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ABSTRACT:

Accurate information on mining land use and land cover change are crucial for monitoring and environmental change studies. In this
paper, RapidEye Remote Sensing Image (Map 2012) and SPOT7 Remote Sensing Image (Map 2015) in Pingshuo Mining Area are
selected to monitor changes combined with object-based classification and change vector analysis method, we also used R in high-
resolution remote sensing image for mining land classification, and found the feasibility and the flexibility of open source software.
The results show that (1) the classification of reclaimed mining land has higher precision, the overall accuracy and kappa coefficient
of the classification of the change region map were 86.67% and 89.44%. It’s obvious that object-based classification and change
vector analysis which has a great significance to improve the monitoring accuracy can be used to monitor mining land, especially
reclaiming mining land; (2) the vegetation area changed from 46% to 40% accounted for the proportion of the total area from 2012 to
2015, and most of them were transformed into the arable land. The sum of arable land and vegetation area increased from 51% to
70%; meanwhile, build-up land has a certain degree of increase, part of the water area was transformed into arable land, but the
extent of the two changes is not obvious. The result illustrated the transformation of reclaimed mining area, at the same time, there is
still some land convert to mining land, and it shows the mine is still operating, mining land use and land cover are the dynamic
procedure.

1. INTRODUCTION

Mining area caused a great deal of changes in landscape
structure and enormous environmental disturbances, among
them open-pit coal mine is one of the greatest landscape-
altering activities, and it’s difficult to restore surface coal mine
to the original ecological landscape (Hendrychová and Kabrna
2016). There is no doubt that the coal mining expansion benefits
the local GDP significantly, but also causes environmental
degradation and destroy original ecosystem balance due to the
destruction of original land cover types(Li, Yan et al. 2015).
Scientific monitoring of coal mining areas, especially opencast
coal mines, is of great theoretical and practical value for the
new normal of China (Zhou et al. 2012)
To solve the conflict between the mining activities and the
environmental protection in the region, after extracting the raw
material, most countries claim mining companies to take
reclamation projects for integrating landscape, and the
surrounding areas. The impact of mining on the landscape is so
significant that the reclamation of mining area should have
different functions: production (forests, agricultural land), social
(residential area, new constructions) and area of mining industry
(Demirel, Emil et al. 2011). The traditional method for mine
area monitoring which is to take the dynamic monitoring for
land resource, requires a lot of manpower and material
resources to conduct field investigation of mining areas. And it
is no longer applicable to real-time monitoring and data updates
for large-scale open-pit mine. Compared with the traditional
method, the use of remote sensing in the mining area, especially
reclamation land, can build a complete database to facilitate
data collation, reduce costs and improve efficiency. Therefore
change information is important for practical uses especially in

mining area, including damage assessment, disasters monitoring,
revegetation, reclamation, and land management.
Change detection is considered as monitoring the alterations of
land cover and land use (Singh 1989). The processes of change
detection are using multi-temporal remote sensing images to
analyze differences in the state of features by observing them
and then to quantify the changes. The remote sensing data is one
of the major sources for change detection for acquiring data
with sufficient area coverage, temporal frequency, digital
format easy to compute and much more spatial and spectral
resolutions to select (Hussain, Chen et al. 2013).There are many
methods in change detection which are mainly pixel-based and
object-based, and all of them are based on changes in the object
of interest will alter the reflectance value or local texture. Since
the 1970s, change detection has been applied abroad in mining
area by using pixel-based classification in low-resolution
remote sensing data (Boerner, DeMers et al. 1996). In China,
these study began from the 1980s, Hu et al. (2005) analyzed the
land use change in mining area using pixel-based method in
Landsat TM and ETM data of Tangshan
If detailed change direction is required for a study, post-
classification will be needed, Many pixel-based change
detection methods, which have been used traditionally in large
or medium scale, often using medium spatial resolution image
such as Landsat Thematic Mapper (TM) are not considered
appropriate for high-resolution remote sensing data, in which
object-based analysis may be used more frequently. High-
resolution remote sensing data (e.g. QuickBird, IKONOS,
RapidEye) is used for local scale studies as it provides greater
spatial resolution. The pixel-based techniques face a challenge
on these High-resolution data (Lu, Moran et al. 2011, Chen,
Hay et al. 2012). When undertaking a per-pixel classification a

 Commission III, WG III/6

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-1017-2017 | © Authors 2017. CC BY 4.0 License.

 
1017



community scale, the spectral heterogeneity may lead to
misclassified pixels appearing within classes creating a ‘salt and
pepper’ effect (Myint, Gober et al. 2011). More recently, object-
based methods are more commonly used for change detection at
the local scale such as mining area, for mining operations often
occur at small spatial scales relative to other land cover changes
(e.g. urban sprawl).
High spatial resolution remote sensing data allow us to obtain
more detailed data in order to improve classification in the
mining area. With suitable Remote sensing classification, we
can get more accurate results of change detection. The pixel-
based method only uses spectral information to classify, and
cannot provide sufficient detail information in high spatial
resolution remote sensing data for mining area. Unlike pixel-
based classification, the object-based method first segments
images into objects and then classifies objects by using spectral,
textural features (Rodriguez-Galiano, Ghimire et al. 2012).
Remote sensing change monitoring was used to monitor large-
scale areas by using low-resolution remote sensing images in
the past, which has lower resolution, less information, and
cannot conduct depth analysis of certain areas. So the object-
based backdating approach was put forward, which achieved
higher accuracy for change monitoring.
Multi-temporal object-based technology has already been
successfully applied in urban environment. Such as, damage
monitoring is conducted by Al Khudhairy, etc. using pan-
sharpened IKONOS data, while Chen and Hutchinson using
panchromatic QuickBird imagery of urban buildings
(Alkhudhairy, Caravaggi et al. 2005, Chen and Hutchinson
2007). The results of many researches have shown that object-
based classification can improve the classification accuracy so
as to improve the accuracy of land use change detection results
and provide more reliable technical support for mining area
monitoring. So object-based classification and change detection
can be applied in mining area monitoring.
Most procedures of remote sensing data can be handled readily
in geographic information systems (GIS) or image processing
software. Indeed, it is not important what exactly proprietary
software is doing the procedures. R provides an alternative to
some software for study and testing of remote sensing image
processing algorithms. The flexibility of R makes it possible to
apply, test and modify algorithms easily. The available
graphical and statistical tools have already been convenient to
anything available in common packages, making it
straightforward to call algorithms. Tools for processing and
display of spatial referenced data are widely available in R (R
Development Core Team 2011). Packages in R provide these
capabilities for several commonly-used spatial formats.
In this paper, we use the data of RapidEye Remote Sensing
Image and SPOT7 Remote Sensing Image to monitor the land
use change in Pingshuo open-pit mine. Combined with object-
based classification and support vector machine in R to improve
the efficiency of classification, to study high-resolution remote
sensing data for mining area classification and the accuracy of
change detection.

2. MATERIAL

2.1 Study area

Pingshuo open-pit mine (112°10'E ~ 113°30'E and 39°23'N ~
39°37'N) is located in the Shuozhou City of Shanxi Province,
which covers an area of 360 km2 and its verified geological
reserves are 12.75 billion tons in the latest prospecting.
Designed to serving for 92 years (1985~2077), Pingshuo open-
pit mine has an annual output of the coal amounts to 65 million
tons. The pit is sited in a fragile ecosystem, which is rather

sensitive to environmental disturbance, and the plasticity of
remaining self-stability is relatively small. The environment of
open-cast mine is a fragile ecosystem, which is sensitive to and
is difficult to maintain stability itself.
The study area (Figure. 1) in this paper with a total area of
30.43 km2, which includes the Antaibao west dump, Antaibao
inner dump, Antaibao south dump, mining area and residential
area. The mining area is sited in a fragile ecosystem in Loess
Plateau, for the strongly eroded and less vegetation and has
been reclaimed since the 1980s (Bai et al., 2008). And this mine
has serious environmental problems (such as land collapse, soil
erosion, soil desertification) caused by the lack of
environmental protection.
In addition, Pingshuo open-pit mine is located in the northern
part of Shanxi Province, which is one of the major sandstorm
sources of Beijing and Tianjin. Therefore, a fragile ecosystem
such as mining area will greatly endanger the local environment.
It is obvious that the study area badly needs scientific
monitoring and protection.

Figure 1. Study area: Pingshuo open-pit mine

2.2 Data

In this paper, we use RapidEye image (t0) and SPOT7 image (t1)
as the based data. The former is collected in September 2012,
which employed 5-band multispectral (blue, green, red, near-
infrared (NIR), red edge), and with a resolution of 4.27 meters.
The latter is collected in August 2015, which provides both
image products at 4 meters spatial resolution comprising
multispectral bands of blue, green, red, and NIR and 1 meters
panchromatic image. Both optical data sets are available as
standard image products, i.e. radio metrically corrected, sensor
corrected, and projected to the Earth’s surface.

RapidEye SPOT7
nm nm

Blue 440-510 455-525
Green 520-590 530-590
Red 630-685 625-695
NIR 760-850 760-890
Red Edge 690-730 ——
Pan —— 455-745

Table 1. The band parameters of two sensors
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In addition, height information is available by means of a digital
elevation model (DEM) in the study area, in order to reduce the
effect of terrain on the classification accuracy. And the
RapidEye and SPOT7 images are roughly consistent in the blue,
green and NIR band so that their combination can be benefited
to classification. Therefore this paper chooses the above bands
of the RapidEye and SPOT7 images to build the data set in
order to segment image objects.

3. METHODOLOGY

All process of this study is in Figure 2.

Figure 2. The process of classification and change analysis

3.1 Preprocess

Before classification and change detection, we need to
preprocess the standard data products (both four-band
multispectral and panchromatic) whose parameters is in Table
1, and the processes include registration, resampling,
radiometric, atmospheric correlation, and using DEM to reduce
the effect of topography. Registration is a procedure that makes
the two data from different sensors georeferenced and
normalized. Resampling refers to take two images at the same
resolution and have the same pixel number. Radiometric,
atmospheric correlation, and using DEM to reduce the effect of
topography are the procedures to improve images accuracy.
Panchromatic data were used to pan-sharpen the multispectral
data. Then layers of two images were stacked to do next
procedure of segmentation. An image stack is a step to compose
four bands (RGB and NIR) with the spectral characteristics of
the multispectral data and the spatial resolution of the
panchromatic band (Vrabel,1996). There are different pan-
sharpening algorithms in ENVI 5.1 (Excelis Visual Information
Systems, Boulder, Colorado) and researchers found the Gram-
Schmidt Sharpening algorithm (Labem and Brower, 2000)
returned finer resolution pixels with consistent spectral

characteristics. To improve the capability for segmenting small
parcels, the Gram-Schmidt algorithm was applied in SPOT7 and
returns pan-sharpened data with 4 bands. Then layers of two
images were stacked to do the first step of object-based
classification, image segmentation(Table 2), for RapidEye (t0)
and pan- sharpened SPOT7 (t1) images are consistent in the
blue, green, red and NIR band and their combination can be
benefited to classification.

3.2 Segmentation

With the composed image (T), we segmented it into objects and
used the multiresolution segmentation algorithm which, was in
eCognition software. The multi-resolution segmentation
algorithm uses a bottom-up region merging technique, with
each pixel initialized as a single segment (Baatz & Schäpe,
2000). If the degree of heterogeneity that is largely defined by
the parameter scale, spatially adjacent objects will be merged.
Once the defined scale parameter gets its value when there are
no more possible, the process stops merges given. The greater
the scale parameter, more heterogeneity allowed in each object,
and the larger the average size of the objects. Two other
parameters, color, and shape, can also be set to determine the
relative weighting of reflectance and shape in defining segments.
The total weighted value of color and shape equals to one
(Trimble, 2012). Previous studies showed that a higher weight,
typically up to 0.9, which should be given to color for better
segmentation results (Mathieu, Aryal, & Chong, 2007; Pu,
Landry, & Yu, 2011). Therefore, we set the weights as 0.9 and
0.1, respectively.
There are also two other values, compactness and smoothness
which are set to determine spatially adjacent segments, the
relative weighting of reflectance were determined by testing
different parameter values and visually interpreting the image
segmentation results. Therefore, we set the weights as 65, 0.9
and 0.1, respectively. The image layer weights mean the weight
coefficient of blue, green, red, NIR bands of each image (t0, t1).
And we also used NDVI and texture features in segmentation.

Scale Image layer
weights Shape Compactness Smothness

65 1:1:1:1:1:1:1:1 0.1 0.5 0.5

Table 2. The parameters of segmentation

3.3 Fuzzy classification

After segmentation, features of shape, texture (e.g. Grey-level
covariance matrix), vegetation index (e.g. NDVI) were used in
the fuzzy classification of each image (t0, t1). When
implementing the segmentation, we used it as the thematic layer
to each image. Consequently, the generated objects were not
allow to cross any of the borders separating different thematic
classes of each classification map, and thus shared the
boundaries of the different land cover class of the thematic layer.
The use of a single segmentation for all the images is that it will
not provide different objects because of change. In this step, we
classified land use and cover types as vegetated and non-
vegetated using spectral, and texture and a threshold of mean
NDVI > 0 or mean NDVI ≤ 0 respectively. The aim of this
step is to creat objects that were representative of the different
ground features and prepare to select random samples for
training and validating.
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3.4 Sample selection

For all the layers, a stratified random sampling method was
used to obtain training samples. Samples were selected from
within the two classification maps using expert knowledge of
the study site for the following classes: bare land, arable land,
built-up land, industrial and mining land, forest land and water
area.
The training objects for each class were selected from multiple
locations throughout the image, in order to obtain a
representative sample. Furthermore, we used Google Earth to
assist visual interpretation of high spatial resolution image data.
We generated a total number of 600 sample points for
classification of 2012 and 2015, with at least 40 samples for
each class(Fuller, Smith et al. 2003). 70% of samples were used
as training samples and rest of them were as testing samples.

3.5 Classification in R

Training samples can be trained in R where we can use
packages to improve the efficiency of classification, for it takes
the shorter time than the same progress in eCognition when
texture features are used in classification. The samples were
exported from eCognition into R and samples in open source
software are treated as statistical files. The final trained model
was applied to all objects using the ‘predict’ function in R.
Map 2012 and 2015 was classified by the same classification
method above. At last the land cover Map of 2012 and 2015
were classified as 7 land use/cover classes: bare land, arable
land, built-up land, industrial and mining land, forest land and
water area by using support vector machine (SVM) and object-
based method.
SVM is used to train a support vector machine. It can be used to
carry out general regression and classification, as well as
density estimation. A formula interface is provided in “e1071”
package in R. SVMs are a class of kernel-based machine
learning algorithms, which have been shown to be effective for
classifying a wide variety of data types, including remote-
sensing data (Mountrakis, Im, and Ogole 2011; Richards and
Kingsbury 2014). We implemented SVM classification using
segmented two images were first linearly rescaled. Rescaling in
this way has problems created by differences in the range of
different attributes. For the kernel model, we selected the radial
basis function (RBF), which is capable of mapping both non-
linear and linear of input values into higher-dimensional
classification space (Keerthiand Lin 2003). Optimal values of
the penalty (C) and kernel (γ) parameters for the RBF model
were selected which in this study is 1300 and 0.0001. Once
optimal parameter values were determined, the SVM model was
applied to all training samples in the images using the Training
tool from R, and then applied to all the objects, yielding a
classified product.

3.6 Change detection

Multi-temporal/multi-date object change detection uses a single
segmentation of all the stacked images. And image objects have
same geometric properties at two times. What’s more, it
exploits the geometrical, spectral, and derived features to create
change paths. Image segmentation and classification is applied
directly to stacked multi-temporal image which produces
spatially corresponding to change objects. The composite image
used in Multi-temporal/multi-date object change detection may
comprise one or more co-registered panchromatic, multispectral
band, texture, or only spectral form multi-temporal images. But
Multi-temporal/multi-date object change detection do not

provide new/different objects that might be created at different
times because of change(Hussain, Chen et al. 2013).
Desclée et al. (2006) stacked a time series of SPOT images and
produced segmentation. Then the extracted objects were given
the mean and standard deviation spectral values from each
image of different dates. A procedure in GIS was used to
identify changed objects as statistical tools. The unnatural
values explained difference statistics referred to the changed
objects. Change detection accuracy used error matrix f and the
accuracy was greater than 90% and an overall kappa was higher
than 0.80. Bontemps et al. (2008) who applied segmentation to
a series of time of spectral data. All the objects obtained spectral
features, and used a Mahalanobis distance algorithm for change
detection, that is one part of Multi-temporal/multi-date object
change detection. Conchedda et al. (2008) and Stow et al. (2008)
used multi-temporal stacked images in both segmentation and
classification steps to get vegetation change objects and map
them. There is also gathering on a series of date objects to
analyze deforestation (Duveiller et al., 2008).
The single segmentation of all the stacked imaged results in
creating image-objects consistent in size, shape, and location
coordinate over time. Multi-temporal segmentation would also
result in some artifacts if there are misregistration and
differences in shadowing between dates (Stow, 2010). Another
issue pertaining to the use of a single segmentation for all the
images is that it will not provide new objects that might be
created at different times because of change.
According to Multi-temporal/multi-date object change detection,
and the GIS-based overlay of classification map of 2012 and
2015, the change areas can be found and then masked. The high
reflectance variability within individual features and the number
of classes present in the high-spatial-resolution image can take
change detection analysis in objects, not traditional pixel-based.
The object-based image analysis (OBIA) techniques have been
shown to reduce the effects of geo-referencing, higher spectral
variability, and acquisition characteristics.
Multi-temporal/multi-date object change detection can extract
change regions of all classes from 2012 to 2015 and we can
obtain classification results of change analysis in GIS, for we
used same segmentation from stacked images and objects of
two classification maps correspond. Then Map 2015 and 2012
was masked to get change region layer. In Figure 3, land use
and cover types decreased in Map 2012 corresponding to the
types increased in Map 2015 and that present the changes in the
study area. With change analysis, we can not only obtain land
use/cover change map, but also the class hierarchy.

3.7 Accuracy

Classification method has to be evaluated by error matrix to
specify the performances of the object-based method. Error
matrices include the overall accuracies, user's and producer's
accuracy, and the Kappa statistics. It can prove that
classification method is really effective and suitable for the
study area.
We conducted the accuracy assessment for 6 classes. These
included the two classification maps, Map 2012 from Rapideye
and Map 2015 from SPOT7 For all the maps, we used a
stratified random sampling scheme to generate the checking
points. For the classification maps, we used 30% random
samples selected in two images which have 180 objects of
samples. We used reference data created from visual
interpretation of very high spatial resolution image data. Error
matrices were generated to calculate the overall accuracies,
user's and producer's accuracy, and the Kappa statistics

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-1017-2017 | © Authors 2017. CC BY 4.0 License.

 
1020



Figure 3. Panel A, the increased land cover class of Map 2015; panel B, the decreased land cover class of Map 2012

4. RESULTS AND DISCUSSION

Table 3 shows that the object-based classification results of
mining area have high accuracies, and the overall accuracy and

kappa coefficient of Map 2012 are 86.67% and 84.00%, and of
Map 2015 are 90.44% and 89.33% based on confusion matrixes.
With object-based classification and change detection in the
mining area, mine monitoring could be operated in local scale
and changes were identified in short time interval.

Land-use type Accuracies Overall Kappa statistics(p1/p2)Producer's(p1/p2) User's(p1/p2) Overall(p1/p2)
Bare land 96.67 90.00 87.88 90.00 — — — —
Arable land 93.33 85.00 77.78 95.00 — — — —
Build-up land 83.33 90.00 100.00 80.61 — — — —
Mining land 90.00 75.00 93.10 100.00 — — — —
Forest land 83.33 83.00 83.33 90.00 — — — —
Water area 90.00 75.00 100.00 86.67 — — — —

— — — — 86.67 90.44 84.00 89.33
Table 3. Error matrices for both the land cover classification of Map 2012 (p1) and Map 2015 (p2) (%)

2012
2015 Bare land Arable land Build-up land Mining land Forest land Water area Total 2015

Bare land 0 115750 0 0 11325 0 127075
Arable land 21250 0 57300 18200 1509350 0 1606100
Build-up land 200300 344525 0 86050 681250 29075 1341200
Mining land 72475 114225 44450 0 52800 0 283950
Forest land 28750 258925 14775 36400 0 1975 340825
Water area 0 0 0 8750 0 0 8750
Total 2012 322775 833425 116525 149400 2254725 31050 3707900

Table 4. The pivottable of changed area from 2012 to 2015(m2)
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As we can see, the environmental disturbance of mining land is
always at a high level. Even more serious, mining completely
destroys the native ecosystem and land reclamation needs to
reconstruct a new one which must be adapted to local condition.
In Table 4, land use and cover change is a dynamic process.
Part of mining area was reclaimed to vegetation which is called
pioneer plants to recover ecosystem and later would be used as
arable land. The vegetation area changed from 46% to 40%
accounted for the proportion of the total area from 2012 to
2015, and the sum of arable land and vegetation area increased
from 51% to 70%. It represents that reclamation land has been
finally used as normal land, and the local ecosystem has been
recovered slowly. Although bare land in mining area has been
decreased, it is obvious that some of arable land and forest land
changed to bare land, the reclaimed land still needs to protect
and find better ways to adapt to the local environment. There
was still some kind of land converted to industrial and mine,
but the trend of mining area is decreasing. Coal mining is still
in production, but a great deal of them have been reclaimed.
Pingshuo open-pit coal mine seems to work as usual, while to
take pollution control and land reclamation. What’s more, all
types of land use and cover seems to change dynamically, for
land use is also a dynamic process or there may be availability
bias in classification, and we need to explore in the future study.
It is of great importance that high monitoring accuracy in a
short interval of real time for mining land, especially reclaimed
mining land, so that we can get land use and cover information
of short interval time in a local mining area.
Objects composed of similar pixels have details of shape,
texture, spectral and spatial, while pixels just have the spectral
feature to classify land use and cover types. Thus a pixel is not
a true geographical object; rather, it is a representation of
spectral values (digital numbers) in a grid whose boundaries
lack real-world correspondence. Change detection based on
object-based classification is similar to human understanding of
geometry, who intuitively identifies the objects from an image
rather than pixels by considering the different features (e.g. size,
texture, shape) and spatial arrangements(Addink, Van Coillie et
al. 2012)
With the analytical framework in change detection becoming
more data driven, it improves the capability of remote sensing
data classification, because of a rapid increase in remote
sensing data especially at high resolution, and increased
computational power with more effective algorithms in open
source software such as R, Python. With the development of
object-based image analysis, the utility of machine learning is
becoming more apparent, for it can help improve the
classification results when objects are used by exploring
different characteristics.

5. CONCLUSION

Although object-based classification and change detection have
been successfully applied in urban sprawl, there are still few
pieces of research of object-based classification and change
detection about mining area including reclaimed land in a
smaller scale and shorter time interval. In this study, we found
that object-based classification and change detection in high-
resolution remote sensing image can not only be applied in
urban change detection, but also to monitor land reclamation in
mining land, and there is no doubt that it improves the
monitoring accuracy.
As a result, object-based image analysis techniques were
developed to handle the big changes in high-resolution data and
to get better accuracy both in image classification and change
detection, and with machine learning methods in R packages,

the calculating ability and classification efficiency have been
improved.
Multi-temporal/multi-date object change detection uses a single
segmentation of all the stacked images in which image objects
have same geometric properties at two times. Meanwhile, this
change detection method uses the spatial, spectral, and derived
features to classified objects and find changes. The advantages
of using this method are to keep the geometry and the total
number of objects in each image same, and easy to carry out
change detection.
Object-based change detection delineates landscape features as
real world objects and reduces the chance of misclassification.
The machine learning can help improve the classification
results when objects are used to explore different
characteristics and understand the complex relationships.
Object-based image analysis and change detection are now
more frequently used, and they have great potential for
answering the challenges of traditional change detection
techniques on high-resolution images in the mining area.
The change detection of mining area can explain the local
change in details and reflect the real situation in short time
interval.
Nevertheless, we just used the object-based method without
combined or compared to pixel-based approaches which are
widely used in the future for time-series images. If pixel-based
methods were taken consideration, it could meet more basic
considerations and assumptions of these approaches.
We will test more machine learning methods in object-based
classification and change detection, and then integrate or
compared to pixel-based such as change vector analysis,
principal component analysis, and vegetation index
differencing. And more classes can be identified to take deeper
analysis in the mining area in further analysis of the study.
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