

need to pre-plan for specific situations, organise exit routes to 

quickly relief areas. According to Still (2014; 2017), most of the 

disasters were a result of overcrowding. One main problem is 

that the behaviour of crowds has to be assessed correctly in 

order to prevent potential disasters. Currently, the common 

techniques to monitor a crowd are, for example, security staff 

on the ground at specific vantage points, patrols or closed-

circuit television (CCTV) that consists of multiple cameras 

controlled by an operator. The latter generates a lot of data but 

ultimately it is the operator who creates the information that is 

required to plan actions to prevent damage to humans or 

property. Pedestrian monitoring is also a form of crowd 

monitoring, it is of interest for a variety of reasons. For 

example, knowledge about the flow of pedestrian traffic is 

important for city officials, as they have to manage the available 

resources. One approach might be to alarm the operator when 

suspicious behaviour occurs in the video (Boghossian and 

Velastin, 1999). 

In a time of rising processing power, the question is not any 

longer what can a computer achieve but how a human can use 

this processing power effectively. Gathering large amounts of 

data is easy and already done. CCTV cameras are creating large 

datasets, even though they are somewhat limited in their 

perspective and orientation. Therefore, the aim is not to collect 

more data, but better suitable data. Above that, the data have to 

be processed in order to derive real world decisions from it. 

Thus, the operators of crowd monitoring systems do not have to 

work with raw data (i.e. CCTV camera footage) anymore. 

Instead it would be more efficient assist them in their decision 

making process with pre-processed and accumulated 

information. This paper focuses on a crowd monitoring 

approach that converts data recorded by unmanned aerial 

vehicles (UAVs) into usable information. Such information 

assist operators with assessing the situation at hand in a more 

effective manner. The first data sources we are using for this 

approach is thermal imagery, as it allows for an efficient 

detection of humans due to their heat signatures. We add RGB 

imagery to address the lack of information about the 

surroundings of thermal images. Above that, the amount of 

details that are visible in the RGB image data increased the 

visual impression for the operators. Our approach might help to 

detect dangerous situations within the crowd in an early stage 

and might thus increase the security of major events.  

2 STATE OF THE ART 

2.1 Related Work in Crowd Monitoring 

Crowd monitoring is a field of research that directly correlates 

to the advancements in computer vision. Vannoorenberghe et 

al. (1997) published a paper about crowd monitoring using 

image sequence processing. In their research, they focused on a 

“video-based system used to collect pedestrian traffic data”. 

They analysed angled shots at pedestrian crossings. First, they 

established a reference image with all the static edges in an 

image, then they detected all the moving deformable bodies in 

an image. This system was used as a smart sensor for the project 

Intelligent Crossroads developed by the French National 

Research Institute of Transportation and Security. The German 

aerospace centre (DLR) also conducted research in this field. 

They facilitated an approach to use high-resolution images from 

the Worldview-2 satellite. Their approach was to focus on 
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eliminating redundant features, like buildings, through an 

automatic generation of a digital elevation model. They 

processed the remaining features to detect individual persons 

using feature extraction (Sirmacek and Reinartz, 2011). In an 

effort to estimate the crowd density more accurately, Abuarafah 

et al. (2012) used a thermal camera in their research. They 

analysed a large crowd during the pilgrimage event Haji, an 

event where almost three million Muslims gather in Makkah. 

Estimations were based on how much heat is present in the 

angled shot of a crowd. Burkert and Fraundorfer (2013) 

presented an approach to monitor pedestrian groups. Their 

ultimate goal was to detect complex events in public scenes, an 

experimental approach was used to create different scenarios of 

crowd movements. An UAV was used to create a dataset of 

nadir (i.e. direction pointing directly below a particular 

location) imagery that depicts crowd scenarios. The volunteers 

were marked with coloured hats, to detect them in the imagery.  

 

2.2 Research Question 

In this paper a novel UAV-based approach to crowd monitoring 

is studied. The central research question is, whether the 

combination of RGB and thermal remote sensing data, captured 

with an unmanned aerial vehicle, is able to provide advantages 

in detecting and analysing the movement of human crowds? 

Previous studies extract face and body features, this is not 

possible with nadir imagery. To extract information out of such 

images, new approaches are necessary (Sirmacek and Reinartz, 

2011; Meynberg and Kuschk, 2013). RGB imagery typically 

has a high resolution and contains many details about the study 

area, but the detection of people is no trivial task. As previously 

mentioned Burkert and Fraundorfer (2013) used to mark the 

volunteers in their research to detect them. Thermal imagery, 

however, provides additional attributes that could (in 

combination with RGB imagery) eliminate the need to mark the 

persons in a crowd to detect them properly and decrease the 

false-positives. Yet, thermal imagery typically has a limited 

spatial resolution. Thus, we try to utilise the benefits of both 

datasets by fusing them. We assume that this generates more 

relevant information about crowd in the context of automatic 

crowd monitoring. 

 

 

3 METHODOLOGY 

3.1 Experimental Setup 

The focus for the initial test was not to use the most advanced 

thermal and RGB camera but an affordable solution, as thermal 

cameras quickly cost more than thousand euros. If the results 

prove fruitful on affordable hardware, they can always produce 

better information with more specialised sensors. 

In the context of continuous crowd monitoring, it makes sense 

to use a vertical take-off and landing aircraft (VTOL) because 

they are able to hover at a fixed position. This enables the usage 

in limited space and allows to position the vehicle over a crowd. 

The payload capacity of such vehicles has to be rather high in 

order to carry two cameras at the same time and to still get 

reasonable flight times. The md4-1000 of the German 

manufacturer microdrones is a reliable aircraft that fulfils the 

requirements of the task (Figure 1).  

 

 

Figure 1. Md4-1000 from microdrones, equipped with thermal 

and RGB sensors. 

 

The forward-looking infrared (FLIR) camera Scout TK was 

chosen as a suitable camera for the thermal imagery. It measures 

relative heat differences instead of absolute values. Thus it is 

not possible to calculate the actual temperature with this 

camera. It is a low-cost solution with a relatively small form 

factor and moderate weight of 170 gram, while supporting 

picture and video recording with a maximum detection range of 

90 metres. The field of view (FOV) is rather limited with 20° 

horizontal and 16° vertical opening angle. One drawback of this 

camera is the lack of line-out capabilities. Thus, no direct image 

downlink is possible to correctly position the camera over the 

crowd. The video mode records at about nine frames per second 

and the resolution is fixed at 320 x 240 pixels. For the RGB 

imagery the Sony A5100 with a resolution of 1920 x 1080 

pixels and a weight of 224 grams was selected. 

 

For the data recording, a crowd of 12 adult volunteers, one 

child, and a child in a stroller, was gathered in a marked field of 

20 m x 16 m, that represented the area of interest (AOI) for the 

study. In order to keep the participants in the FOV of the 

thermal camera, the AOI was calculated using the maximum 

flight height and the specifications of the thermal camera. 

Aluminium plates were used as ground control points (GCPs), 

as they reflect 90% of thermal radiation in the atmosphere 

resulting a black signature in the thermal video (Hartmann et 

al., 2012). This helps to improve the matching of both images 

and to create a georeferenced dataset for the upcoming 

processing. The flight conditions of approx. 10° C with wind 

speeds up to 10.9 km/h (measured at 34 m above ground level) 

allowed for a stable positioning of the UAV in the air. The 

mechanical vibrations of the drone emerged as a problem for the 

thermal camera due to its narrow FOV. The resulting shift in the 

image increased the mismatch between the video sources.  

Different crowd scenarios were performed by the group of 

volunteers illustrated in Figure 2. Those scenarios should reflect 

the real-world behaviour of crowds during major events. The 

main stage scenario (Figure 2a) is intended to depict a situation 

at a concert, where a crowd is forming in front of a stage and 

people are moving between standing people. The scene ‘Big 

Group Pass-through’ (Figure 2b) depicts a situation where one 

person walks in and out of a large group of people. Other 

scenarios depict the group quickly disperse (Figure 2f), moving 

through a narrow passage (Figure 2d), doing irregular 

movements (Figure 2e) and two small groups where one 

member of each group exchange places (Figure 2c). 
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Figure 2. Different crowd scenarios performed by the group of 

volunteers during the flight campaign. 

 

3.2 Data Pre-processing 

As mentioned in the previous section, both datasets have 

different specifications. The thermal camera had to be levelled 

due to its round shape. However, it was not possible to perfectly 

level the camera compared to the RGB camera. Moreover, it 

was required to enlarge the thermal image by a small amount to 

have the same topography dimensions. Otherwise, the persons 

and distances would have been smaller than in the RGB image. 

The framerate for the RGB video had to be rendered down to 

nine frames per second to match the framerate of the thermal 

video. The videos were also matched with more than one 

keyframe to reduce differences caused by mechanical 

vibrations. 

 

3.3 People Detection Algorithms 

The workflow to detect people in the images is split into two 

parts, the RGB detection algorithm and the thermal detection 

algorithm. In the following, both algorithms are described in 

detail. 

 

 

Figure 3. Cropped thermal imagery at an altitude of 70 metres. 

 

The thermal detection algorithm is designed to extract the 

connected components of the local maxima, i.e. the highest 

temperatures recorded at specific locations. The algorithm to 

detect people and their centroid in an image was adopted from 

the approach of Anand Bhargav (2010). The script presents a 

solution to detect red objects in an RGB webcam stream and 

draw bounding boxes around them. As the thermal imagery is 

represented as RGB datasets as well, this approach can be 

adapted. Subtracting the red channel (Figure 4, left) from the 

combined grayscale representation of all three channels of the 

thermal image (Figure 4, middle) results in pixel brightness 

values of zero for regions containing no red colour. Both 

images only differ when red is present, as shown by the 

contrived digital number (DN) values beneath. 

 

 

Figure 4. Subtraction of the red channel (left) from all three 

channels as one grayscale image (middle), resulting in only red 

parts of the image (right); with corresponding artificial digital 

number (DN) values for every image.  

 

The resulting image (cf. Figure 4, right) is then binarised with a 

determined threshold. All values above the threshold are 

converted to 1, while all values below the threshold are set to 0. 

At this point one option can be to remove large objects when 

they are too large to represent a person. However, this is not 

practical as people standing in a uniform group are represented 

as one large heat signature in the thermal imagery. Structures 

with only a few pixels are removed as they seem to represent 

false positive matches (no person). The resulting objects have 

different properties which can be extracted out of binary images 

with MATLAB’s built-in function regionprops. This function 

can be set to solely extract specific properties. Of interest are 

the coordinates for the centre and the smallest rectangle 

containing the heat signature referred to as centroid and 

bounding box respectively. The centroid has two values, the 

image space coordinates x and y. However, the bounding box 

has to be stored with four values, the coordinates and the 

dimensions (i.e. width and height). All this information for each 

object is stored in an array. MATLAB labels these objects with 

numbers from lower-left to upper-right. The information about 

the people is now extracted out of the thermal imagery and the 

array is further called: ‘thermalprops’. 

 

 

Figure 5. RGB imagery at an altitude of 70 metres. 

 

The detection of people in the RGB imagery (Figure 5) is based 

on geometric processing. We utilise MATLAB´s Sobel edge 

detector to determine edges in the image. This neighbourhood 

operation requires a grayscale image, so the first step is to 
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convert the RGB video frame to grayscale. The built-in 

MATLAB function rgb2gray is used for this purpose.  

Afterwards, a Gaussian filter is applied to the grayscale image 

to filter the image noise and to increase the edge detail. This 

also removes smaller structures while larger ones are preserved 

(Priese, 2015). The first iteration of the edge detection 

algorithm is used to determine the threshold factor. This factor 

determines which edges are holding a major transition in 

brightness. This threshold is then multiplied with a so-called 

‘fudge factor’ to reduce the amount of edges leaving only the 

edges with a larger brightness difference. Further improvement 

is achieved by removing edges that have too few pixels to 

represent a person. Afterwards, the built-in function 

regionprops is used to calculate the centroid and bounding box 

coordinates of every edge. The result of this operation is stored 

in an array which is further called: ‘rgbprops’. 

 

3.4 Near Real-time Data Fusion 

As previously mentioned the results of the thermal detection 

have to be brought into relation with their surroundings so that 

they can be interpreted. The algorithms for the thermal and 

RGB imagery are executed simultaneously. The complete 

process is visualised in Figure 6. 

 

 

Figure 6. Schematic illustration of the near real-time fusion 

process of RGB and thermal video data.  

 

Both algorithms result in arrays that store the region properties 

of the centroids and bounding boxes of connected components. 

The length (i.e. the number of objects) of the arrays is exported 

into two separate comma-separated values (CSV) documents. In 

order to separate false positives, every coordinate from the 

rgbprops array is checked whether it overlaps with a bounding 

box generated by the objects of thermalprops. This verification 

process uses the centroid coordinates for the RGB objects and 

the bounding box dimensions of the thermal objects, as both 

detection methods do not result in the same centroid 

coordinates. This is also the most important step with respect to 

data fusion as it combines information from both data sources. 

Additionally, these values are appended to a CSV document 

that is created for every object. The corresponding bounding 

box and centroid of the object is drawn over the displayed RGB 

frame. Depending on the source, the boundaries have different 

colours: red for objects that are only detected in the thermal 

image and white for objects that are concurrent in the RGB 

image and hold a corresponding heat signature in the thermal 

image. In order to achieve an animated visualisation of the 

combined data, the calculated frame has to be displayed at a 

specific framerate. To ensure a reasonable framerate a pause 

was implemented between every frame. This procedure is 

repeated until both videos have been evaluated completely.  

 

3.5 Crowd Analysis 

In order to evaluate the different detection methods and to 

analyse the trend of the crowd and the individuals contained, 

the results of every frame are evaluated over a certain time. 

During the near real-time analysis of the remote sensing data 

locations of every detected person and the headcount of each 

detection method are stored in CSV documents. To visualise the 

results the first frame of the corresponding RGB video is 

displayed as a reference image. Different visualisation styles can 

be used to visualise the people and their movement. These 

coordinates can be visualised either with points or by lines 

(Figure 7).  

 

 

Figure 7. Available visualisation styles: Point style (a) and line 

style (b) with individual colour for each detected person; (c) 

point style with gradient colour scheme based on time for whole 

crowd 

 

The path is plotted out of these coordinate lists, resulting in a 

coloured line for every detected object. The high sampling rate 

is a problem with the line visualisation because this results in 

Zig-Zag lines, as the image space coordinates are relative and 

thus change with vibrations. Zig-zag lines are the result of the 

frame-by-frame analysis, as the objects of one frame do not 

correlate to the next frame. To counter this, the coordinate 

sampling rate can be lowered to a suitable value. When a rate of 

‘18’ is chosen, coordinates are sampled in an interval of two 

seconds as every second of video consists of 9 frames. This 

reduces the chance of falsely assigned coordinates as well as the 

oscillations from the sensor. 

The point style more appropriate to the line style for our task as 

every recognised location of our participants is displayed over 

the reference image. This eliminates the risk of coupling the 

wrong coordinate pairs in a line while still being able to grasp 

the covered area by the crowd. Another visualisation option that 

we implemented, is to colour the points with a gradient colour 

scheme varying over time. This emphasises the change of the 

crowd over time, making it possible to see how the crowd 

moved. A blue to yellow gradient is implemented, blue 

represent the beginning of the clip, yellow the end. Above that, 
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we calculated the travelled distances of the people as it is an 

indicator to determine whether a person is hectic, calm or even 

lost. For this, the Pythagorean distance formula is used. 

 

 

4 RESULTS 

4.1 Prototype Implementation 

For a more convenient testing, a prototype implementation with 

a graphical user interface (GUI) for the combination of RGB 

and thermal video datasets has been conducted. Figure 8 shows 

a screenshot of the developed GUI which allows for adjusting 

the parameters of the processing algorithms (e.g. to address 

differences in lighting condition of scenes). This gives the user 

the possibility to test different setups of the detection methods.  

 

 

Figure 8. Graphical user interface of the prototype 

implementation for the combined processing of RGB and 

thermal video datasets. 

 

The visualisation is reduced to depict only the AOI. The 

processing is not optimised regarding speed, therefore the 

current processing status is displayed right under the frame in 

order to keep the user informed. It is possible to switch to a 

script that exploits the processing power of the graphics 

processing unit (GPU). However, this feature is still under 

development and does not provide a significant speed increase 

at the moment. 

 

The analysis features of the GUI become visible when the 

processing is finished. The user is able to set the required 

settings (e.g. sampling rate or visualisation style) and is able to 

choose between the arithmetic mean, median or maximum 

values of the headcount. The GUI allows to switch between 

implemented visualisation styles quickly. The three styles offer 

different kinds of information (Figure 7). The outcome of the 

processing of the ‘Narrow Passage’ scenario, is displayed in 

Figure 9. Visualising the results with a gradient colour scheme 

allows the user to see where the crowd was at the beginning of 

the clip (blue) and where at the end (yellow), everything in 

between is marked by the colour gradient. In the context of 

crowd monitoring, this visualisation style is preferred.  

 

 

Figure 9. Visualisation styles side by side: Gradient (left), 

points (middle), lines (right), on the result of the 'Narrow 

Passage' scene 

  

The performance of the frame-by-frame analysis of 9 frame per 

second within the prototype is appropriate compared to the 

approach of Burkert and Fraundorfer (2013), with only 1 frame 

per second. The calculations were performed on a laptop (quad-

core CPU with 2.7 GHz, 32 GB RAM, NVIDIA GTX 1070 

graphics card) and usually took around 3.5 times longer than the 

actual runtime of the video. It is possible to visualise the results 

of the detection algorithms in near real time. However, a lot of 

processing effort is needed to provide the visualisation for the 

user in near real time. In preliminary tests, the processing time 

could be reduced to one half, when the visual feedback is not 

shown and only the results are stored for the analysis. 

 

4.2 Differences Between Detection Algorithms 

Figure 10 shows a sample frame and the corresponding result 

(i.e. possible people locations) of the detection algorithms. The 

thermal detection algorithm shows difficulties separating the 

different heat signatures in a dense crowd and shows some 

errors on the upper right of the image. The edge detection 

algorithm applied to the RGB image on the other hand, falsely 

recognises our GCPs and the AOI markings, as possible 

persons. These errors are reduced using the fused information 

from both data sources, as shown in the right image of 

Figure 10.  

 

 

Figure 10. Results of the detection algorithms for the same 

video frame: thermal image only (left), RGB image only 

(middle) and fused information (right). 

 

While the combined approach recognises 10 people, the thermal 

detection algorithm recognises only 3 and also has 2 false 

detections. The RGB detection algorithm returns 10 people with 

9 false-positives. The actual real word crowd consisted of 12 

adults and 2 children as mentioned in Section 3.1. This 

indicates that the combined method is the most accurate and has 

the least amount of errors, while still not detecting every person 

in the scene. The mean headcount for each individual scenario 

is shown in Figure 11. The errors of the detection processes are 

not removed because it is impossible to do so for every frame. 

Therefore, the good performance of the thermal detection 

algorithm seems to be misleading as it more error-prone than 

the combined approach. If errors would be subtracted the actual 

headcount and performance of thermal detection algorithm 

would be lower. However, sometimes the combined detection is 

producing false positives too. The thermal camera recorded a 
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heat signature around the GCPs resulting in a detected object in 

RGB and thermal images. The performance of the RGB 

detection algorithm is non-satisfying with an average headcount 

of 70 for every scenario. However, this might be a result of the 

larger extent of the analysed image.  

Figure 11. Diagram of the mean headcount for every crowd 

scenario and every detection method with the actual real world 

headcount. 

 

A better understanding of why the combined detection is 

superior is provided with Figure 12 visualising the result of the 

“Big Group Pass-through” scenario. Both detection methods, 

the thermal detection algorithm on the left and the combined 

detection approach on the right, record almost the same amount 

of people. However, due to the large errors at the border of the 

thermal dataset in this clip, the thermal detection algorithms is 

not capable of detecting the large crowd in the middle of the 

scene. The combined approach clearly depicts one large group 

with one person walking into the group on the upper left, 

coming from the lower left.  

 

 

Figure 12. Frame of the thermal detection (left) and of the 

combined detection (right), taken from the result of the “Big 

Group Pass-through” scenario. 

 

The weaknesses of the thermal detection algorithm are apparent 

in the “Small Groups” scenario. This depicts two people 

exchanging positions between opposing groups. The thermal 

detection algorithm recognises the two groups as two persons as 

shown by the red rectangles in the right frame of Figure 13. 

Even with the human vision, it is not possible to accurately 

distinguish between the people in the thermal frame (Figure 

13, left). 

 

 

Figure 13. Cropped thermal video frame on the left and the 

same frame during the processing on the right. The red 

bounding boxes show detected heat signatures; the white show 

detected people from the combined approach. 

 

 In the “Panic” scenario the performance of the combined 

approach is lower than in the other scenarios, with a mean 

headcount of 5 people. It struggles to recognise every person in 

the frame. This is the result of the mechanical vibrations during 

the video recording. The thermal camera has a smaller FOV, 

thus motion is affecting the captured frame more. The heat 

signatures differ by a small amount to the real-world position of 

the person (Figure 14, right). The algorithm for the combined 

approach is not able to find a corresponding heat signature at 

the people’s locations.  

 

 

Figure 14. Result of the “Panic” scenario visualised with a point 

style on the left and a red frame during the processing on the 

right. 

 

However it is still possible to summarise what happened in this 

scenario with just one picture. This is depicted in the left image 

of Figure 14 and with the gradient point visualisation style in 

Figure 15. The crowd was confined to a small area at the 

beginning (blue points in Figure 15) and then quickly dispersed 

in all directions (yellow points in Figure 15). Thus, the mean 

headcount just means that not every person was detected in 

every frame of the sequence. This is not that problematic, as the 

maximum headcount for the combined detection is 15. This 

connotes that the general movement of the crowd is still 

captured. Above that, the dynamics of the crowd in this 

particular scenario can clearly be depicted from the 

visualisation with a gradient colour scheme presented in 

Figure 15.  

 

 

Figure 15. Result of the “Panic” scenario visualised as points 

with a gradient colour scheme. 
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5 CONCLUSION 

In prior research, crowd detection methods usually exploit only 

one source of information. However, the presented approach 

combines two sources to provide a more accurate and more 

reliable method. For this, video datasets acquired from RGB 

and thermal sensors are analysed. The datasets were taken with 

a UAV that had both sensors mounted to the gimbal at the same 

time. A group of 14 participants performed six diverse pre-

planned scenarios that were designed in the context of crowd 

movement during major events. Data pre-processing has been 

conducted on the thermal video source to fit in the dimensions 

of the RGB video source. The frame-by-frame detection 

algorithms were implemented in MATLAB, as was the 

presented analysis process. The results of the combined 

detection of people are promising and show advantages over the 

analysis of the two image sources separately. A better and more 

error-proof detection is feasible. Even in a small AOI, that does 

not contain many different objects, it is necessary to remove the 

false-positives of the RGB edge detection. The results indicate 

that it is possible to detect crowd movements on an appropriate 

level, i.e. on a level that might potentially be suitable for 

integrating in modelling approaches or crowd simulations. It 

can be seen that even our combined approach produces less 

errors regarding the detection and runs in near real time.  

 

The laws in Germany prohibit the hovering over individuals or 

groups with a UAV. Thus, it was not possible to gather datasets 

of real events for this study. The results of this study rely on the 

fact that our testing environment approximates the reality in 

order to give an accurate answer to the research question. The 

maximum amount of people depicted in the video frames is only 

14. It has to be noted that this is not a large crowd. However, 

due to them being confined in a smaller AOI, they can still 

provide an outlook on the possibilities and advantages of the 

developed approach. The RGB detection algorithm is only 

based on an edge detection filter, however, there are different 

approaches that could improve the detection rates. These 

approaches usually do not use nadir imagery as they often 

classify persons by their visual appearance which is not possible 

with the low number of characteristics in aerial images. 

Moreover, the imaging devices are not calibrated and do thus 

not account for the different distortions that might occur. This 

can result in errors in the detection and misplaced alignment of 

thermal attributes to the RGB imagery. One additional 

limitation at the moment is that the developed approach 

produces image coordinates only. A completely stable setup is 

necessary to work within a geographical coordinate system. The 

thermal detection algorithms inherits another limitation, as 

every detected heat signature is recognised as a human body. 

This might be problematic under real-world conditions as there 

are usually a lot of different heat sources apparent, like street 

lights, heated tarmac or solar panels. Future research has to 

evaluate how to handle those heat sources in the developed 

detection method. If the regulations allow for it in the near 

future, it is necessary to validate our approach with real-world 

data during a major event. These scenarios hold more crowd 

dynamics and are most likely different from the simulated 

scenarios used in this study. An interesting aspect in this regard 

would also be the processing time needed to analyse one second 

of video data using a larger dataset. Above that, it would also be 

interesting to see how our approach performs in comparison 

with a more sophisticated airborne crowd detection algorithm 

(e.g. Sirmacek and Reinartz, 2011). The thermal camera used 

for this study is potentially not sufficient for applications in 

real-world scenarios of crowd monitoring. The lack of line-out 

capabilities prevents the a real-time downlink to a ground 

station. However, such link is required for a real-time crowd 

monitoring test. Above that, information from a more 

sophisticated thermal camera, that shows absolute temperature 

values, would also increase the possibilities and the certainty of 

people detection. The detection algorithm could be adjusted 

specifically for the body temperature of humans. Detecting and 

maintaining the same object (here a single person) through 

every frame is also a very important task in the context of crowd 

monitoring. In this context, the advantage of UAV-based 

imagery is that there are almost no occlusions meaning that a 

person could always be tracked. This potentially allows for 

calculating the speed, travelled distance and repetition of 

movement. On-the-fly georectification of video frames would 

allow for reducing the jagged lines in the post-process analysis. 

This would also make it possible to incorporate a navigation 

layer that opens up routing possibilities, for example, the 

calculation of the least-crowded route to a point of interest or 

the routing for emergency teams to an injured person. Another 

interesting aspect would be to estimate the imminent crowd 

behaviour. This would allow for warning the operator before a 

critical event occurs, e.g. when a large group approaches a 

narrow passage similar to the complex event detector proposed 

by Burkert (2013). 
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