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ABSTRACT: 

 

This paper presents a fast and robust method for the registration of multimodal remote sensing data (e.g., optical, LiDAR, SAR and 

map). The proposed method is based on the hypothesis that structural similarity between images is preserved across different 

modalities. In the definition of the proposed method, we first develop a pixel-wise feature descriptor named Dense Orientated 

Gradient Histogram (DOGH), which can be computed effectively at every pixel and is robust to non-linear intensity differences 

between images. Then a fast similarity metric based on DOGH is built in frequency domain using the Fast Fourier Transform (FFT) 

technique. Finally, a template matching scheme is applied to detect tie points between images. Experimental results on different 

types of multimodal remote sensing images show that the proposed similarity metric has the superior matching performance and 

computational efficiency than the state-of-the-art methods. Moreover, based on the proposed similarity metric, we also design a fast 

and robust automatic registration system for multimodal images. This system has been evaluated using a pair of very large SAR and 

optical images (more than 20000×20000 pixels). Experimental results show that our system outperforms the two popular commercial 

software systems (i.e. ENVI and ERDAS) in both registration accuracy and computational efficiency. 

 

 

                                                                 

* Corresponding author.  Yuanxin YE, yeyuanxin@home.swjtu.edu.cn 

1.  INTRODUCTION 

Image registration aims to align two or more images captured at 

different times, by different sensors or from different viewpoints 

(Zitova and Flusser 2003). It is a crucial step for many remote 

sensing image applications such as change detection, image 

fusion, and image mosaic. In the last decades, image registration 

techniques had a rapid development. However, it is still quite 

challenging to achieve automatic registration for multimodal 

remote sensing images (e.g., optical, SAR, LiDAR, and map), 

due to quite different intensity and texture patterns between 

such images. As shown in Figure 1, it is even difficult to detect 

correspondences (tie points) by visual inspection. 

 

    
(a)                                               (b) 

Figure 1 Example of different intensity and texture patterns 

between multimodal remote sensing images. (a) SAR (left) and 

visible (right) images. (b) Map (left) and visible (right) images. 

 

In general, image registration mainly includes three components 

(Brown 1992): feature space, similarity metric and geometric 

transformation. Feature space and similarity metric play the 

crucial roles in image registration. 

 

The choice of feature space is closely related to image 

characteristics. A robust feature for multimodal registration 

should reflect the common properties between images, which 

are preserved across different modalities. Recently, Local 

invariant features such as Scale Invariant Feature Transform 

(SIFT) (Lowe 2004) and Speeded Up Robust Features (SURF) 

(Bay et al. 2008) have been widely applied to remote sensing 

image registration due to their robustness to geometric and 

illumination changes. However, these features cannot 

effectively detect tie points between multimodal images. This is 

because that they are sensitive to significant intensity 

differences, and cannot effectively capture the common 

properties between multimodal images (Suri and Reinartz 2010; 

Chen and Shao 2013).  

 

Common similarity metrics include the sum of squared 

differences (SSD), the normalized cross correlation (NCC), the 

mutual information (MI), etc. These metrics are usually 

vulnerable to the registration of multimodal images because 

they are often computed using intensity information of images. 

In order to improve their robustness, some researchers applied 

these metrics on image features such as gradient and wavelet 

features. However, these features are not very effective for 

multimodal registration. 

 

Recently, our researches show that structure and shape 

properties are preserved between different modalities (Ye and 

Shen 2016; Ye et al. 2017). Based on this hypothesis, tie points 

can be detected by using structure or shape similarity of images, 

which can be evaluated by calculating some traditional 

similarity metrics (e.g., SSD) on structure and shape descriptors. 

Additionally, the computer vision community usually uses 

pixel-wise descriptors to represent global structure and shape 

features of images, and such kind of feature representation has 

been successfully applied to object recognition (Lazebnik et al, 

2006), motion estimation (Brox and Malik 2011), and scene 

alignment (Liu et al. 2011). Inspired from these developments, 
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we will explore the pixel-wise structural feature representation 

for multimodal registration. 

 

In particularly, the contribution of this paper is that we first 

develop a pixel-wise feature descriptor that captures structure 

and shape features of images to address non-linear intensity and 

texture differences between multimodal images. This descriptor 

is named Dense Orientated Gradient Histogram (DOGH), which 

can be computed fast by convoluting orientated gradient 

channels with a Gaussian kernel. Then, a similarity metric based 

on DOGH is built in frequency domain, which is speeded up by 

Fast Fourier Transform (FFT), followed by a template matching 

scheme to detect tie points. Moreover, we also design a fast and 

robust automatic registration system based on DOGH for very 

large multimodal remote sensing images. 

 

2. METHODOLOGY 

Given a reference image and a sensed image, the aim of image 

registration is to find the optimal geometric transformation 

relationship between the two images. In practical application, 

we usually first detect the tie points between the images, and 

then use these tie pints to determine a geometric transformation 

model to align the images.  In this section, we present a fast and 

robust registration method for multimodal remote sensing 

images, which includes the following aspects: (1) a per-pixel 

feature descriptor, named DOGH, is developed by using 

orientated gradients of images; (2) a similarity measure based 

on DOGH is proposed for tie point detection by a template 

matching scheme, and its computation is accelerated by FFT; (3) 

an automatic registration system is developed on the basis of 

CFOH and the proposed similarity  measure , which can handle 

remote sensing images with the large size.  

 

2.1 Dense Orientated Gradient Histogram 

DOGH is inspired by Histogram of Orientated Gradient (HOG) 

(Dalal and Triggs 2005), which describes the shape and 

structural features by gradient amplitudes and orientation of 

images. HOG is calculated based on a dense grid of local 

histograms of gradient orientation over images, where the 

histograms are weighted by a trilinear interpolation method. 

Differently from that, DOGH is computed at every pixel of 

images based on local histograms of gradient orientation, and 

the histograms are quantized by applying a Gaussian filter in 

orientated gradient channels, instead of using the trilinear 

interpolation method. This will be much faster than HOG to 

compute the feature descriptor for every pixel of images.  

 

We now give a formal definition of DOGH. For a give image, 

its M  number of orientated gradient channels are first 

computed, which are referred as to ig , 1 i M  . Each 

orientated gradient channel ( , )og x y  equals the image gradient 

at location ( , )x y  for orientation o  if it is larger than zero, else 

its value is zero. Formally,  an orientated gradient channels is 

written as  o

I
g

o

 
   

 , where I  is the image, o  is the 

orientation of the derivative, and     denotes that the enclosed 

quantity is equal to itself when its value is positive or zero 

otherwise. Then, each orientated gradient channel is convolved 

using a Gaussian kernel to achieve convolved feature channels 

as *o

I
g g

o





 
   

 , where   is the value of Gaussian kernel. 

The final descriptor is 3D pixel-wise feature representation, 

which can capture the structural properties of images. Figure 2 

shows the processing chain of DOGH, 

 

 

Figure 2 Processing chain of DOGH 

 

2.2 Proposed similarity metric  

This subsection proposes a similarity metric based on DOGH, 

and accelerate its computational efficiency by using FFT.  

 

It is generally known that SSD is a popular similarity metric for 

image matching. For a reference image and a sensed image, let 

their corresponding DOGH be 1D  and 2D , respectively. The 

SSD between the two DOGH can be computed by the following 

equation. 

 

     
2

1 2( ) ( ) ( - )i

x

S v D x D x v                   (1) 

where x  is the location of a pixel in an image, and 

( )iS v denotes the SSD between 1D and 2D  translated by a 

vector v  over a template window i   

 

In order to achieve the best match between 1D  and 2D , it 

should minimize the similarity function ( )iS v . Accordingly, the 

matching function is 

 
2

1 2arg min ( ) ( - )i

x

v

v D x D x v
 

  
 
            (2) 

The obtained translation iv is a translation vector that matches 

1D  with 2D   for the template window i  . 

 

Since the pixel-wise structural feature representation is a 3D 

image which has a large data volume, it is time consuming to 

exhaustively compute the SSD similarity function for all 

candidate template windows. This is an intrinsic problem for 

template matching, as a template window needs to slide pixel-

by-pixel within a search region for detecting its 

Input image Orientated gradient channel 

DOGH 
Gaussian convolution 
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correspondences. An effective approach to reduce the 

computation of SSD is to use the FFT technique for 

acceleration. 

 

At first, the matching function present in (1) is expanded as  

 
2 2

1 2 1 2( ) ( ) ( ) 2 ( ) ( )i

x x x

S v D x D x v D x D x v          (3) 

In this equation, the first term are independent of v  and can be 

efficiently calculated directly. The last two terms can be 

regarded as convolutions, which can be efficiently computed by 

using FFT since convolutions in the spatial domain become 

multiplications in the frequency domain. The final match 

function can be expressed as 

 

1 *

2 2

1 *

1 2

( ) ( ) ( )
arg min

       2 ( ) ( ) ( )
i

v

C F F D F D v
v

F F D F D v





     
  

    

           (4) 

where C  represents the first term of the expanded form in (3), 

F  and 1F   represents the forward and inverse FFTs, and *F  

is the complex conjugate of F . This approach can reduce the 

computation of the similarity function. For example, given a 

template window with a size of N N pixels and its search 

region is M M pixels, the SSD takes 
2 2( )O M N . Thus the 

proposed approach takes     2
logO M N M N   operations. 

Our approach has a substantial improvement in computational 

efficiency with the increase of the sizes of template window and 

search region. 

 

2.3 Designed image registration system 

Based on the proposed DOGH and similarity metric, we design 

an automatic image registration system for very large 

multimodal remote sensing images by using C++, which 

includes the following steps. 

 

(1) The reference and sensed images are resampled to the same 

ground distance (GSD) to eliminate possible resolution 

differences. 

 

(2) The block-based Harris operator (Ye and Shan 2014) is used 

to extract interest points in the reference image to make tie 

points distributed evenly over the image. 

 

(3) After the extraction of interest points in the reference images, 

the proposed similarity metric based on DOGH (see section 2.2) 

is used to detect tie points in the sensed images by a template 

scheme, when the search region for image matching is predicted 

by the georeference information of images. 

 

(4) Due to some factors such as occlusion and shadow, it is 

inevitable that obtained tie points have some errors. The tie 

points with large errors are removed using a global consistency 

check method based on a cubic polynomial model (Ma et al. 

2010). 

 

(5) After the removal of the tie points with large errors, a 

piecewise linear (PL) transformation model is applied to 

achieve image registration because this model can handle the 

local distortions caused by terrain relief to some degree. 

 

3. EXPERIMENTS: DOGH MATCHING 

PERFORMANCE 

In this section, DOGH is evaluated by using different types of 

multimodal remote sensing images. Two metrics such as the 

precision and computational efficiency are used to test the 

matching performance of DOGH. Moreover, DOGH is 

compared with the state-of-the-art similarity metrics such as 

NCC, MI and HOGncc (Ye et al. 2017) to demonstrate its 

effectiveness. In the experiments, the parameter of DOGH is set 

to 9 orientation channels.  

 

3.1 Data sets 

 We select a variety of multimodal images including visible, 

infrared, LiDAR, SAR and map data to test the proposed 

method. These data are divided into four categories: Visible-to-

Infrared (Visib-Infra), LiDAR-to-Visible (LiDAR-Visib), 

Visible-to-SAR (Visib-SAR), and Image-to-Map (Img-Map). 

Before image matching, the reference and sensed images are 

resampled to the same ground sample distance (GSD) to remove 

possible differences in resolution. If images to be matched are 

the map data, they are rasterized. Figure 3 shows the test data, 

and Table 1 gives the description of these data. 

 

  
(a)                                            (b) 

    
                        (c)                                             (d) 

  
                     (e)                                              (f) 

Figure 3 Multimodal remote sensing images. (a) Test 1. (b) Test 

2. (c) Test 3. (d) Test 4. (e) Test 5. (f) Test 6. 

 

Category Image pair Size and GSD Date 

V
is

ib
-

In
fr

a 

Test 1 
Daedalus visible 

Daedalus infrared 

512×512, 0.5m 

512×512, 0.5m 

2000/4 

2000/4 

L
iD

A
R

-

V
is

ib
 

Test 2 
LiDAR intensity 

WorldView2 visible 

600×600, 2m 

600×600, 2m 

2010/10 

2011/10 

V
is

ib
-

S
A

R
 Test 3 

TM band3 

TerraSAR-X 

600×600, 30m 

600×600, 30m 

2007/5 

2008/3 

Test 4 
Google Earth 

TerraSAR-X 

528×524, 3m 

534×524, 3m 

2007/11 

2007/12 

Im
g
-

M
ap

 Test 5 
Google Maps 

Google Maps 

700×700, 0.5m 

700×700, 0.5m 
unknown 

Test 6 
Google Maps 

Google Maps 

621×614, 1.5m 

621×614, 1.5m 
unknown 

Table 1 Descriptions of the test data 
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3.2 Implementation details 

The block-Harris detector is first used to extract the evenly 

distributed interesting points in the reference image. Then NCC, 

MI, HOGncc and DOGH are used to detect the tie points in the 

sensed image by a template matching scheme, respectively. In 

order to analyze the sensitivities of similarity metrics with 

respect to changes in the template size, we use the template 

windows with different sizes to detect tie points between images. 

 

3.3 Analysis of precision 

The precision is defined as /presicion CM C , where CM is 

the number of the correct match pairs, and C  is the number of 

the total match pairs. Figure 4 shows the precision values of the 

four similarity metrics. It can be clearly observed that DOGH 

achieves the highest precision values in any template sizes. This 

shows that the similarity metrics representing structural 

similarity are more robust to complex intensity and pattern 

differences between multimodal images. NCC achieves the 

lowest precision values. This is because NCC is only invariant 

to linear intensity differences and is sensitive to complex 

intensity changes between images (Hel-Or et al. 2014). 

Although MI performs better than NCC, it still cannot 

effectively handle non-linear intensity differences between 

multimodal images.  
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Figure 4 Precision values versus the template size of NCC, MI, 

HOGncc, and DOGH for multimodal images. (a) Test 1. (b) Test 2. (c) 

Test 3. (d) Test 4. (e) Test 5. (f) Test 6. 

 

Compared with HOGncc, DOGH presents a superior matching 

performance. This is because DOGH depends on a dense (or 

pixel-wise) structural feature representation, which can better 

capture structural similarity between multimodal data than the 

relatively sparse feature representation used to construct HOGncc. 

 

Overall, the above experimental results demonstrate that DOGH 

is robust to the non-linear intensity difference between 

multimodal images. 

 

3.4 Analysis of computational efficiency 

Here, we analyze the computational efficiency of the four 

similarity metrics. Figure 5 shows that the run time taken from 

NCC, MI, HOGncc and DOGH versus the template size. HOGncc 

is calculated by the designed fast matching scheme (Ye et al. 

2017). One can see that DOGH takes the least run time than the 

other similarity metrics. This is because DOGH is a low 

dimension of feature descriptor, and it accelerates the 

computation of similarity evaluation by using FFT. 
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Figure 5 Run time versus the template size to NCC, MI, 

HOGncc, and DOGH. 

 

4. EXPERIMENTS: MULTIMODAL REGISTRATION 

To validate the effectiveness of our designed automatic 

registration system based on DOGH (see Section 2.3), two 

popular commercial software systems (i.e. ENVI 5.0 and 

ERDAS 2013) are used for comparison. Both ENVI 5.0 and 

ERDAS 2013 have the function modules for automatic remote 

sensing image registration, of which names are “Image 

Registration Workflow (ENVI)” and “AutoSync (ERDAS)”, 

respectively. Considering that the sizes of remote sensing 

images are usually large in the practical application, we use a 

pair of very large multimodal images (more than 20000×20000 

pixels) for this comparison 

 

4.1 Data sets 

In the experiment, a pair of very large SAR and optical images 

is used to compare our systems with ENVI and ERADS. Figure 

6 shows the test images, and Table 2 reports the description of 

the images. The challenges of registering the two images are as 

follows. 

 

Geometric distortions: the images cover different terrains 

including mountain and plain areas. Different imaging modes 

between the SAR and optical images result in complex global 

and local geometric distortions between the two images. 

 

Intensity differences: significant non-linear intensity differences 

can be observed between the two images because they are 

captured by different sensors and at different spectral regions. 

 

Temporal differences: the two images have a temporal 

difference of 12 months, which results in some ground objects 
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changed. 

 

Very large data volume: the SAR image and the optical image 

have the sizes of 29530×21621 pixels and 30978×30978 pixels, 

respectively.  

 

 

Figure 6 A pair of very large SAR and Optical images 

 
Description Reference image Sensed image Image characteristic 

Sensor Sentinel-1 SAR 

Sentinel-2 

Multispectral (optical) 

Instrument band 1 

Images cover both 

mountain area and 

plain area. There is a 

temporal difference of 

12 months between 

the images. 

Significant geometric 

and intensity 

differences. the SAR 

image is affected by 

significant noise 

Resolution 10m 10m 

Date 07/2015 07/2016 

Size 

(pixels) 
29530×21621 30978×30978 

Table 2 Descriptions of the test images 

 

4.2 Implementation details 

To our best knowledge, both ENVI and EARDAS apply the 

template matching scheme to detect tie points between images, 

which is the same as that of our systems. Accordingly, to make 

a fair comparison, all the systems set the same parameters for 

image matching, and use the PL transformation model for image 

correction. For the similarity metrics used in the ENVI and 

ERDAS, ENVI achieves image matching by NCC and MI, 

which are referred as “ENVI-NCC” and “ENVI-MI” in this 

paper, respectively. While ERDAS employs NCC to detect tie 

points, and uses a pyramid-based matching technique to 

enhance the robustness. Table 3 give the parameters used in all 

the systems. It should be note that because ERDAS uses a 

pyramid-based technique to guide the image matching, some 

parameters, such as search and template window sizes, cannot 

be set to too large. Therefore these parameters are set to the 

default values for ERDAS. 

 

Parameter items Our system ENVI ERDAS 

Number of detected 

interest points 
900 900 900 

Search window size 80 80
1
 Default 

Template window size 80 80 Default 

Threshold value for 

error detection 
3.5 pixels 3.5 pixels Default 

Table 3 Parameters used in all the systems. 

                                                                 

1
 Note: In the interface of ENVI, the “search window size” should be 160 

pixels because it is equal to the sum of “search window size” and “template 

window size” in Table 3 

 

 

4.3 Analysis of Registration Results 

To evaluate the registration accuracy, we manually select 50 

check points between reference and registered images, and 

employ the root mean-square error (RMSE) to represent the 

registration accuracy. Table 4 shows the registration results of 

all the systems. Our system outperforms the others, which 

includes achieving the most matched CPs, the least run time, 

and the highest registration accuracy.  

 

Method Tie points Run time(sec) RMSE(pixels) 

Before-

registration 
  18.65 

ENVI-NCC 20 26.88 24.35(failed) 

ENVI-MI 88 458.89 4.58 

ERDAS 56 301.68 14.20 

Our system 303 19.24 2.33 

Table 4 Registration results of all the systems 

 

ENVI-NCC fails in the image registration because its 

registration accuracy is worse than before-registration, while 

ENVI-MI and ERDAS improves registration accuracy 

compared with before-registration. For our system, it not only 

achieves higher registration accuracy than ENVI-MI and 

ERDAS, but also it is about 20x and 15x faster than ENVI-MI 

and ERDAS, respectively. 

Figure 7 shows the registration results of before-registration, 

ENVI-MI, ERDAS, and our system. One can clearly see that 

our system performs best, followed by ENVI-MI and ERDAS. 

The above experimental results show that our system is 

effective for the registration of very large multimodal images, 

and outperforms ENVI and ERDAS in both registration 

accuracy and computational efficiency. 

 

5. CONCLUSIONS 

This paper proposes a fast and robust method for the 

registration of multimodal remote sensing images, to address 

non-linear intensity differences between such images. Our 

method is based on the proposed pixel-wise feature descriptor 

(named DOGH), which can capture structural properties of 

images. A fast similarity metric is designed for DOGH by FFT, 

which detects tie points between images using a template 

matching scheme. Six pairs of multimodal images are used to 

evaluate the proposed method. Experimental results show that 

DOGH performs better than the state-of-the-art similarity 

metrics such as HOGncc, MI and NCC.  

 

In addition, an automatic images registration system is 

developed based on DOGH. The experimental results using a 

pair of very large SAR and optical images show that our system 

outperforms ENVI and ERDAS in both registration accuracy 

and computational efficiency. Especially for computational 

efficiency, our system is about 20x faster than ENVI, and 15x 

faster than ERDAS, respectively. This demonstrates that our 

system has the potential of engineering application. In apart 

from the registration of SAR and optical images, our system can 

also address the registration of other types of multimodal 

remote sensing data, such as optical, LiDAR and map. The 

more experiments will be present in future. 

 

Overlapping area 

relative to SAR 

image 

 

(a) SAR image (b) Optical image 
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Figure 7 Registration results of before registration, ENVI-MI, ERDAS, and our system. Line 1 shows the registration results in 

the overlapping area of SAR and optical images. Line 2 shows the enlarged registration results in box 1. Line 3 shows the 

enlarged registration results in box 2. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-1009-2017 | © Authors 2017. CC BY 4.0 License.

 
1014



 

 

Lazebnik, S., Schmid, C., and Ponce, J., 2006. Beyond bags of 

features: Spatial pyramid matching for recognizing natural 

scene categories. Proc. CVPR2006, pp. 2169-2178. 

Brox, T. and Malik, J., 2011. Large displacement optical flow: 

descriptor matching in variational motion estimation, IEEE 

Trans. Pattern Anal. Mach. Intell., 33(3), pp. 500-513. 

Liu, C., Yuen, J. and Torralba, A., 2011. Sift flow: Dense 

correspondence across scenes and its applications,  IEEE Trans. 

Pattern Anal. Mach. Intell., 33(5), pp. 978-994. 

Dalal, N. and Triggs B., 2005. Histograms of oriented gradients 

for human detection. Proc. CVPR2005, pp. 886-893. 

Cole-Rhodes, A. A., Johnson, K. L., LeMoigne, J., et al, 2003. 

Multiresolution registration of remote sensing imagery by 

optimization of mutual information using a stochastic gradient. 

IEEE Transactions on Image Processing, 12(12), pp. 1495-

1511. 

Dalal,N and Triggs B., 2005. Histograms of oriented gradients 

for human detection. Proc. IEEE Conf. Computer Vision and 

Pattern Recognition 2005, pp. 886-893 

Ye, Y. and Shan J., 2014. A local descriptor based registration 

method for multispectral remote sensing images with non-linear 

intensity differences. ISPRS Journal of Photogrammetry and 

Remote Sensing, 90(2014),  pp. 83-95. 

Ma, J. L., Chan, J. C. W. and Canters, F., 2010. Fully automatic 

subpixel image registration of multiangle CHRIS/Proba data. 

IEEE Transactions on Geoscience and Remote Sensing, 48(7), 

pp. 2829-2839. 

Hel-Or, Y., Hel-Or H., and David, E., 2014. Matching by tone 

mapping: photometric invariant template matching. IEEE Trans. 

Pattern Anal. Mach. Intell., 36(2), pp. 317-330. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-1009-2017 | © Authors 2017. CC BY 4.0 License.

 
1015




