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ABSTRACT: 

Silvicultural treatments are practiced to control resource competition and direct forest stand development to meet management 

objectives. Effective tracking of thinning and partial cutting treatments help in timely mitigation and ensuring future stand 

productivity.  Based on a study conducted in autumn 2015, our findings in a white pine dominant forest stand in Petawawa (Ontario, 

Canada) showed that almost all individual trees were detectable, structure of individual trees and undergrowth was well pronounced 

and underlying terrain below dense undisturbed canopy was well captured with UAS based Riegl Vux-1 lidar even at a range of 

150m. Thereafter, the site was re-scanned the following summer with the same system. Besides understanding the difference in 

distribution patterns due to foliage conditions, co-registering the two datasets, in the current study, we tested the potential of 

quantifying effectiveness of a partial cutting silvicultural system especially in terms of filling of 3D spaces through vertical or lateral 

growth and mortality in a very short period of time.  

* Corresponding author

1. INTRODUCTION

Silviculture treatments are applied to control stand composition, 

structure and processes (Smith 1986). Monitoring treatment 

results is needed to ensure success but parameters to assess will 

vary with treatment objectives. For example, a commercial 

thinning is a tending treatment to manipulate stand structure by 

partially removing harvestable volume to help improving vigour 

and growth of the residual stand. In this case, tracking of the 

treatment in terms of growth, rate of mortality, filling of the 

available growing space (canopy closure) etc., is important for 

the success of the future stand productivity. In the case of 

regeneration cuts (single tree selection or shelterwood), the 

focus will be put on the regeneration establishment, its 

distribution and release of the sub-canopy. Data intensive repeat 

survey through conventional ground sampling after partial 

harvest tends not to be time and cost effective, particularly in 

spatially dispersed and small forest blocks.   

Lidar (Light detection and ranging) in recent years is 

increasingly being adapted as a support tool in decision making 

within forest operations (Barber et al 2016, Vepakomma et al. 

2012, Naesset et al 2004, Lim et al 2003). Recording of multi-

returns has furthered the ability to sufficiently describe 3D 

elements and morphological properties of several biophysical 

parameters across broad spatial scales (Popescu, 2008, Zhang et 

al., 2016, Giannico et al., 2016).  

Repeat surveys of lidar was successfully used to understand 

disturbances and their impact on forest dynamics (Vepakomma 

et al. 2011, Vepakomma et al. 2012), timber extraction 

(Anderson et al 2008), change in biomass (Babcock et al., 

2016), canopy structure (Hopkinson et al., 2008) or growth 

rates (Hudak et al., 2008). However, most research based on bi-

temporal lidar focused in capturing changes at area units or 

forest stands and rarely to assess changes at tree or sub-canopy 

level. One possible reason is the availability of high point 

density data needed to capture subtle changes at such fine 

spatial scales. 

Development in miniaturized technology allowed integration of 

light-weight laser scanning capabilities through full-waveform 

digitization of multi-targets on a UAS (Unmanned Aerial 

System) platform from lower altitudes (Vepakomma et al 2015, 

Vepakomma & Cormier 2015). Flying below the clouds, limited 

logistics and deployment at ease makes UAS an interesting 

platform for forest operations. High density, short range, aerial 

perspective and large field of view give them an advantage of 

both terrestrial and aerial lidar systems (Wallace et al. 2012), 

and hence we hypothesise they are better equipped for detailed 

description of the canopy and below the canopy layers for 

tracking subtle changes in vegetation. We also hypothesise that 

they will be effective in capturing short term changes important 

for monitoring treatment effects and implementing timely 

corrective measures when needed.  

In this study, we would like to understand the potential of 

multi-temporal lidar data on a UAS in quantifying the 

effectiveness of silvicultural treatments, especially in terms of 

filling of 3D spaces through vertical or lateral growth and 

mortality at tree level in a very short period of time. In addition, 

we are also interested in understanding the impact of late 

autumn foliage on penetration of the laser up to the floor to 

describe the canopy and below the canopy.   
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2. MATERIAL AND METHODS 

2.1 Study site  

The selected study site falls within Petawawa Research Forest 

(PRF) in Ontario, Canada, that is predominantly white pine 

mixed with red pine, balsam fir and poplar species (Figure 1). 

Part of the selected 10.3 ha forested area had recently been 

harvested under a shelterwood system for managing white pine. 

The remnant vegetation has a height range of 6 – 36 m., with 

dense scrub on the floor.  The terrain is rocky but fertile, and is 

relatively flat. 

 

 

Figure 1. Ground photos showing dense forest (left) and open 

forest (right) in the study site 

 

2.2 Data acquisition 

To maintain the uniformity across acquisitions, the test site was 

flown twice (2015, 2016) with the same Riegl VUX-1 lidar 

system (Table 1) mounted on Renegade UAS helicopter. To 

match the survey specifications, lower scan rates, higher flight 

speed in 2015 were compensated by lower altitude, low flight 

speed and higher overlap in 2016 acquisition (Table 2). A 

change in point distribution pattern along the canopy is 

expected to be due to summer - autumn foliage changes. Overall 

the resultant point density is comparable over both acquisitions 

(Figure-2).  

 

Specification  

Total weight (kg) 3.5 

Wavelength (nm) 1550 

Beam divergence (mrad) 0.5 

Max. FOV 330 

Max.Pulse Frequency (Hz) 820000 

Scanning method Time of flight 

Number of echoes Unlimited 

Recording Intensity (bits) 16 

Detection range (m) 530 

 

Table 1. Specifications of Riegl VUX-1 lidar system  

 

Data provider’s classification after visual spot checks was 

accepted for this study.  

 

To assess geopositional and vertical accuracy of Riegl Vux-1 

lidar, several terrain and 10 randomly distributed paired-

individual trees (of DBH > 8 cm) were precisely located using a 

survey grade precision (of sub centimeter accuracy) RTK DGPS 

on ground in 2015. Total tree height (with a Vertex), DBH and 

crown diameter in two cardinal directions were noted for the 

trees. 

 

 

Attribute 2015  2016 

Altitude (m) 152 213 

Flight speed (kts) 40 18 

Scan rate 300 600 

Point density (#/m2) 150 167 

Swath width (deg) 65 65 

Flight lines (#) 3 5 

Scan angle (deg) ±40 ±22 

Overlap (%) 40 60 

Number of flights 1 1 

Date of acquisition 30-Nov 21-Sept 

Table 2. Specifications of lidar acquisition  

 

 

 

Figure 2. 3D lidar point distribution of a sample site. Top image 

shows multi return echoes (blue-1st, red – 2nd, yellow – 3rd, 

green – 4th returns); bottom image shows the gradient of 

vegetation height (green to orange) 
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2.3 Co-registration between the two datasets 

Lidar datasets were co-registered following methods proposed 

in Vepakomma et al 2008. Shift in Z was tested by comparing 

elevations of lidar points on roads and rocks where first returns 

equaled last returns. Shifts in X and Y were assessed by visually 

comparing arithmetic difference between the respective 

interpolated digital surface models (DSM, a surface created by 

the maximum elevation in a given pixel) for trends of negative 

and positive elevational differences around a canopy. No 

significant shift in X, Y or Z were noted. 

 

2.4 Single tree detection, tree metrics and growth 

The location of individual stem tops was determined based on 

local maxima filter with a circular non-overlapping (moving) 

window of a radius of 35 cm (based on field observation) on the 

Gaussian filtered (Vepakomma et al 2011). Using each 

delineated crown segment as a cookie-cutter, all the lidar 

vegetation returns within were extracted for estimation of 

individual tree metrics (Figure 5). Vegetation height 

distributional metrics (quantiles of height computed for every 

10th percentile), generally considered as indicators of canopy 

depth and structure of the crown, were also estimated. Crown 

diameter was defined as the vertical projection of the longest 

diameter of the crown on the ground. Average of the length of 

the sides of the rectangle that inscribes the delineated crown is 

approximated as crown diameter. This method replicates the 

conventional measurement of crown diameter in the field.  

 

Vertical growth is estimated as the difference in maximum 

height and lateral growth is the difference in the estimated 

crown diameter between the two years. 

 

Using a combination of 20th percentile and estimated DBH for 

each tree, the top canopy layer was eliminated to extract the 

understorey. Single stems in the understorey were identified, 

and space occupancy was assessed by overlaying a 2m X 2m 

grid. 

 

3. RESULTS AND DISCUSSION 

3.1 Lidar distribution and elevation accuracies 

In this experiment, irrespective of the differences in acquisition 

parameters, general structure of the forest was ably captured 

with distinguishable clear stems of the trees, dense canopies as 

well as forest floor (Figure 2). Up to 7 returns were recorded in 

both years, and nearly 2% of all the returns reached the floor, 

with 2015 having a slightly better penetration due to autumn 

leaf-off conditions. 2016 data had a very high percentage of first 

returns. Point distribution in point classes and multi-targets 

shows a sharp increase of over 13% of returns from high 

vegetation during 2016 compared to 2015 due to the presence 

of larger leaf area during leaf on conditions (Figure 3). The 

decline of returns from low vegetation by 10% and ground 

returns by 2% is attributed to the densely foliated shrub layer 

present during the summer.  

 

Both acquisitions matched well across X, Y and Z. An average 

bias of 0.07 cm and 0.02 cm in Z respectively for the 2015 and 

2016 lidar datasets was estimated when comparing with the 

RTK measurements.  

 

3.2 Single tree detection  

All trees identified on ground were detected by the algorithm. 

Assessment of ground measured tree height showed a high 

correlation of 0.98 in both datasets. Validation of estimated 

crown diameter with field measured trees showed an average 

bias of 0.01 m using the 2016 dataset. 

 

 

 
 

Figure 3. Distribution of lidar returns in various point classes 

(top) and multi-targets (bottom) 

 

 

3.3 Monitoring changes 

Keeping 2016 as a reference, number of crowns that matched in 

2015 was extracted, and differences in their respective 

estimated total tree heights and crown diameters were assessed 

for changes. Relative comparison of the two datasets indicated 

prominent changes in the canopy structure appeared to have 

occurred during the study period. Over 90% of the trees showed 

growth (positive change) and 9.2% of loss (negative change). 

Nearly two thirds of this loss is represented by 18 matured 

fallen trees (between heights 11.5 m and 23.8 m) clearly 

indicated in Figure 4. An estimated 4.2% of changes in the 

canopy closure of the overstorey indicated an average annual 

conifer branch lateral extension of 0.85 m into the adjacent 

openings. This is corroborated by the difference in crown 

diameter estimates over the study period. 

 

 
 

Figure 4. Height class distribution of the tress 
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Height-class distribution of the individual trees in the block 

estimated from 2015 and 2016 and vertical growth assessment 

made thereof (Table 3) realistically represents the condition in a 

matured stand and a stand that is benefitting from a release 

treatment (Figure 4). The small difference in the percentage 

number of trees in each class varied between 2015 and 2016 

could be due to the change in foliage conditions during the two 

acquisitions of VUX-1. 

 

  

Height-

Class (m) 

Average Annual 

Growth (m) 

0 – 4 0.50 

4 - 8 0.35 

8 - 12 0.31 

12 - 16 0.37 

16 - 20 0.28 

20 - 24 0.22 

24 - 28 0.23 

28 - 32 0.25 

> 32 0.26 

Overall 0.31 

 

Table 3. Estimated annual individual growth during 2015-2016 

 

Eliminating the top canopy, the sub-canopy could be easily 

extracted and a sample window from a relatively open stand can 

be seen in Figure 5. Despite high scan angles in both years, 

±40° in 2015 and ±22° in 2016, there is a sufficient penetration 

through the canopy to capture the growth of the vegetation and 

subtle foliage changes in the understorey even over a very short 

period of time.  

 

 

 
 

Figure 5. Growth in the understorey. Distribution of multi 

return echoes (blue-1st, red – 2nd, yellow – 3rd, green – 4th 

returns) on the top and a profile description along a transect in 

the sub canopy of a sample plot of 10 m2. 

 

 

Individual stems could be easily extracted from the sub canopy, 

and filling of the growing space within a 4 m2 grid could be 

assessed (Figure 6) indicating stand succession establishment.  

 
 

Figure 6. Filling of the growing space in the understorey. 

 

 

 

4. CONCLUSION 

 

UAS based lidar systems have the capability of providing a rich 

dataset suitable to extract a suite of quality determinants for 

assessing standing timber, viz., total tree height, crown 

diameter, height up to the last branch, length of the clear wood. 

Identification of mortality and growth assessment, both lateral 

and vertical, even at the individual tree level with UAS based 

lidar systems is realistic and provide relevant information about 

treatment results. The capability of efficiently monitor the sub-

canopy components of the stand from the dense lidar data is 

also very promising for assessing success of successional 

potential of the treatments.  This can potentially be a good tool 

in assessing the effectiveness of silvicultural interventions or 

site quality and could replace many of the assessments that are 

currently done from ground surveys.  
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