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ABSTRACT: 

 

Satellite thermal remote sensing provides access to acquire large-scale Land surface temperature (LST) data, but also generates 

missing and abnormal values resulting from non-clear-sky conditions. Given this limitation, Annual Temperature Cycle (ATC) 

model was employed to reconstruct the continuous daily LST data over a year. The original model ATCO used harmonic functions, 

but the dramatic changes of the real LST caused by the weather changes remained unclear due to the smooth sine curve. Using 

Aqua/MODIS LST products, NDVI and meteorological data, we proposed enhanced model ATCE based on ATCO to describe the 

fluctuation and compared their performances for the Yangtze River Delta region of China. The results demonstrated that, the overall 

root mean square errors (RMSEs) of the ATCE was lower than ATCO, and the improved accuracy of daytime was better than that of 

night, with the errors decreased by 0.64 K and 0.36 K, respectively. The improvements of accuracies varied with different land cover 

types: the forest, grassland and built-up areas improved larger than water. And the spatial heterogeneity was observed for 

performance of ATC model: the RMSEs of built-up area, forest and grassland were around 3.0 K in the daytime, while the water 

attained 2.27 K; at night, the accuracies of all types significantly increased to similar RMSEs level about 2 K. By comparing the 

differences between LSTs simulated by two models in different seasons, it was found that the differences were smaller in the spring 

and autumn, while larger in the summer and winter. 
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1. INTRODUCTION 

Land surface temperature (LST) indicates the surface dynamic 

changes as a crucial parameter in the process of land-

atmosphere interaction (Wan and Li, 1997). It is usually applied 

for these studies about thermal environment, e.g., monitoring 

urban thermal environment (Voogt and Oke, 2003) and forest 

fire (Giglio et al., 2003), or some special fields such as 

volcanoes (Ramsey and Harris, 2013), earthquakes (Wu et al., 

2012). LSTs with continuous observations are able to promote 

the development of detecting soil characteristics (Zhao et al., 

2013; Zhan et al., 2014) and reflecting the dynamic changes of 

urban thermal landscapes. 

 

Thermal remote sensing provides access to acquire large-scale 

LSTs, through inverting LSTs by using land surface thermal 

radiation. But, the vital problems that the remote sensing 

technique faced are LST gaps, the missing and abnormal values 

resulting from instantaneous characteristic of satellite-based 

LSTs and non-clear-sky conditions, respectively. In addition, 

the contradiction between the spatial and temporal resolution 

limits the application of remote sensing (Zhan et al., 2013). The 

spatial resolution of the polar orbit satellite data is higher than 

geostationary satellite. While the longer transit period and the 

cloud cover reduce the amount and the quality of data, 

respectively. Though geostationary satellite, such as MSG 

(Meteosat Second Generation) SEVIRI (Spinning Enhanced 

Visible and InfraRed) sensor, acquires LSTs for every 15 

minutes, it is difficult to recognize the temperature of small 

targets on ground by the images with spatial resolution of 3 km. 

Therefore, the methods to establish LST time series models and 

simulate the temperature variation by using discrete LST 

observations, have aroused increasing attention (Göttsche and 

Olesen, 2001; Van den Bergh et al., 2006; Jiang et al., 2006; 

Inamdar et al., 2008; Göttsche and Olesen, 2009; Bechtel, 2012; 

Crosson et al., 2012; Duan et al., 2013; Xu and Shen, 2013). 

 

There are four categories models of LST variation, based on 

discrete time series data. In terms of time scales, the periods of 

LST variation can be divided into inter-annual, annual, daily, 

and the short cycle caused by weather-change. Progresses have 

been made in the study of modeling diurnal temperature cycle 

(DTC) since the middle of the 20th century. And numerous 

methods have been proposed, including the physical methods 

(Dickinson et al., 1993), the quasi-physical (or thermal inertial 

based) methods (Sobrino and El Kharraz, 1999a, b; Watson, 

2000; Sagalovich et al., 2002), the semi-physical (or semi-

empirical) methods (Schädlich et al., 2001; Göttsche and Olesen, 

2001; Göttsche and Olesen, 2009; Duan et al., 2013), and the 

statistical methods (Coops et al., 2007; Crosson et al., 2012). In 

recent years, considering the annual dynamic variation of the 

LST, the studies that aim at satellite LSTs with multi-time 

scales have gradually emerged (Fu and Weng, 2016; Quan et al., 

2016; Huang et al., 2016). Moreover, annual temperature cycle 

(ATC) as the link of weather-change, daily, and interannual 

variations, is currently one of the focuses of thermal remote 

sensing application (Bechtel, 2012; Zhan et al., 2014). ATC 

model reflects the information of the weather change (Wang, 

2011), especially for the urban heat island caused by rapid 

urbanization (Ke and Qin, 2006). Furthermore, as an input 

model in the studies of surface temperature spatio-temporal 

downscaling, ATC model has an effect on improvement of the 
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accuracy, and alleviates the problem of spatial and temporal 

resolution effectively. Besides, the data reflecting the annual 

variability of LST, can also adjust the inconformity between the 

satellite transit time and the observation angles, and correct the 

problems about the generation of satellite LST products (e.g., 

the eight-day synthetic products from Terra and Aqua MODIS 

(Moderate Resolution Imaging Spectroradiometer) sensor) 

without considering the missing observation data (Coops et al., 

2007; Crosson et al., 2012).Therefore, it is particularly urgent to 

simulate the LST annual change. 

 

LST annual cycle can be modeled by statistics methods and 

semi-physical models. Xu and Shen (2013) used the Harmonic 

ANalysis of Time Series (HANTS) algorithm with the harmonic 

form to remove the cloud's impact on LST data, and then 

reestablish the high-quality LST data in the Yangtze River Delta 

region of China. The LSTs with high temporal resolution can 

also be reconstructed by combining statistical model and spatial 

interpolation method (Metz et al., 2014). Even so, the semi-

physical methods which start from the energy balance equation 

of land surface can reveal the change mechanism of the surface 

thermal properties. The classical ATC model refers to 

simulating the annual variation trend of LST using harmonic 

function. Bechtel (2011) used Landsat TM/ETM+ data and 

NDVI (Normalized Difference Vegetation Index) data to 

classify the land surface properties in urban region, extracted 

the parameters of annual temperature cycle which are able to 

reflect the surface material properties, and then proposed the 

model using a constant term plus sine function to simulate the 

data and the variation of daily average LST under the condition 

of steady heat conduction process (Bechtel, 2012).As 

mentioned in the above models, the hypothesis of ATC model is 

steady heat conduction. Nevertheless, there are still short-term 

variation components caused by weather-change in addition to 

seasonal variation components in the LST annual variation. The 

ATC curves were relatively smooth modeled by sine function, 

then make it unable to describe the fluctuation of the actual LST 

variation in the short period as a result of the higher average 

LST estimated by sine model with the error around 2 K (Bechtel, 

2012). According to those problems, Xu and Shen (2013) set up 

an ATC model with multiple sine function, which could not 

reflect the influence of extreme cold events in spite of a higher 

precision. Subsequently, Zhan et al. (2014) added the sub-cycle 

describing short-term change into the ATC model, and then 

characterized the details of weather changes taking advantage of 

statistical methods.  

 

In spite of those studies made progress in improving the 

accuracy of ATC model, there’re still issues of reconstruction of 

LST under the condition of dramatic weather-change and cloud 

cover. It is appropriate to consider the variation of air 

temperature (AT), due to the direct impact from weather 

changes to the state of AT, and the correlation between LST and 

AT (Benali et al., 2012), so that the accuracy of estimated the 

surface temperature can be improved. 

 

This study proposed a new model of LST annual cycle, in order 

to enhance the accuracy of ATC model even further. Based on 

the LST products from Aqua satellite MODIS sensor under 

clear days, this paper mined the local trends of the LST with the 

help of AT, subsequently, explored the availability of the new 

model using NDVI under different land covers. Furthermore, 

we discussed the variation of LST simulation precision with 

different scales of time composition, through using the 

continuous LST data generated by the new model. 

 

2. DATA AND METHOD 

2.1 Study area 

Yangtze River Delta is located in the middle of mainland 

coastline in Eastern China, where the Yangtze River empties 

into the ocean. This study area consists of southern Jiangsu 

Province, northern Zhejiang Province and Shanghai (Figure 1). 

The region is about 110,000 km2, across the east longitude from 

116.8° to 124.2° and the north latitude from 26.99° to 34.64°, 

respectively. Yangtze River Delta belongs to the Middle-Lower 

Yangtze Plain, which is one of the China three Great Plains, 

with flat terrain. The agricultural lands are mainly distributed in 

the north and middle of this delta; the middle is Taihu River 

Basin with abundant water resources; the mountains and hills 

with lush vegetation cover the southwest region. This area is 

located in the subtropical monsoon climate zone with four 

distinct seasons, and has hot and humid summers, and cold and 

dry winters. 

 

Figure 1. Location (a), DEM (b) and land 

cover/land use (c) maps 

 

2.2 Data 

2.2.1 MODIS data: The MODIS collection-5 products 

generated during 2012 provided by NASA were utilized in this 

study, including the daily LST product MYD11A1 (L3, 1 km), 

sixteen-day composite NDVI product MOD13A2 (L3, 1 km) 

and yearly land cover product MCD12Q1 (L3, 500 m). 

MYD11A1 is collected after radiometric calibration and 

atmospheric correction. And it has been verified that the data 

reliability below the 1000 meters above sea level reach up to 90 

percent, and the accuracy is within 1 K (Wan et al., 2002). Two 

LST measurements are observed per day when Aqua transits 

along the equator at around 13:30 (day) and 1:30 (night) local 

time, which closely approximate the moments when daily 

minimum and maximum LST values occur. In order to ensure 

the uniformity of spatial resolution with LSTs, this paper 

adopted the IGBP classification scheme for the land cover 

product MCD12Q1, and resampled the spatial resolution from 

500 meters to 1 kilometer. Note that in this study, we focus on 

the main types which mostly cover the Yangtze River Delta, and 

reduced the land cover types to six categories, including water, 

forest, grassland, wetland, cropland and built-up area (Figure 

1c).  
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The presence of cloud cover in MODIS LST products, gives 

rise directly to the proportion of invalid data more than 60% in 

part of images, and affects the availability of LST data (Xu et al., 

2010). In order to evaluate the monthly days under clear-sky 

condition in the study area in 2012, this paper calculated the 

average ratio of the clear-skies pixels to the total pixels for each 

month (Figure 2). As shown in Figure 2, the percentages in the 

spring (March, April, and May) and autumn (September, 

October, and November) are higher than that in summer (June, 

July, and August) and winter (January, February, and December) 

at different satellite observation time. Because the rainfall of 

Yangtze River Delta region is much abundant in summer, 

resulting in coverage by a large area of clouds. And the more 

clouds and haze directly reduce the amount of the data 

acquisition from satellites in winter (Huang et al., 2016). 

 

Figure 2. Average percentage of clear-sky days during each 

month in 2012 for Yangtze River Delta 

 

2.2.2 Meteorological data: The meteorological data of this 

paper are derived from the data of basic meteorological stations. 

Based on the daily meteorological data (including daily 

maximum and minimum AT) of 753 datum stations in China in 

2012, the spatial interpolation using Inverse Distance Weighted 

(IDW) method was carried out to generate the daily maximum 

and minimum AT data with the spatial resolution of 500 meters. 

Among them, the Yangtze River Delta region contains a total of 

23 datum stations (Figure 1c). In the process of temperature 

interpolation, taking into account the impact of the terrain 

elevation on temperature, that is, for every 1 kilometer above 

sea level rising, the temperature drops 6℃ (Liu et al, 2015). 

Then, the data of the Yangtze River Delta region were extracted 

from the national AT data, and the spatial resolution was 

resampled to 1 kilometer. 

 

2.3 Method 

2.3.1 Original ATC model: The ATC represents the 

variation of the daily average LST during a year. It is assumed 

that the patterns of temperature change in different seasons 

contain similar information under different insulation 

conditions. Therefore, several parameters which represent the 

overall trend of LST approximately during a year can be 

extracted from the variation (Bechtel, 2011). An ATC model 

described by a single sine function was used to fit the trend of 

daily average temperature over the course of a year (Bechtel, 

2012; Zhan et al., 2014; Quan et al., 2016; Huang et al., 2016). 

As shown in Eq. (1). 

  

  
2

sin
365

d
f d MAST YAST




 
    

 

   (1) 

 

Where d  is the day of the annual temperature cycle (relative to 

the spring equinox), and  f d  represents the temperature 

value corresponding to parameter d . MAST , YAST and  are 

the key free parameters which determine the annual cycle for 

each pixel. MAST  and YAST denote the mean and amplitude 

of the temperature cycle during the year, and  characterizes 

the phase displacement relative to the spring equinox. In this 

paper, the simple ATC model will be called the “Original 

Annual Temperature Cycle (ATCO) model”. 

 

The basic principles of the ATC model are shown in Figure 3. It 

can be seen that the satellite observations of LST can’t be 

obtained for some days of the year due to the unclear-skies. 

Compared to the fluctuation of the real LSTs in the absence of 

cloud, a smooth curve is made up of the data simulated by ATC 

model. 

 

Figure 3. A demonstration of the ATC model 

 

2.3.2 Enhanced ATC model: Considering the differences 

between the curves of ATCO-based and real LSTs, this study 

developed a new ATC model based on ATCO model. Taking 

into consideration the synchronization relationship between 

daily mean LST variation and daily mean AT variation(Xu et al., 

2010; Benali et al., 2012), incorporating the surface property 

information (e.g., NDVI), we improved the ability of the model 

for describing the short-term fluctuation of LSTs. The new 

model is referred to as the “Enhanced Annual Temperature 

Cycle (ATCE) model” in this work and can be described as 

follows: 

  

  
2

sin
365

a

d
f d MAST YAST T k'




 
       

 

   (2) 

 max min

i min
1

NDVI NDVI
k' k

NDVI NDVI


 

 

    (3) 

 

Note that, the annual variation processes of each pixel are 

determined by four free parameters: the parameters MAST , 

YAST  and   are the same as those in the ATCO model; while 

the new parameter k  is the coefficient that regulates the 

variation range of LST. These free parameters can quantitatively 

reflect the information of surface thermal characteristics, which 

is significant for the research of climate change and phenology. 

In Eq. (3), i
NDVI  represents the value of the NDVI for each 

pixel on day i . max
INDV  and min

INDV  denote the maximum 

NDVI and the minimum NDVI of a single pixel in a year, 

respectively. In addition, a
T  is the difference between the 

original AT values and the temperature data fitted by ATC 

model. 
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2.3.3 Sample and validation data: The LSTs of MYD11A1 

product are utilized as the basic data to construct the ATC 

model in this work. Selected the clear-sky surface temperature 

data of MODIS at two time points of a day, 01:30 and 13:30 

(when the Aqua LST are likely to be closer to the daily 

maximum and the minimum LST than that acquired from Terra, 

respectively (Coops et al., 2007)); explored the simulation 

effect on LST annual changes of the ATCE model during the 

day and night. During the process of selecting sample and 

validation data, 70 percent of the available LST data all through 

the year were randomly selected as the training samples, and the 

remaining 30 percent were used as validation data. In the course 

of training, the least squares method was adopted to solve the 

four parameters from the overdetermined equation. According 

to the key parameters, the simulated temperature can be 

determined at any time (day of year), and then compared with 

the verification data. The Root Mean Square Error (RMSE) was 

used to evaluate the error level, and quantitatively assessed the 

accuracy of the improved model. 

 

3. RESULTS AND DISCUSSION 

3.1 Analysis of RMSEs Distribution 

The simulation performance of the enhanced model has been 

presented by integrating the meteorological and NDVI data in 

the Yangtze River Delta region. Fig. 4 shows the spatial 

distribution of the RMSE of the model ATCO and ATCE during 

the day and night. As indicated in Figure 4a, the magnitude of 

the RMSEs in the study area varied greatly during the day. It is 

clear that the RMSEs in built-up area near the Yangtze River 

and Taihu Lake are the largest, mostly in the cities with fast 

economic growth and denser population, reaching the level of 

6.0 K. Secondly, the study area has a higher terrain and mostly 

forest-covered areas, showing a large simulation error; while the 

minimum error of water area is to 1.5 K, such as the Yangtze 

River, Taihu Lake and Gaoyou Lake which is in the northern 

part of the study area, and the Thousand Island Lake which is in 

the south of the study area and so on. Compared to model ATCO, 

the simulation accuracy achieved by the model ATCE has 

significantly improved. The RMSE of decline level of the 

vegetation in the southern part of the study area is the largest 

and the error reduces to 2.5-3.5 K. The accuracy of the water 

area is not improved obviously, but the optimum accuracy level 

is maintained. However, some urban areas in Figure 4b, such as 

Shanghai, Nanjing, Changzhou and Wuxi, are still particularly 

prominent, and always maintain high RMSE values, about 4.0-

5.0 K. There are two reasons for this: (1) In the LST data sets 

that have been acquired in a year, these pixels have a small 

number of anomalies that are much lower than the other data, 

resulting in larger errors in the pixels. It is analysed that these 

anomaly data result from the inversion’s error of MODIS LST 

data. (2) The numbers of available data for the pixels in 

different seasons are quite different. The observed data 

concentrate in spring and autumn, while lack long-term 

observation data in winter and summer because of the cloud 

cover and precipitation caused by the large heat cycle in the city, 

and that results in a large error in the simulated LST variation 

during the year. Figure 4c and 4d show the fit performance of 

two ATC models in the night. Unlike the RMSE Distribution in 

daytime, the results in night do not show correlations with the 

surface coverage types. Except the RMSE value of the 

Thousand Island Lake region of 3.5 K, the RMSEs of the model 

ATCO in the other regions are in the range of 2.0-3.0 K (Figure 

4c). Figure 4d demonstrates that the model ATCE improves the 

fitting accuracy (up to 1.5-2.5 K) for each region except the 

water body in the southern study area. 

 

It is concluded that by comparing the degree of differences 

between the two models in daytime and night: by using the 

model ATCE to simulate the LST annual variation, the fitting 

accuracy has been improved on the whole, but there are great 

differences among different time periods and different land 

cover types. During the daytime, in most of the northern study 

area, the improvement degrees of accuracy are not obvious for 

around 0-0.5 K; the accuracy of the cultivated land in the south 

of the Yangtze River increases by about 0.7 K, and the 

simulation accuracy in the southern mountainous area are 

greatly improved for about 1.5 K. At night, the spatial 

distribution of the accuracy differences is similar to that of the 

daytime. The accuracies in most of the area are improved, 

especially in the mountainous area of Hangzhou with the 

RMSEs reduced by 1.0 K, except the water and some cultivated 

lands in the middle of the study area with value around 0 K. 

 

Figure 4. RMSEs of the model ATCO and ATCE in 

day and night 

 

Figure 5 illustrates the diversities of RMSE values between 

model ATCO and ATCE from the perspective of error numerical 

distribution in day and night, respectively. In general, the mean 

RMSEs of model ATCO are 3.52 K and 2.32 K in day and night, 

while the values of model ATCE are 2.88 K and 1.96 K. Thus, 

the simulation precisions of day and night are increased by 0.64 

K and 0.36 K. In the daytime, 21.1% of the values are 

concentrated in the range of 2.0-3.0 K for the original model, 

57.0% in 3.0-4.0 K, and 18.6% in 4.0-4.0 K. And for the 

improved model, 2.5%, 64.8% and 28.1% of the values are 

concentrated in the ranges of 1.5-2.0 K, 2.0-3.0 K and 3.0-4.0 K. 

The distribution of the RMSEs of the two models at night is 

more concentrated than during the day: the initial model has 

values of 16.5% and 80.2% in 1.0-2.0 K and 2.0-3.0 K, 

respectively, while the improved model has values of 58.5% 

and 50.0% in the range of 1.0-2.0 K and 2.0-2.5 K, respectively. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-1067-2017 | © Authors 2017. CC BY 4.0 License.

 
1070



 

 

 

Figure 5. Box charts showing the total RMSEs of model ATCO 

and ATCE. The end of each whisker indicates the highest or 

lowest value within 1.5 times the inter-quartile range (IQR) 

 

Therefore, the model ATCE reduces the overall RMSEs 

compared to ATCO in the process of fitting LST annual 

variations. The concentrated numerical distribution and the 

better improvement level of accuracy in the daytime than that in 

the night, demonstrate the inference that the new model has 

better performance. In addition, it can be seen from Figure 4 

and Figure 5 that the ATC model has a poorer ability on the 

simulation of LST annual variation during daytime, and the 

RMSEs are smaller at night. From the perspective of the ATC 

model, it may be affected by solar radiation. For the same place 

at the same time each day, the LST changes more strongly 

during the day. The time of daily LSTs observed by satellites is 

changing (not always at 13:30), so that the differences of LSTs 

are affected by the time changes in the range of two hour. 

Besides, the precipitation or other weather changes directly 

disturb the regular variations of LSTs, resulting in greater 

obstacles to LST simulation in the daytime (Zhan et al., 2014; 

Huang et al., 2016). From the DTC model, it can be seen that 

the LST variation follows the Newton's cooling law at night 

(Göttsche and Olesen, 2001; Göttsche and Olesen, 2009), then 

the temperature tends to be stable after the midnight, and the 

differences of the satellite observation time have a less influence 

on the ATC model. Therefore, the LST annual variation tends to 

be a sinusoidal function for the better performance. 

 

3.2 RMSEs of different Land cover types 

The Yangtze River Delta was divided into six different land 

cover types by using the NDVI data. Table 1 displays the 

average RMSEs of the pixels under the coverage of various 

types, that quantitatively analyse the similarities and differences 

of simulation capabilities between the pixels in various land 

cover types with the improved ATC model. 

Land cover 

types 

RMSE [K] 

ATCO-

day 
ATCO-

night 

ATCE-

day 

ATCE-

night 

Water 2.50 2.26 2.27 2.01 

Grassland 3.73 2.27 2.95 1.93 

Wetland 3.18 2.30 2.75 2.00 

Cropland 3.35 2.32 2.89 1.99 

Built-up 3.94 2.27 3.31 1.88 

Forest 3.86 2.34 2.87 1.93 

Table 1. RMSEs of model ATCE in different land cover types 

By analysing the RMSEs of various ground types based on the 

ATCO model during the day, it is concluded that the RMSEs of 

built-up, forest and grassland areas are larger than 3.5 K, while 

water area is the lowest with the RMSE of 2.50 K. Improved by 

the ATCE model, the RMSE of the forest decreased by about 

0.99 K, the grassland and built-up areas by over 0.5 K, while 

the accuracy in water region improved by 0.23 K is at the 

lowest level. Shown by the combination of Figure 4a and 4b, 

the simulation accuracies of the forests, grasslands and urban 

areas have been greatly improved. And water area still 

maintains the best accuracy level, though the accuracy has not 

improved significantly. Because of the larger specific heat 

capacity, the water is less affected by clouds, precipitation and 

other weather changes, and it gives rise to similar simulation 

results of the water temperature based on two models. For other 

types of pixels, such as grassland, crop land and built-up areas, 

there are faster responses reflected in LSTs to the weather 

changes, especially in built-up area where the temperature of 

impervious layer changes rapidly with the process of 

precipitation. Consequently, the temperatures of such kinds of 

surface displayed more complex fluctuations over a year, which 

increased the difficulties of fitting with regular mathematical 

models, resulting to relatively poorer simulation effect. At night, 

the RMSEs of all land cover types based on the ATCO model 

reflect the similar pattern with the values between 2.26 and 2.34 

K. and the accuracies based on the ATCE model are improved to 

2.0 K. 

 

As indicated in Table 1, the deviations of fitting effects based 

on model ATCE between the daytime and nighttime on the land 

types are different except for water area, while especially 

inbuilt-up, forest and grassland areas with the deviation over 1.0 

K. It implies that, the stability of the experimental data directly 

affects the effects of model. The greater stability of the data, the 

better results will be simulated. From the above, for all land 

covers, the ATCE model with the temperature data as an 

auxiliary factor effectively described the variation of LST 

fluctuations. 

 

3.3 Seasonal differences of two models 

The LST annual data in Yangtze River Delta in 2012 were 

estimated by the models ATCO and ATCE in this study. 

Regarded the “season” as the unit, LST data of every pixel were 

averaged in each season. Then, we calculated the differences 

between the seasonally mean LST values simulated by model 

ATCO and ATCE of each pixel, respectively. From the above 

method, the maps of spatial distribution of seasonally mean LST 

differences in four seasons (divided March, April, May into 

spring; June, July, August into summer; September, October, 

November into autumn; December, January and February into 

winter) based on two ATC models are presented in Figure 6. In 

these figures, if the differences are more than 0 K, it means that 

the LST values estimated by the ATCO model at the pixel are 

larger than the values generated by the ATCE model. 

 

It is provided in Figure 6a that in spring, the values range from -

0.3 to 1.0 K. Near the Taihu Lake and the crop lands in north of 

this study area, the values approximately equal 0 K, but the 

differences in forest and built-up areas are around 1.0 K, 

especially in Nanjing and Shanghai with the maximum value 

about 1.5 K. In summer, 98.8% of the values are greater than 0 

K except for some coastal cities, and the differences in the 

southern part of the study area covered by mountains are over 

3.0 K. The range of values for the whole study area is from -1.5 

to 0.5 K in autumn and 94.4% of the values are negative. It can 

particularly be observed in higher ground, such as Nanjing, 

Shanghai and the southwest of the Taihu Lake. With the similar 

spatial pattern to spring, the range of values in winter is 

between -1.5 K and 3.0 K. But the difference is the larger 
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values in southern study area, and the value in Shaoxing reaches 

the top of 3.0 K. It can be seen that there are large differences 

between the two models in estimating the mean LST values in 

summer and winter, with the absolute value over 3.0 K, while in 

spring and autumn are slighter within 1.5 K. Besides, the LSTs 

estimated by ATCO are larger than that by ATCE in spring and 

summer, while the differences are the opposite in autumn, and 

the values in winter change with the types of land covers. 

 

 

Figure 6. Map of LST differences in seasons between 

model ATCO and ATCE 

 

Figure 6b illustrates the differences between the nights. The 

values of the water and the forests in southeastern study area are 

less than 0 K in spring and the rest of the area reach 0.5 K. The 

differences in autumn are generally lower than 0 K, ranging 

from -1.0 K to 0 K. For summer and winter, the deviations are 

more than 0 K, and those of the southern mountain area in 

summer and the crop land in north of the Yangtze River in 

winter get the greater value over 1.5 K. It can also be found that 

the phenomenon similar to the daytime: the differences in 

summer and winter (over 2.0 K) are greater than that in spring 

and autumn (around 0.5 K). 

 

3.4 Discussion related to temporal upscaling 

The daily LST data in a year were estimated with ATCE model 

using the observed LST data, and established the LST annual 

variation curve. However, due to the different amount of LST 

data in different clear seasons, the spring and autumn seasons 

are more concentrated and the summer and winter seasons are 

more sparse, which leads to the uneven distribution of the 

model data, which affects the accuracy of simulating real LSTs. 

Here, we carried out experiments: the observed LST in 2012, 

the time series were divided to 1, 2, 4, 8, 16 and 32 days for the 

temporal synthesis (Huang et al., 2016). Then use the synthetic 

data to set up ATCE model, and calculate the RMSEs between 

the annual variation and observed data of surface temperature. 

 

Figure 7 is the RMSEs plot of the ATCE model for multi-time 

synthesis scales. It can be seen from the figure that the 

simulation error of the ATCE model in the daytime and 

nighttime show a decreasing trend with the increase of the time 

synthesis unit. At different time scales, the errors during the day 

are greater than the night, and the decreasing amplitude of 

RMSE during the day is also larger than the night. In the 

daytime, the RMSE of the model is 2.9 K when the time unit is 

1 day, and the precision is about 1.8 K when the time unit adds 

to 32 days. And the decrease of RMSE is about 1.0 K. At night, 

the RMSE was 1.9 K and 1.3 K at 1 and 32 days, respectively, 

with the difference of 0.6 K. 

 

Figure 7. RMSEs of ATCE model in multi-time synthesis scales 

 

It is shown that the precision of the ATCE model is improved by 

the data processing method of temporal upscaling, which 

neglects the data points where the LSTs changes rapidly within 

the temporal synthesis unit. However, the temporal upscaling 

method is suitable for the study of the monthly variation of 

surface temperature, while the LST data of “day” is still needed 

to study the annual variation trend of surface temperature. 

 

4. CONCLUSIONS 

This study devised ATCE model to reconstruct consistent, daily 

LSTs based on ATCO model by using MODIS products. It is 

effective in improving the accuracy of ATC model by 

considering the impact of air temperature on the LST variation 

combined with NDVI information. Compared to the model 

ATCO, the simulation accuracy of model ATCE improved by 

0.64 K and 0.36 K in daytime (13:30 at local time) and night 

time (1:30 at local time), respectively. Due to the larger change 

of LST-observed in the daytime and the stable change of the 
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night over a year, the ATC model has a better performance for 

fitting LST annual variation during the night. It was found that 

the improvements of accuracies varied with different land cover 

types: the forest, grassland and built-up areas improved larger 

than water area. In addition, the spatial heterogeneity was 

observed for performance of ATC model on different land 

covers: the RMSEs of built-up area, forest and grassland were 

larger than 3.5 K in the daytime, while the water attained the 

best performance with 2.50 K; at night, the accuracies of all 

land cover types significantly increased to similar level with 

RMSE around 2 K. Furthermore, by comparing the differences 

between LSTs simulated by two models in different seasons, it 

was found that the differences were smaller in the spring and 

autumn, while larger in the summer and winter.  

 

It was presented that, the data sets observed at different time 

scales have a significant effect on the accuracy of the ATCE. 

The less data gaps occur in the time series, the more uniform the 

data distribute, and the higher accuracy the model reaches. 

From the “day” to “month”, the simulation RMSEs of the ATCE 

model in the daytime and night time showed a decreasing trend 

with the increase of the temporal synthesis unit. Therefore, it is 

important to think about the effect of time scales before 

applying the ATC model. 

 

Although progress in understanding the ATC model has been 

made, there remain uncertainties that will become the focus of 

future research. The four parameters is the core of the ATC 

model, although the parameters are calculated by the least 

squares algorithm, there are still certain deviations (e.g., 

deviation caused by the uneven distribution of data with the 

process of solving parameters), and result in the large errors of 

the ATC model in some areas. Moreover, in order to expand the 

applications of the ATC model, the more extensive research in 

more land cover types, such as snow and desert areas, should be 

carried out. 
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