
DISTRIBUTED UAV-SWARM-BASED REAL-TIME GEOMATIC DATA COLLECTION
UNDER DYNAMICALLY CHANGING RESOLUTION REQUIREMENTS

Miguel Almeidaa, Hanno Hildmannb and Gürkan Solmazc

a NEC Laboratories Europe, Kurfürsten-Anlage 36, D-69115 Heidelberg, Germany, miguel.almeida@neclab.eu
b Universidad Carlos III de Madrid (UC3M), Av. Universidad, 30 - 28911 Leganés - Spain, hanno@cypherpunx.org

c NEC Laboratories Europe, Kurfürsten-Anlage 36, D-69115 Heidelberg, Germany, gurkan.solmaz@neclab.eu

KEY WORDS: Self-organization, adaptive behaviour, swarm algorithms, distributed sensing, autonomous decision making

ABSTRACT:

Unmanned Aerial Vehicles (UAVs) have been used for reconnaissance and surveillance missions as far back as the Vietnam War, but
with the recent rapid increase in autonomy, precision and performance capabilities - and due to the massive reduction in cost and size
- UAVs have become pervasive products, available and affordable for the general public. The use cases for UAVs are in the areas of
disaster recovery, environmental mapping & protection and increasingly also as extended eyes and ears of civil security forces such as
fire-fighters and emergency response units. In this paper we present a swarm algorithm that enables a fleet of autonomous UAVs to
collectively perform sensing tasks related to environmental and rescue operations and to dynamically adapt to e.g. changing resolution
requirements. We discuss the hardware used to build our own drones and the settings under which we validate the proposed approach.

1. INTRODUCTION

Autonomously operating Unmanned Aerial Vehicles (UAVs)
have become a major technology in the past decade (though the
U.S. military has been using UAVs for operations as far back as
the Vietnam War (Broad, 1981)). Due to their low cost and high
availability, airborne devices have received much interest from
the private consumer, the research community, the industry and
the military alike. So-called drones are referred to in the literature
as UAVs (Schneider, 2014), UASs (Unmanned Aerial Systems)
(Coopmans, 2014), RPAs (Remotely Piloted Aircrafts) (Marcus,
2014) or ROAs (Remotely Operated Aircrafts) (Ogan, 2014).

There are many ways to classify UAVs (Malone et al., 2013).
Drone types and capabilities are probably as numerous as the
variations on the missions where drones are involved. Some of
the larger (fixed wing) UAVs can operate for hours circling over
certain areas, e.g., areas contaminated by highly hazardous mate-
rials (areas where a manned mission is too dangerous to human
life or where providing adequate security for the human operator
is simply too costly) (Malone et al., 2013), while the typical flight
time of a commercial and publicly available (and affordable) off-
the-shelf quadrotor is about 15 to 20 minutes (Erdelj et al., 2017).
State of the art UAVs can remain airborne for prolonged periods
of time (two weeks (Garber, 2014) or longer) and performance
values improve significantly every year (Pauner et al., 2015).

While a lot of research was undertaken regarding the autonomous
landing of UAVs in general, few studies have been directed at ma-
rine environments where the challenges are more complex or cir-
cumstances are more dramatic compared to land or indoor envi-
ronments. Recently, quadrotor UAVs have been landed with rea-
sonable accuracy on swimming objects and under outdoor condi-
tions (Mendona et al., 2016). The abilities to perform complex
maneuvers and to operate as large collectives of units, especially
for efficient situational awareness (Erdelj et al., 2017), are going
to continue to increase rapidly over the next years.

1.1 Relevant Application Areas

The United States Office of the Secretary of Defense (OSD) iden-
tifies over twenty UAV mission types, ranging from intelligence,
surveillance (Giyenko and Cho, 2016a), reconnaissance missions
(Broad, 1981), force protection, firefighting, electronic warfare to
communication nodes and others (Malone et al., 2013).

1.1.1 Civil use mission UAVs have recently been used for
civil supply, inspection and various search and rescue operations
(Cummings et al., 2014). For example, UAVs are used for wa-
ter management and biofuel production (Coopmans, 2014) or to
monitor areas for wild-life protection (Schneider, 2014). For ex-
ample, the World Wildlife Fund (WWF) controls poaching and
illegal wildlife trade (Goodyer, 2013) and in some of Africa’s
national parks engages perpetrators of such offences (Goodyer,
2013) (though the South African Civil Aviation Authority has
banned the use of UAVs in their parks (Andrews, 2014)).

1.1.2 Disaster response and relief applications UAVs can
be deployed (Apvrille et al., 2014) during or after disasters to
organize disaster management operations, assist the population,
reduce the number of victims and mitigate the economic conse-
quences (Tanzi et al., 2014). Disaster scenarios are highly dy-
namic and authorities normally operate under imperfect infor-
mation, which directly implies the importance of communication
links (Tanzi et al., 2014), as well as the need for real-time changes
in surveillance and data collection operations.

UAVs can play a crucial role when existing infrastructure is com-
promised, malfunctioning or disconnected (Apvrille et al., 2014)
or when the environment is deemed too dangerous for humans to
operate in (Montufar et al., 2014) by delivering equipment, serv-
ing for geographical mapping or vehicular tracking (Giray, 2013).
Significant resources have been allocated to develop supervisory
control algorithms to assist a single operator and facilitate the re-
mote controlling of multiple UAVs (Cummings et al., 2014).
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2. SWARM BASED REAL-TIME DATA COLLECTION

We address the scenarios where a number of UAVs are operat-
ing as a single functional unit (a swarm) to provide real-time
data from their individual directed sensing equipment (such as
onboard cameras). In this context, individual devices provide par-
tial coverage which, when combined with the data from the other
devices, offers complete coverage of a target object or area.

The sensing capabilities of any equipment are bounded. Increas-
ing the level of detail (e.g., the resolution of a camera) means
reducing the area that is covered. If continuous coverage over an
entire area is a hard constraint (as it is for certain search and res-
cue missions), then this can be achieved by handing over cover-
age over locations to other devices which currently operate under
lower resolution requirements. However, our swarm delivers at
least the required resolution, and “operating under lower reso-
lution requirements” does not mean currently delivering only the
required minimum resolution. Due to this, handing over locations
may affect the performance of the receiving device, possibly re-
sulting in further handovers, in turn causing - in the worst case -
a ripple effect propagating through the entire swarm.

2.1 Problem statement

The fundamental building blocks of the problem are the partici-
pating devices D (the set of drones: D = {d1, . . . , dn}) and L
(all the locations L = {l1, . . . , lm} which need to be covered).

Each location li is defined by its x- and y-coordinates
(xmin

li
, xmax

li
, ymin

li
, ymax

li
) and a resolution requirement resli .

We discretize the locations to have a width and breadth of 1
measurement unit and simplify li = (xmin

li
, ymin

li
, resli) since

xmax
li

= (xmin
li

+ 1) and ymax
li

= (ymin
li

+ 1).

A drone dj = (xdj , ydj , adj , max altdj , min altdj , resdj )
has a position (xdj , ydj ), altitude adj , maximum / minimum alti-
tude (max altdj , min altdj ) and a sensor resolution resdi .

For a specific solution we distinguish La, the set of all locations
seen at altitude a (with La ⊆ L) as well as Ldi , the set of loca-
tions seen by drone di (with Ldi = Ladi

); and finally L∗
di

, the
set of locations actually allocated to drone di, (with L∗

di
⊆ Ldi ).

2.1.1 Simplifications Above we have mentioned resdi , the
resolution of drone di’s sensor. Of course the resolution will de-
pend on both the actual resolution of the sensor as well as, in case
of a camera, the focal length (i.e., the resolution of the camera as
well as its zoom level). In this problem we ignore any zooming
capability of the cameras and pretend that this value is fixed.

We treat the surface as a flat area, i.e., we assume that the altitude
of a drone correlates to the resolution provided for all locations
covered by that UAV, i.e., we do not consider uneven surfaces
where, e.g., locations on a hill are covered with a higher resolu-
tion due to being closer to the sensor. We further simplify the
definition of the covered area by assuming that for each increase
in altitude the area of coverage is extended by two location, both
in the width as well as in the depth of the covered area. Finally
we dictate that there is a maximum altitude max altdi a drone
di can reach and still provide coverage, if this is the same for all
drones we use max alt. The minimum, min alt, is = 0.

2.1.2 Coverage and Resolution Ldi , the set of locations seen
by drone di depends on di’s altitude adi and x- and y-coordinates
(xdi , ydi ) is defined as ∀j, k ∈ {1, . . . , adi} :
(xdi , ydi), (xdi−j, ydi), (xdi , ydi−k), (xdi−j, ydi−k) ∈ Ldi .

The number of locations seen from an altitude a is given by:

|La| = (a× 2)2 (1)

Therefore, |Ldi |, the number of locations that can potentially be
covered by a drone di, is determined by the UAV’s altitude adi :

|Ldi | = |Ladi
| = (adi × 2)2 (2)

The resolution rdi provided by drone di changes with the altitude
and the intrinsic camera values. Normally we would express the
resolution of an area in pixels per area and account for parameters
like the focal length (zoom level) and would calculate a measure
where the higher the value the better the performance. Our actual
implementation includes camera resolution, a fixed focal length
and the drone’s altitude, but here we provide a simplified mathe-
matical model considering only the camera’s resolution.

rdi =
|Ldi |
resdi

(3)

We express the current resolution in terms of how much area is
contained in a pixel. Minimizing this value across the entire area
means to improve the number of pixels per square distance unit.

2.2 Solution and measure of success

A solution is instances of D and L such that all locations are
covered and all resolution requirements are met.

2.2.1 Drone resolution To compare the quality of solutions
we define an objective performance measure for the aggregated
resolution provided for L∗

di
(the set of locations actually allo-

cated to drone di) by a drone di as agg resdi , calculated:

agg resdi = rdi × |L∗
di | (4)

2.2.2 Swarm resolution The resolution of swarm D∗ (i.e.,
the swarm D under allocation L∗

di
⊆ Ldi for all its drones di)

is:
resolutionD∗ =

∑
di∈D∗

agg resdi (5)

Obviously, the lower resolutionD∗ , the better the performance.

2.2.3 Resolution requirements We want to ensure that the
resolution requirements are met, i.e., that for all locations lk allo-
cated to a drone di the resolution rdi provided by that drone di is
equal or higher than resli : ∀lk : lk ∈ L∗

di
→ rdi ≥ reslk .

2.2.4 Performance penalty If allocation L∗
di

violates any
resolution requirements we define a performance penalty.

The maximum resolution requirement for drone i is:

max res(L∗
di) = maxlj∈L∗

di
(reslj )

If max res(L∗
di
) can be used to calculate the maximum altitude

max alt(L∗
di
) then the set of locations covered at this altitude is

Lmax alt(L∗
di

). The set of locations which can not be covered at
this altitude (L-

max alt(L∗
di

)) is then:

L-
max alt(L∗

di
) = L∗

di\Lmax alt(L∗
di

)
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2.2.5 Drone penalty We define penaltydi , the number of in-
cremental altitude changes required for drone di to meet the res-
olution requirements L∗

di
for all its the locations as follows:

penaltydi = L-
max alt(L∗

di
) × (k × rdi)

with k a constant used as a tuning parameter to adjust the impact
of the penalty value on the behaviour of the swarm.

The rationale behind our penalty value is that we would like to
hand over all locations in L-

max alt(L∗
di

) to some other UAV. As
the size of this st decreases, so should the penalty.

2.2.6 Swarm penalty The penalty penaltyD∗ of swarm D∗

can be calculated as the sum of the penalties of its members:

penaltyD∗ =
∑

di∈D∗

penaltydi (6)

2.2.7 Performance evaluation We calculate the performance
performanceD∗ of a swarm D∗ using equations 5 and 6:

performanceD∗ = resolutionD∗ + penaltyD∗

2.3 Stochastic re-allocation of locations

The decision whether or not to re-allocate a location lk from
drone di (the current owner) to dj (a potential new owner) is
stochastic, with the probability of a re-allocation being calculated
using an evaluation of the current state as well as the potential
state (i.e., the state after a re-allocation).

2.3.1 Re-allocation For a re-allocation ∆ of locations from
one drone (di) to another (dj) we say that L∗∆

di
and L∗∆

dj
denote

the current allocation of locations and L∗∆′
di

and L∗∆′
dj

denote the
new allocation, resulting from performing re-allocation ∆.

Exchanges of locations happen always between exactly two
drones, di and dj and on the basis of an estimate of the over-
all situation before and after a (potential) exchange of locations.
Such an estimate will consider the resolution provided by both
drones together as well as a penalty for all locations for which
the required resolution is not met.

We require that (L∗∆
di

∪ L∗∆
dj

) = (L∗∆′
di

∪ L∗∆′
dj

) holds, i.e., the
set of locations covered by both drones together does not change.

2.3.2 Optimizing resolution From above we have means to
calculate agg res{di,dj} for any two drones i, j with L∗

di
and

L∗
dj

, respectively. We define resolution before(∆) and resolu-
tion after(∆) based on L∗∆

di
,L∗∆

dj
and L∗∆′

di
,L∗∆′

dj
, respectively:

resolution before(∆) = agg res{di,dj}

resolution after(∆) = agg res{di,dj}

2.3.3 Penalty As above, we define penalty before(∆) and
penalty after(∆) based on L∗∆

di
,L∗∆

dj
and L∗∆′

di
,L∗∆′

dj
:

penalty before(∆) = penalty{di,dj}

penalty after(∆) = penalty{di,dj}

2.3.4 Stochastic decision The probability P∆ of performing
re-allocation ∆ is calculated as follows:

P∆ =
before(∆)α

(before(∆)α + after(∆)α)

with a tuning parameter α and

before(∆) = (resolution before(∆) + penalty before(∆))

after(∆) = (resolution after(∆) + penalty after(∆))

3. HARDWARE AND SIMULATION FRAMEWORK

We built and programmed our own UAVs to enable a realistic
testing of the proposed approach and to be able to easily show-
case the use of a swarm of drones. We furthermore developed a
demonstration platform to showcase multi-device solutions / col-
laboration between devices (e.g., swarms).

3.1 Drone prototype design

Our drones are quadcopters with a maximum power demand of
500W (the demand when hovering is approx. 70W), on board
battery (11,1v 3000mAh), approximate weight of 600g (giving
us an additional load capacity of around 300g). The projected
flight time for use in demos (outside and subjected to environ-
mental conditions but without additional load) is 15 minutes. The
dimensions are 177mm x 177mm x 192mm (cf. Fig. 1).

3.1.1 Control module (CM) As not uncommon in the lit-
erature (Mhatre et al., 2015) (Choi et al., 2016) (Giyenko and
Cho, 2016b), the onboard computing platform (running the con-
trol module (CM), the simulated mobile platform as well as the
optional simulated sensor platform is a Raspberry Pi 2 (see Fig.
1) with the following specifications: a 900MHz quad-core ARM
Cortex-A7 CPU, 1GB RAM, 4 USB ports, 40 GPIO pins, Full
HDMI port, Ethernet port, combined 3.5mm audio jack and com-
posite video, camera interface (CSI), display interface (DSI), Mi-
cro SD card slot, VideoCore IV 3D graphics core. It is running
Linux (Raspbian) as operating system and ROS (BSD or LGPLv3
or GPLv3 License) over VPN to connect to other modules.

We used MAVROS to publish the autopilot’s / SITL’s mavlink
data to the network, relays it to GCS (Ground Control Software)
and furthermore relays the CM’s instructions to the autopilot. The
Ardupilot SITL (SW in the loop, GPLv3 License, cf., e.g,. (Bupe
et al., 2015) (Rojas et al., 2015) (de Albuquerque et al., 2016)
(Guevara et al., 2015) (Mukherjee et al., 2014)) autopilot soft-
ware facilitates the simulation of flight operations and enables us
to use additional Raspberry Pis to simulate larger swarms.

3.1.2 Flight module (FM) The flight module (the hardware
realizing all the flight operations, also used in, e.g., (Bupe et al.,
2015) (Choi et al., 2016) (Giyenko and Cho, 2016b)) is a Pix-
hawk (see Fig. 1) featuring a 168Mhz 32-Bit STM32F427 Cor-
tex M4, 256KB RAM, 2MB Flash, 14 PWM / servo outputs as
well as connectivity options for additional peripherals (UART,
I2C, CAN) and redundant power supply inputs as well as an au-
tomatic failover. Regarding peripheral sensors we are currently
using only GPS, Airspeed sensor, Sonar, LiDar and Optical Flow,
but the Pixhawk is not restricted to these and additional sensors
can be added. The pixhawk is licensed under the Creative Com-
mons License (Open-Source HW). We used APM Flight Stack
(GPLv3 License). This connects to the navigation sensors (e.g.,
GPS) and controls all basic flight / navigation dynamics.
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Figure 1. (top left) The pixhawk flight module / autopilot, (top
right) the Raspberry Pi 2 and (bottom) one of the NEC MSP

prototypes used for the evaluation and testing of the approach.

3.2 Simulation / Testing Environment

The process of designing and implementing distributed algo-
rithms for the control of swarms poses the challenge of evaluating
and testing them in the real world, that is, using actual hardware
and letting it operate in a physical environment. UAV use and
availability is spreading faster than awareness of - or legislative
frameworks to address - related concerns (Pauner et al., 2015).
Their rapid adoption outpaces legal, policy, and social ability to
cope with issues regarding privacy and interference with well-
established commercial air space (Sterbenz, 2016). Regulations
differ between countries (Erdelj et al., 2017) and have to address
a number of technical and societal concerns and challenges (Vat-
tapparamban et al., 2016). (Altawy and Youssef, 2016) surveys
the main security, privacy, and safety aspects associated with the
use of civilian drones in the national airspace.

By their nature (distributed and intended for swarms), the pro-
posed algorithms require a substantial number of devices in order
to show the intended benefit. The device type itself poses the
problem of being subjected to a variety of different legal require-
ments depending on where (location) and under which circum-
stances (commercial, non-commercial, etc) they are operated.

The demonstration platform currently under development will ad-
dress these issues by (a) facilitating the use of large numbers of
simulated devices to augment a small swarm of physical devices;
and (b) enabling the co-location of physical devices that are fac-
tually not in the same place. While the latter makes it possible
to share resources between different labs, it is primarily aimed at
enabling us to perform demonstrations in areas where the legal
restrictions for the operation of physical drones would otherwise
prevent the demonstration (or make it exceedingly expensive).

Figure 2. Parts of the demonstration platform: control unit,
physical devices, simulated devices and a visualization module.

Figure 3. A conceptual overview over the mobile sensing
platform (the hardware is shown in Figure 1).

Figure 2 shows the 4 components of the platform: (1) a control
interface to run the simulation, (2) physical devices (possibly in a
number of different locations), (3) simulated devices and finally
(4) a visualization module showing the scenario.

We designed the platform to be able to handle a number of differ-
ent devices, i.e., it is not restricted to our quadcopters or, for that
matter, to drones in general. Specifically the use with fixed-wing
drones as well as rovers (unmanned ground vehicles) is possible
and simulations could use all of these device types together.

The current project only considers one type of drone, but planning
for this functionality already sets the stage for future projects that
focus on inter-swarm collaboration and enables us to evaluate the
performance of our algorithms in a broader context.

The control unit as well as the visualization tool are realized in a
control station (a PC or a laptop), which communicates through
a wireless network with the members of the swarm (cf. Fig. 3).

We do not distinguish between virtual and physical devices or
even the device type (though in the foreseeable future we will
only be using quadcopters) and call all of them mobile sensing
platforms (MSPs) as in Fig. 3.

Within each MSP (of which there can be many) we distinguish
between (a) the computing platform where the NEC proprietary
algorithms are used (this is called command module (CM) and
with the exception of the flight module, all elements shown are
part of the CM), (b) a sensor array (real or simulated), (c) the
flight module (the hardware controlling the drone) and (d) the
mobile hardware platform (i.e., the drone).

The demonstration platform uses the ROS network as it provides
all functionalities required for staging the demonstrations.
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3.3 Implementation

The implementations required code for two physically separate
parts of the demonstration platform: the control station (contain-
ing the Dispatch module) and UAV. For either algorithm imple-
mentation, the Dispatch module was the only module on the con-
trol station side for which code needed to be written (for the im-
plementation of the algorithm; there was additional code written
for the implementation of the System Control to handle, e.g., UAV
registry). On the UAV side, the only module that was concerned
was the Computing Platform part of the MSP.

The control station is a laptop (running instances of Dispatch,
Environment and System Control) while, as discussed, the Com-
puting Platform on our UAVs was a Raspberry Pi 2.

3.3.1 Control station side (Dispatch module) On the con-
trol station side (in our case the laptop used to supervise the op-
erations) only the Dispatch module is involved because this is
where all altitude control relevant interaction between UAVs and
the control station is happening. That is, any communication be-
tween the UAVs and the control station which is related to an on-
going swarm surveillance operation happens exclusively through
the Dispatch, be it for general day-to-day operations as well as for
dedicated and task specific operations (such as, e.g., “providing
sensor readings for location L” or, as in this case, “orchestrating
UAV swarm based video surveillance for area A”).

For the altitude control algorithm we assume that the high level
task of controlling the swarm is handled by a compartmentalized
sub-system. Due to this we implemented a system that allows
UAVs to sign on to it as participating members (having been in-
structed to do so by another module sub-system of Dispatch) and
which will be the interface between the application side (what-
ever it may be) and the UAV swarm.

In a fully developed and deployed system Dispatch would also
handle the data streams generated by the UAVs (e.g., video
streams, coming from different UAVs and, together, covering all
locations in the target area). Dispatch would combine these and
pass them through to either the software analyzing the data or to
the output device specified by the human operator.

3.3.2 UAV / drone side (MSP control module) For the UAV
implementation the choice for either a centralized or a decentral-
ized approach had to be made. Since the algorithm is inherently
intended to be decentralized the choice is determined by opera-
tional and practical considerations: in the implementation of the
simulation and demonstration platform (using ROS as communi-
cation framework) we found that the communication overhead
was large because coordinating asynchronous communications
between many different devices required a lot of time.

We implemented a centralized version of the approach where the
code running on the laptop is coordinating the swarm: It performs
all the calculations and periodically updates the swarm accord-
ingly. However, this centralized version can also be implemented
to run on one of the UAVs which then performs all the calcula-
tions and once a decision to re-allocate a location is made this
“master drone” simply updates the swarm accordingly.

In the de-centralized approach, all UAVs compete for locations
and interactions between UAVs are always between two UAVs
that can both cover a specific location. Our decision to imple-
ment the algorithm in a centralized form was due to the inherent

TCP/IP and wireless latency. A message round trip will take ap-
prox 20ms which would mean that demonstrations would work
slower than preferred. This is an issue that can be addressed by
better or different communication architectures. We don’t foresee
any major obstacles when implementing the algorithm for a fleet
of real UAVs. At the moment, the centralized implementation
allows us to evaluate the approach without loss of generality.

3.3.3 Communication protocols The Dispatch module han-
dles all issues related to communication with the swarm. UAVs
sign on to a surveillance swarm and Dispatch supplies them
with current and updated resolution requirements. The individ-
ual UAVs in return supply the Dispatch with a series of video
streams (as well as an indication which areas these relate to).

4. RESULTS AND EVALUATION

To test the approach we created a swarm of 25 UAVs and used an
area of 20 × 20 locations. UAVs were positioned at the intersec-
tion of 4 locations and distributed homogeneously over the area.
Figure 4 shows the set up of the simulated area.

UAV altitudes were discrete: there were 11 altitudes ranging from
zero (ground level) to 200m (consequently, at 10 of these 11 alti-
tudes coverage over increasingly large areas is provided). UAVs
started at 200 meters (the highest altitude where minimum res-
olution requirements could be met) but could ascend to higher
altitudes (and in the initial phase of a simulation some of them
do, so as to facilitate the trading of locations with UAVs that are
further away) in steps of 32.05371m - 200m. All UAVs initially
started at altitude 200m and then descended to the initial location.

Whenever not used to control a real UAV, multiple instances of
a simulated MSP were executed on a single Raspberry Pi. This
implies that the results are, if anything, on the cautious side as we
used only a fraction of the available computation power to run the
individual UAVs. For an eventual implementation of the system
we would use a more powerful computer at the Dispatch side to
improve performance even further.

When simulating the surveillance swarm we ignored zooming
of cameras altogether. The reason for this is that the algorithm
is effectively trading off covered area for quality of video feed,
and both, the changes in altitude or the zooming cause the same
changes in coverage and quality. Implementing a realistic model
for both would have caused a lot of extra work without providing
any benefit as far as the evaluation of the algorithm is concerned.

In a trial implementation we would improve the actual delivered
quality by making use of both mechanisms: since zooming will
most likely be a lot faster and a lot cheaper (energy wise), we will
use zooming to cover changes quickly and then adapt the altitude
of the UAVs to ensure zooming never leaves the UAV at one end
of the spectrum (fully zoomed in or out).

The camera values used in the simulations were taken from a
Sony NEX 5R camera with a 25mm lens: pixels h=4592 (num-
ber of pixels in the Y axis of the sensor), pixels v=3056 (number
of pixels in the X axis of the sensor), sensor h=23.4 (sensor size
in the y axis), sensor v=15.6 (sensor size in the x axis). As the
horizontal resolution was marginally better than the vertical res-
olution all reported values refer to the vertical to ensure we can
deliver at least the reported quality. Along these lines, we sim-
plified the area to be a square (not, as it really is, a rectangle) and
ignored the additional area coverage.
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Figure 4. The test area (400 locations arranged in a 20×20 grid)
and the 25 UAVs in homogeneous swarm formation.

4.1 Baseline performance

We first establish a baseline performance for the algorithm by us-
ing it to optimize the altitude of a swarm of UAVs in the absence
of resolution requirements. Due to the homogenous distribution
of the UAVs (cf. Fig. 4) we know that the best possible solution
is when all UAVs have descended to the altitude when they can
cover two fields in any direction (i.e., an area of 4×4 locations).
Given that the distribution of the UAVs allows for a unique best
possible solution, we can test the convergence property of the al-
gorithm. And indeed, the graphs in Fig,. 6 show that the swarm
converges quickly towards the best solution. The standard devi-
ation shows that after a brief initial phase the UAVs do not only
decrease their altitudes but do so increasingly coherent until they
all arrive at, and hold, the same altitude.

This already shows that the approach does indeed perform as in-
tended / predicted. In the following sections we will take a closer
look at the performance of the algorithm when resolution require-
ments are added and removed, i.e., for cases when the optimal
solution is not as straight forward to find as in the baseline case.

4.2 Performance under dynamic requirement changes

To test the performance of the algorithm when the resolution re-
quirements are not uniformly distributed / the same everywhere
we added specific resolution requirements during the simulation.
The following resolution requirements were added (cf. Fig. 5):

• until iteration 1999 no requirements are present, all drones
descend to their optimal altitude.

• at iteration 2000 two resolution requirements are added for
locations 6,6 and 14,14. At 3.27 mm/pixel this forces the
closest UAV to descend to altitude 1 in order to meet the
resolution requirements and the previously covered 4 × 4
locations have to be handed over to neighbouring drones.

• at iteration 4000 the previous requirements are moved to
locations 6,14 and 14,6 by removing them at iteration 3999
and adding the new ones at iteration 4000.

• at iteration 6000 existing requirements are removed in the
previous iteration and one is added for location 10,10.

• at iteration 8000 the initial two requirements are repeated.

(a) (b) (c) (d)

Figure 5. Requirements: iterations 0-1999, (a) none, (b)
2000-3999, (c) 4000-5999, (d) 6000-7999 and (b) 8000-end.

4.3 Individual altitudes

In the baseline scenario all drones converged on the same altitude
and into a stable formation (cf. Fig. 6). Under changing resolu-
tion requirements the optimal solution(s) are less stable and the
occasional space exploration occurs (cf. Fig. 7).

The next two graphs (cf. Figures 8 and 9) show the various alti-
tudes at which drones are found throughout the surveillance sim-
ulation. These represent the actual altitudes under the simplifi-
cation that disallows zooming. For a full deployment we would
make use of the camera zoom and then have the drones follow, in
other words the actual image quality can be expected to be bet-
ter (the delivery of increased resolution to be faster and smooth)
than the altitude changes plotted in the graphs. To have a closer
look at the altitudes we provide the frequency distribution for the
swarm’s altitudes. We can see that after the initial allocation and
optimization, the vast majority of UAVs remains either on altitude
2 (the optimal altitude in the absence of any resolution require-
ment) and altitude 3. Only 1 or 2 UAVs are observed at altitudes
4 and 5. These are the UAVs that have to increase their altitude to
cover locations previously allocated to a UAV that is now flying
closer to a location with resolution requirements.

4.4 Discussion

The benchmark scenario shows the drones continuously improv-
ing on their initial performance and settling into the (obvious)
best possible solution. When increased resolution requirements
are imposed, the swarm responds through altitude changes by in-
dividual drones, some to provide the required solution and some
to take over the areas previously covered by the former. In our
evaluation we were mainly interested in the ability of the swarm
to consistently converge on good solutions and less on the re-
sponse time. The motivation for this is that the response time
directly responds to the number of iterations the swarm / indi-
vidual drones can perform per second, which in turn depends on
the hardware available. We argue that response times can be im-
proved through (a) more powerful on-board computing hardware
or (b) the use of cloud based resources or a dedicated control
computing facility. In addition, the actual response time required
to change the altitude can be off-set through the use of zooming.

5. CONCLUSION

The presented approach enables swarm of devices to collabora-
tively cover an area and provide continuous data quality for, e.g.,
video coverage, even if the resolution requirements for individual
locations are subject to change. The approach is scalable and the
swarm used for the evaluation is already large enough to deliver
good results; performance will only increase with larger swarms.
Due to legal and practical considerations the discussed evaluation
is - in fact - merely a proof of concept case but future projects are
aiming at, e.g., disaster response systems, i.e., real world scenar-
ios where normal regulations and norms are often suspended.
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Figure 6. The coverage problem without requirements, baseline performance: homogeneous altitudes (best possible solution).

Figure 7. The altitudes of the UAVs in the surveillance swarm under the changing resolution requirements (cf. Fig. 5).

Figure 8. The frequency distribution for the altitudes of the drones.

Figure 9. An aggregated version of the drones’ altitudes.
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