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ABSTRACT:

In this paper, we focus on UAV-borne laser scanning with the objective of densely sampling object surfaces in the local surrounding of
the UAV. In this regard, using a line scanner which scans along the vertical direction and perpendicular to the flight direction results in a
point cloud with low point density if the UAV moves fast. Using a line scanner which scans along the horizontal direction only delivers
data corresponding to the altitude of the UAV and thus a low scene coverage. For these reasons, we present a concept and a system for
UAV-borne laser scanning using multiple line scanners. Our system consists of a quadcopter equipped with horizontally and vertically
oriented line scanners. We demonstrate the capabilities of our system by presenting first results obtained for a flight within an outdoor
scene. Thereby, we use a downsampling of the original point cloud and different neighborhood types to extract fundamental geometric
features which in turn can be used for scene interpretation with respect to linear, planar or volumetric structures.

1. INTRODUCTION

The acquisition, processing and interpretation of point cloud data
are of great importance for various applications in photogramme-
try, remote sensing and computer vision. Exemplary applications
include, but are not limited to

• the modeling and analysis of urban scenes, e.g. in terms
of 3D city modeling (Lafarge and Mallet, 2012), seman-
tic point cloud interpretation (Niemeyer et al., 2014; Wein-
mann, 2016), tree detection (Gorte et al., 2015; Weinmann
et al., 2017) or urban accessibility analysis (Serna and Mar-
cotegui, 2013), and

• the modeling and analysis of natural environments, e.g. in
terms of tree detection (Reitberger et al., 2009; Ferraz et
al., 2012), tree species classification (Korpela et al., 2009;
Vauhkonen et al., 2014b) or biomass estimation (Vauhkonen
et al., 2014a).

For both scenarios, applications typically focus on the use of air-
borne laser scanning (ALS), terrestrial laser scanning (TLS) or
mobile laser scanning (MLS) systems to acquire point cloud data
(Wehr and Lohr, 1999; Baltsavias, 1999a,b; Vosselman and Maas,
2010). Depending on the used system, the acquired point clouds
reveal significantly differing characteristics with respect to point
density, range measurement accuracy and the level-of-detail with
which data about the observed scene is acquired.

Recent developments towards low-cost solutions for data acquisi-
tion with improved flexibility and efficiency resulted in backpack
laser scanning (BLS) systems (Lauterbach et al., 2015; Rönnholm
et al., 2016). Such systems allow exploring environments where
standard vehicle-based MLS systems cannot be used, at the cost
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of a (slightly) decreased measurement accuracy. However, sim-
ilar to TLS/MLS systems, the ground-based acquisition suffers
from capturing the lower parts of objects (e.g. façades or the
lower part of foliage), while upper parts (e.g. roofs or the upper
part of foliage) are mainly occluded as e.g. shown in Figure 1. In
contrast, ALS systems mainly capture the upper parts of objects
(e.g. roofs or the upper part of foliage), while the lower parts (e.g.
façades or the lower part of foliage) are often occluded. Conse-
quently, it would be desirable to acquire data from low (and pos-
sibly varying) altitudes using an unmanned aerial vehicle (UAV)
and therefore involve UAV-borne laser scanning (UAV-LS) sys-
tems. This in turn imposes constraints on the used scanning de-
vice as a lightweight device is required.

ALS 

UAV-LS 

TLS 

Figure 1. Illustration of the data acquisition with ALS, TLS and
UAV-LS systems: the example contains 3D points acquired via
ALS (green dots), TLS (blue dots) and UAV-LS (red dots).
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In this paper, we focus on UAV-borne laser scanning using mul-
tiple line scanners as shown in Figure 2. This is motivated by the
fact that UAV-LS systems are typically equipped with one line
scanner. However, if the line scanner scans along the vertical di-
rection and perpendicular to the flight direction, the point density
strongly depends on the speed with which the UAV moves. For
high speeds, a low point density can be expected. If one would
use a line scanner which scans along the horizontal direction, the
point density becomes higher, but only data at a certain height
is acquired (which would e.g. be useful for avoiding collisions
with obstacles). For acquiring objects, a varying altitude of the
UAV would be required to obtain a dense sampling. To combine
both aspects, we use two line scanners, one scanning along the
vertical direction and one scanning along the horizontal direction
with respect to the UAV. To analyze the acquired data, we rely on
the use of geometric features which are typically involved in the
interpretation of ALS data (Niemeyer et al., 2014; Blomley and
Weinmann, 2017), TLS data (Hackel et al., 2016) and MLS data
(Munoz et al., 2009; Brédif et al., 2014; Weinmann, 2016). In
summary, the main contributions of this paper are

• the presentation of a concept for UAV-borne laser scanning
with multiple scanning devices,

• the use of a UAV of type DJI Matrice 100 which in turn is
equipped with two line scanners of type Hokuyo UTM-30LX
for 3D mapping, and

• a qualitative analysis of the acquired point cloud data to
coarsely reason about the local environment of the sensor
platform.

After briefly summarizing related work in Section 2, we provide
details on the proposed unmanned aerial system in Section 3. Fo-
cusing on the exemplary application of UAV-borne scene acquisi-
tion and interpretation, we subsequently describe our methodol-
ogy which allows an appropriate description of local point cloud
characteristics and thus a coarse interpretation of the acquired
data in Section 4. We provide first results in Section 5 and dis-
cuss our findings in detail in Section 6. Finally, in Section 7, we
conclude our paper and also provide an outlook on future work.

2. RELATED WORK

The key characteristics of the proposed system address UAV-
borne data acquisition and the use of laser scanning devices.
Based on the acquired data, we intend to derive a coarse analysis
of the observed scene. Accordingly, we briefly describe a variety
of systems used for UAV-borne data acquisition (Section 2.1) and
approaches that have been proposed for the automated analysis
of acquired point cloud data (Section 2.2).

2.1 Data Acquisition

Unmanned aerial systems (UASs) have meanwhile become a
powerful tool for capturing spatial information as they are rel-
atively cheap, easy-to-handle and easy-to-transport to the survey-
ing field. Furthermore, they allow data acquisition in areas that
cannot be entered with ground-based systems, e.g. because of
damage or disasters.

In general, a UAS consists of a UAV used as sensor platform and
some sensors used for data acquisition. Nowadays, UAVs are
typically equipped with a digital camera delivering images that
can for instance be used for scene monitoring, 3D mapping of
the environment or localization of the platform. To facilitate the

Figure 2. Data acquisition with the proposed unmanned aerial
system for UAV-borne laser scanning with horizontally and verti-
cally oriented line scanners.

estimation of its movement, a UAV can furthermore be equipped
with an inertial measurement unit (IMU) and a global position-
ing system (GPS) or global navigation satellite system (GNSS)
receiver. Due to the progress in miniaturizing technology, UAV-
borne data acquisition can meanwhile also involve laser scanning
devices.

Among the early approaches towards UAV-borne laser scanning,
Nagai et al. (2009) presented a UAV-borne 3D mapping system
equipped with an IMU, a GPS receiver, two digital cameras, two
infrared cameras and a laser scanner. While the IMU and the
GPS receiver allow a localization of the UAV, the digital and in-
frared cameras simultaneously allow acquiring radiometric infor-
mation. The latter can for instance be used to derive the nor-
malized difference vegetation index (NDVI) which is of impor-
tance for several environmental applications. However, the total
weight of these components is more than 7 kg, and for this rea-
son a larger, helicopter-like UAV was used which was able to
operate for a duration of about 1 h. According to the specifica-
tions, the total weight of the used platform was about 330 kg and,
consequently, the complete system is neither a low-cost solution
nor easy-to-bring to the surveying field. Focusing on rapid close-
range monitoring, Choi and Lee (2011) proposed to use a smaller
UAV equipped with an IMU, a GPS receiver, two digital cameras
and a laser scanner to obtain orthophotos and even a digital ele-
vation model (DEM) of high quality. In total, the whole system
used for data acquisition had a weight of about 10 kg and there-
fore still a relatively large UAV was required due to the heavy
payload. Similarly, a UAS involving an IMU, a GPS receiver,
a camera and a laser scanner was used by Wallace et al. (2012),
but their system was particularly designed towards low costs and
increased flight times. The latter were about several minutes for
a relatively heavy payload of up to 2.8 kg and hence only rela-
tively short flights were possible with this UAS. The UAS used
by Conte et al. (2013) for airborne terrain mapping even involved
an IMU, a GPS receiver, a compass and a multi-echo lidar sensor.
The total weight of these components was more than 4 kg which
motivated the use of an industrial unmanned helicopter with a
maximum take-off weight of 95 kg.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6, 2017 
International Conference on Unmanned Aerial Vehicles in Geomatics, 4–7 September 2017, Bonn, Germany

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-2-W6-399-2017 | © Authors 2017. CC BY 4.0 License.

 
400



While early approaches towards UAV-borne laser scanning are
characterized by a relatively heavy payload requiring the use of
a larger UAV as sensor platform, particularly the development of
lightweight systems has been in the focus of research in recent
years. Besides allowing for longer flights, such systems can also
be expected to allow capturing larger 3D environments with sig-
nificantly lower costs. Designing a lightweight UAS means that
lightweight devices are required for all relevant components, at
the cost of a slight decrease in accuracy. In this regard, a vari-
ety of lightweight solutions for IMU, GPS receiver and camera
are meanwhile available and widely used. In contrast, finding
a suitable laser scanner remained a major challenge for a long
time. With the single-line laser scanners Hokuyo UTM-30LX
and Hokuyo UTM-30LX-EW, lightweight laser scanning devices
(210 g without cable) became available which meet these require-
ments. Such a device even allows recording multiple reflections
as well as their corresponding intensity values for each transmit-
ted laser pulse. Representing a line scanner performing distance
measurements in a plane, such a device is well-suited for naviga-
tion of ground vehicles in indoor environments with flat ground.
To allow acquiring 3D data of the local surrounding of the sen-
sor platform, a translation and/or a rotation of the sensor platform
would be required.

Early UASs involving a line scanner have for instance been used
within indoor environments to obtain distance measurements in
a plane around the UAV (Bachrach et al., 2009; Grzonka et al.,
2009) which can be of great interest for avoiding collisions with
obstacles. For acquiring 3D scans and thus allowing omnidirec-
tional obstacle perception as well as flight trajectory estimation,
Droeschel et al. (2013) and Holz et al. (2013) utilized an actu-
ator for continuously rotating a Hokuyo UTM-30LX-EW device.
Focusing on mapping and monitoring purposes in outdoor envi-
ronments, Kuhnert and Kuhnert (2013) proposed a lightweight
UAS involving an IMU, a GPS receiver, a digital camera and a
line scanner, for which a relatively small UAV with a payload
of about 1.5 kg was used as sensor platform. As line scanner,
a Hokuyo UTM-30LX with range measurements up to 30m was
tested as well as a more expensive SICK LD-MRS-400001 with
range measurements up to 200m. Thereby, both devices had an
angular resolution of 0.25◦. Furthermore, Roca et al. (2014) used
a UAS with a maximum payload of 1.5 kg. Their UAS involved
an IMU, a GPS receiver and a line scanner of type Hokuyo UTM-
30LX. With a focus on accurately reconstructing the flight tra-
jectory as e.g. required for accurate point cloud georeferencing,
Jozkow et al. (2016) presented a UAS equipped with a variety
of IMUs and GPS receivers as well as a digital camera and a
line scanner. For the latter, the Velodyne HDL-32E and Velo-
dyne VLP-16 devices with a weight of about 1 kg and 0.8 kg have
been tested. These devices reveal a better performance than the
Hokuyo UTM-30LX device, yet at the cost of more weight and a
more expensive solution for 3D mapping. Recently, Hillemann
and Jutzi (2017) presented a UAS involving an IMU, a GPS re-
ceiver, a multi-camera-system and a line scanner for analyzing
the surrounding of the UAV.

In this paper, we investigate the use of multiple line scanners
for data acquisition via UAV-borne laser scanning. More specif-
ically, we use a UAS involving an IMU, a GNSS receiver and
two Hokuyo UTM-30LX line scanners. The latter are oriented
in horizontal and vertical direction with respect to the UAV. For
3D mapping in terms of densely sampling object surfaces in the
local surrounding of the UAV, a flight maneuver should contain
variations in altitude and (partial) rotations around the vertical
direction with respect to the UAV.

2.2 Scene Interpretation

Once data have been acquired, an automatic analysis of the data
is desirable. Thereby, the RGB imagery can for instance be used
for the 3D reconstruction of the considered scene (Lucieer et al.,
2012) or for the estimation of the pose of the UAV (Müller et al.,
2017). However, many applications rely on the use of different
types of sensors delivering different types of data to solve a de-
sired task. In such a case, the different types of data (e.g. RGB
imagery, thermal imagery, multi-/hyperspectral imagery or 3D
point clouds) have to be fused, i.e. co-registered, with a sufficient
accuracy. In this regard, Lucieer et al. (2012) proposed to fuse
RGB imagery, multispectral imagery and thermal imagery. On
the one hand, this allows obtaining a high-resolution digital ter-
rain model (DTM) and, on the other hand, conclusions about the
location and extent of healthy moss in the scene as well as about
areas of potentially high water concentration can be drawn. An-
other example for data fusion is given with UAV-borne 3D map-
ping involving a camera and a lightweight line scanner, where
optical and laser scanner data have to be fused to create a tex-
tured 3D reconstruction of the scene (Jutzi et al., 2013, 2014).

In this paper, we focus on the analysis of the data acquired with
the two line scanners. For this purpose, the eigenvalues of the 3D
structure tensor are typically used to either describe the distinc-
tiveness of specific shape primitives (Jutzi and Gross, 2009) or
to derive local 3D shape features (West et al., 2004; Pauly et al.,
2003) on a per-point basis. The latter option has been analyzed
in detail in (Weinmann et al., 2015; Weinmann, 2016) for clas-
sifying mobile laser scanning data, where different options for
neighborhood selection were considered as the basis for feature
extraction. We make use of both neighborhood selection and fea-
ture extraction approaches presented in the aforementioned liter-
ature and released at https://www.ipf.kit.edu/code.php.

3. UNMANNED AERIAL SYSTEM

In this section, we describe the purpose-made UAS for UAV-
borne laser scanning in detail. Thereby, we focus on the involved
unmanned aerial vehicle (Section 3.1) and the used laser scanning
devices (Section 3.2). As shown in Figure 3, the used laser scan-
ning devices are oriented perpendicular to each other so that one
device scans along the horizontal direction while the other one
scans along the vertical direction to increase the mapping perfor-
mance.

3.1 Unmanned Aerial Vehicle

As UAV, we use a DJI Matrice 100 with a DJI Manifold on-board
processing unit to store the captured data. The quadcopter is able
to carry a payload of 1 kg with a maximum take-off weight of
3.6 kg.

3.2 Laser Scanning Devices

To obtain accurate and dense 3D measurements from the envi-
ronment, our UAS is equipped with two line scanners of type
Hokuyo UTM-30LX (Figure 3). One line scanner (LS-H) scans
in the horizontal direction, whereas the other (LS-V) scans in the
vertical direction. Typical applications for such a setup might in-
clude supporting camera-based SLAM or mapping by using laser
scanners only.

According to their specifications, the two utilized Hokuyo UTM-
30LX laser scanning devices emit laser pulses with a wavelength
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Scanning Device 
(LS-V) 

GNSS Antenna Scanning Device 
(LS-H) 

Figure 3. Overview on the proposed unmanned aerial system for
UAV-borne laser scanning: the system involves a laser scanner
scanning in the horizontal direction (LS-H) and a laser scanner
scanning in the vertical direction (LS-V).

of λ = 905 nm and the laser safety class is 1. The scanning
devices have an angular resolution of 0.25◦ and allow measure-
ments within a Field-of-View (FoV) of 270◦. The range mea-
surement accuracy is specified with 30mm for distances between
0.1m and 10m, and the maximum measurement distance is 30m.
The specified pulse repetition rate is 43 kHz (i.e., 40 scan lines
are captured per second). With its tiny size of 62mm × 62mm
× 87.5mm and low weight of 210 g, the Hokuyo UTM-30LX is
well-suited for UAV-borne scene monitoring and 3D mapping.

4. METHODOLOGY

The proposed methodology for interpreting the acquired point
cloud data comprises a downsampling of the acquired point cloud
data (Section 4.1), the subsequent extraction of fundamental geo-
metric features (Section 4.2) and a qualitative classification based
on the extracted features (Section 4.3).

4.1 Downsampling

During data acquisition, certain cases may occur which have a
detrimental effect on data analysis, e.g. in terms of scene interpre-
tation. Such a case is given for periods where the UAV performs
almost no movements, as the point density at certain areas will in-
crease drastically. This in turn significantly affects the extraction
of geometric features which typically relies on the consideration
of a certain number of points within a local neighborhood as, be-
cause of the extremely high point density, the absolute size of the
local neighborhood becomes quite small and thus inappropriate
to conclude about the local 3D structure.

To avoid such effects, we apply a voxel-grid filter (Theiler et al.,
2014) to roughly even out variations in point density. Thereby,
we first define the voxel size s and then partition the 3D scene
into respective voxels. For each voxel, we only keep the center of
gravity instead of all points that are within the voxel.

4.2 Feature Extraction

Based on the voxel-grid-filtered point cloud, we focus on extract-
ing geometric features describing local point cloud characteris-
tics. Thereby, we define a local neighborhood for each 3D point
by considering the k nearest neighbors, where the scale parameter
k is selected in different ways:

• The first option for selecting the scale parameter k is given
by choosing a fixed value for the scale parameter that re-
mains identical for all 3D points of the point cloud as pro-
posed in (Weinmann et al., 2013). As we aim at estimating
the coarse structure of a considered scene, we may assume
that selecting a scale parameter of k = 50 for each point
yields sufficiently large neighborhoods allowing to coarsely
describe the local 3D structure.

• The second option for selecting the scale parameter k is
given by choosing an optimal value kopt for each 3D point
individually via eigenentropy-based scale selection as pro-
posed in (Weinmann et al., 2015).

Based on the recovered local neighborhoods, we proceed with
deriving the 3D structure tensor, i.e. the 3D covariance matrix,
which is determined for each point and its respective k nearest
neighbors. The statements about the local structure can then be
made by using the three eigenvalues λj of the 3D structure tensor
(λ1 ≥ λ2 ≥ λ3 ≥ 0) and considering the three dimensionality
features of linearity Lλ, planarity Pλ and sphericity Sλ (West et
al., 2004; Demantké et al., 2011):

Lλ =
λ1 − λ2

λ1
(1)

Pλ =
λ2 − λ3

λ1
(2)

Sλ =
λ3

λ1
(3)

4.3 Classification

To analyze the captured point clouds, we focus on distinguishing
between linear (1D) structures, planar (2D) structures or volu-
metric (3D) structures. This can be achieved by considering the
three dimensionality features of linearity Lλ, planarity Pλ and
sphericity Sλ. Due to the normalization by λ1, the dimensional-
ity features sum up to 1 and the feature with the highest value in-
dicates the dominant behavior (Weinmann and Jutzi, 2015). The
benefit of such a qualitative classification is that no training data
is required to train a respective classifier (and possibly tune its
internal settings).

5. EXPERIMENTAL RESULTS

To test the capabilities of our UAS, we used it for data acquisi-
tion within the scene shown in Figure 2. We performed a flight
which was characterized by a take-off along the vertical direc-
tion, a rotation of the UAV around the vertical axis and a landing
maneuver in vertical direction. The point clouds acquired with
the two involved line scanners during this flight are depicted in
Figure 4, and they clearly reveal the benefit of using horizontally
and vertically oriented line scanners. While the horizontally ori-
ented line scanner densely samples lots of returns from the tree
crowns during the flight, the vertically oriented line scanner ac-
quires object surfaces in different directions of the UAS but with
a lower point density.

To coarsely reason about the local environment of the sensor plat-
form, we perform a qualitative analysis of the acquired point
cloud data. The point cloud acquired with the horizontally ori-
ented line scanner contains about 1.44M points, whereas the
point cloud acquired with the vertically oriented line scanner con-
tains about 5.29M points. To sample the scene as dense as pos-
sible, we combine both point clouds into a common coordinate
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Figure 4. Point clouds acquired with the horizontally oriented line scanner (left) and with the vertically oriented line scanner (right).
Note that the point density in the tree crowns is significantly higher on the left, whereas the scene coverage is larger on the right.

Figure 5. Visualization of the number of points within the local neighborhood when using the k = 50 nearest neighbors (left) and when
using the kopt nearest neighbors selected via eigenentropy-based scale selection (right): the color encoding indicates neighborhoods
with 10 or less points in red and reaches via yellow, green, cyan and blue to violet for 100 and more points.

frame using the relative orientation between the involved line
scanners. Then, we apply a voxel-grid filter partitioning the scene
into voxels with a side length of s = 0.1m to roughly even out
extreme variations in point density. This results in about 310k re-
maining 3D points, i.e. only about 4.60% of the memory required
for storing the original data.

Focusing on the downsampled point cloud, we first derive a local
neighborhood for each 3D point by considering the neighborhood
type Nk=50 comprising the k = 50 nearest neighbors on the one
hand and the neighborhood typeNkopt comprising the kopt near-
est neighbors selected via eigenentropy-based scale selection on
the other hand. The general behavior of the size of the derived
neighborhoods is visualized in Figure 5, and it reveals a trend
towards smaller neighborhoods when using eigenentropy-based
scale selection. On the basis of the extracted local neighbor-
hoods, we extract the three dimensionality features of linearity
Lλ, planarity Pλ and sphericity Sλ whose general behavior for
the considered scene is illustrated in Figure 6. This figure also
contains a visualization of the dominant behavior of each point
and thus reveals if a 3D point is characterized by either a linear
(1D), a planar (2D) or a volumetric (3D) behavior.

6. DISCUSSION

The presented concept of UAV-borne laser scanning using mul-
tiple line scanners represents a trade-off between ALS and

MLS/TLS. In comparison to ALS with a few tens of measured
points per m2, a sampling of the considered scene with a sig-
nificantly higher point density can be expected. Furthermore,
not only data corresponding to the upper parts of objects are ac-
quired. In comparison to TLS/MLS, a sampling of the consid-
ered scene with a high point density is given as well, yet a lower
range measurement accuracy can be expected due to the use of
lightweight devices. Furthermore, not only data corresponding to
the lower parts of objects are acquired. In contrast to both ALS
and TLS/MLS, UAV-borne laser scanning even allows for data
acquisition from varying altitudes reaching up to several tens of
meters above ground. Appropriate flight maneuvers should hence
result in an adequate sampling of object surfaces in the local sur-
rounding of the UAV.

A visualization of the acquired point cloud data clearly reveals the
benefit of using horizontally and vertically oriented line scanners
for data acquisition. Both devices sample data with complemen-
tary aspects (Figure 4): one device is used to densely sample lots
of returns from the tree crowns, whereas the other device is used
to obtain a high scene coverage, yet with a lower point density.
The vertical structure in the center of all depicted visualizations
does not correspond to parts of the considered scene. Instead, it
corresponds to a part of the UAV that has been scanned continu-
ously and thus indicates the performed flight trajectory.

A closer look at the derived results reveals that larger neigh-
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Figure 6. Behavior of the dimensionality features of linearity Lλ (Row 1), planarity Pλ (Row 2) and sphericity Sλ (Row 3) for the
neighborhoodsNk=50 (left) andNkopt (right): the color encoding indicates high values close to 1 in red and reaches via yellow, green,
cyan and blue to violet for low values close to 0. The maximum value of these features indicates the dominant behavior of a 3D point
(Row 4): a linear behavior is indicated in red, a planar behavior is indicated in green and a volumetric behavior is indicated in blue.
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borhoods tend to yield a more characteristic behavior with re-
spect to linear, planar or volumetric structures (Figure 6). For a
rather qualitative classification with respect to linear, planar and
volumetric structures, the neighborhood Nk=50 comprising the
k = 50 nearest neighbors seems to be favorable, because the
respectively derived dimensionality features are more distinctive
and the dominant behavior appears much smoother than when us-
ing the neighborhoodNkopt derived via eigenentropy-based scale
selection. The latter favors a smaller neighborhood size for the
considered data (Figure 5). This might be due to the fact that
the range measurement accuracy is in the order of a few centime-
ters for the involved Hokuyo UTM-30LX line scanners. Thus, the
measurement noise is higher than when using terrestrial or mobile
laser scanners, and it seems to have a negative impact on a data-
driven selection of the optimal neighborhood size. To reduce the
impact of noisy measurements, using a larger voxel size would
be required which runs at the cost of a reduced point density.

Finally, involving a voxel-grid filter based on voxels with a side
length of 0.1m resulted in only about 4.60% of the memory re-
quired for storing the original data. Thus, a significant increase
in efficiency can be expected when performing subsequent tasks
on the downsampled point cloud. In the scope of this work, we
used a parallelized, but not fully optimized Matlab implemen-
tation which is run on a standard laptop computer (Intel Core i7-
6820HK, 2.7GHz, 4 cores, 16GB RAM). When using the neigh-
borhood Nk=50, we observed a processing time of 15.37 s for
feature extraction. When using the neighborhood Nkopt , we ob-
served processing times of 216.22 s and 18.45 s for eigenentropy-
based scale selection and feature extraction, respectively.

7. CONCLUSIONS

In this paper, we have presented a concept and a system for UAV-
borne laser scanning using multiple line scanners for 3D map-
ping. Our system is represented by a DJI Matrice 100 quadcopter
equipped with horizontally and vertically oriented Hokuyo UTM-
30LX line scanners. To demonstrate the capabilities of our un-
manned aerial system, we have presented first results obtained for
a flight within an outdoor scene. Thereby, the focus has been put
on interpreting the acquired point cloud data with respect to lin-
ear, planar or volumetric structures while investigating the impact
of point density as well as the behavior of fundamental geomet-
ric features for different neighborhood types. The derived results
clearly reveal the high potential of UAV-borne laser scanning us-
ing multiple line scanners.

In future work, we plan to use the presented unmanned aerial
system for 3D mapping of larger environments and develop a
framework with a particular focus on extracting objects such as
trees, buildings and cars from the acquired data. This framework
certainly includes other types of features and classification ap-
proaches, and it might also involve the consideration of multi-
scale neighborhoods and the use of spatial regularization tech-
niques or segmentation approaches. In this regard, a more com-
prehensive and quantitative analysis of the acquired data would
be desirable. This might also involve a manual annotation of ex-
emplary point clouds to evaluate the performance of different ap-
proaches via comparison to reference labelings.
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