
LSIVIEWER 2.0 - A CLIENT-ORIENTED ONLINE VISUALIZATION TOOL FOR
GEOSPATIAL VECTOR DATA

K. Manikantaa,∗, K.S.Rajana

a Lab for Spatial Informatics, International Institute of Information Technology-Hyderabad,
Gachibowli 500032, Hyderabad, India (kondetimanikanta.purushotham@research, rajan@).iiit.ac.in

Commission V, WG V/4

KEY WORDS: Geospatial vector data, Online visualization, Client-based rendering, Web Technologies, WebGIS

ABSTRACT:

Geospatial data visualization systems have been predominantly through applications that are installed and run in a desktop environment.
Over the last decade, with the advent of web technologies and its adoption by Geospatial community, the server-client model for data
handling, data rendering and visualization respectively has been the most prevalent approach in Web-GIS. While the client devices
have become functionally more powerful over the recent years, the above model has largely ignored it and is still in a mode of server-
dominant computing paradigm. In this paper, an attempt has been made to develop and demonstrate LSIViewer - a simple, easy-to-use
and robust online geospatial data visualisation system for the user’s own data that harness the client’s capabilities for data rendering and
user-interactive styling, with a reduced load on the server. The developed system can support multiple geospatial vector formats and
can be integrated with other web-based systems like WMS, WFS, etc. The technology stack used to build this system is Node.js on the
server side and HTML5 Canvas and JavaScript on the client side. Various tests run on a range of vector datasets, upto 35MB, showed
that the time taken to render the vector data using LSIViewer is comparable to a desktop GIS application, QGIS, over an identical
system.

1. INTRODUCTION

With the transition in technologies from desktop to web, the
successful transition from Office suite to Google docs(Herrick,
2009), other domains joined the shift too. But for past two
decades GIS has been largely desktop centric and web GIS was
only used for one way transmission(Steiniger and Bocher, 2009),
whereas in other domains it moved to much more interactive
level. Earlier, most of the World Wide Web standards are text
and document based where we can only view documents on the
web browser. But eventually, these standards were extended to
allow operational interaction with the rise of eCommerce(Puder,
2004). So, this is the right time for GIS applications to make
the shift from desktop oriented models of application software
to web oriented approaches which can bring single-installation-
instance with single user to single instance handling multiple si-
multaneous users. In GIS, for 2D datasets the most common data
models are Vector and Raster(Winter and Frank, 2000). Each of
the data models have multiple number of file formats. The Vec-
tor models are largely being handled on desktop applications for
functionalities like creation, deletion, modification, analysis and
finite visualization(Dangermond, 1988), but most of the Desktop
GIS applications are tightly coupled to these formats which raise
the problem of interoperability. Hence, to solve this problem, a
few open source libraries like Geospatial Data Abstraction Li-
brary(GDAL/OGR), translator library for geospatial vector data
formats(Steiniger and Bocher, 2009) came into light. The other
drawback of using Desktop GIS is its un-usability on multiple
computing devices like smartphones, tablets, laptops and per-
sonal computers where the users use and switch between the de-
vices while the data and the GIS application resides primarily on
one of the these devices. A server based approach with multi-
ple clients accessing it remotely is one potential solution but, the

∗Corresponding author

current paradigm of WebGIS gives limited capabilities and func-
tionalities to the user to handle the Geospatial data.

Open GIS consortium(OGC) is an active participant in develop-
ing standards that can be adopted by software developers and
engineers to develop platform independent interfaces that geo-
enable the Web. These specifications empower developers to
make complex spatial information and services accessible and
useful with all kinds of applications(Wenjue et al., 2004). In
1999, OGC has developed web mapping specifications like Web
Map Service(WMS) and Web Feature Service(WFS). WMS is
a standard for visualizing Geospatial data over the internet in
which, a client requests the WMS server for a map, the server
queries its database and responds with necessary information in
a raster format(PNG, JPG, SVG). WFS is a service that allows
a client to request for retrieving Geospatial vector feature(Peng
and Zhang, 2004). WMS can primarily return only an image
which can not be edited or spatially analyzed and also the map
is pre-rendered by the server and the client is just a dumb display
terminal/browser. In the case of WFS, it allows for data manip-
ulation operations like create, delete and update the features but
this is also similar to the WMS where the rendering of image
happens on the server side. Thus both of the standards are server
centric(Lu, 2005), which makes the user to knock server for the
simplest of the operations demanding continuous server calls re-
quiring high bandwidth for data transfers. While some of the load
has been reduced by the Web Map Tile service(WMTS)(Porta et
al., 2013), it still limits the user interaction as far as rendering is
concerned.

But at the same time, while GIS applications are slow in adapt-
ing web technologies, web technologies have suddenly improved
which makes the client equally powerful rather than heavy pro-
cessing being at the server end. Recent evolution of web tech-
nologies from server centric models where the client needs to re-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-107-2017 | © Authors 2017. CC BY 4.0 License.

 
107



quest the server for any functional operations, to client oriented
models where the capabilities of client has improved greatly, re-
ducing the data transmissions from client to server over the in-
ternet and also being able to handle most of the functionalities
by itself, favoring the web applications to become more preva-
lent(Wood et al., 2014). The extension of HTML(Hypertext
Markup Language), HTML5 is the core markup language of
the World Wide Web(Anthes, 2012) which diminished the re-
quirement for plugin-in-based technologies such as Microsoft
Silverlight, Oracle-Sun JavaFX and Adobe Flash. It has intro-
duced a new element, Canvas which draws graphic contents us-
ing JavaScript. This element is useful to GIS in many ways,
like easy and fast visualization, seamless interaction with data
like scaling, panning the map and applying styling to the ob-
jects drawn(Boulos et al., 2010). An alternative to the Desktop
GIS application can be implemented with these web technologies
that could make it easier for sharing data online and collaborat-
ing with other GIS users. For example, in a company there are
ten different users to do the basic GIS analysis. If we intend to
use Desktop GIS application, we require ten different systems
with ten Desktop GIS application installed on each system and
requiring a license for each application. Now imagine a client
oriented rendering system, which is independent of platform and
hardware, and can still work with having one backend server for
conversion of file formats whereas the client efficiently handles
functions like zooming, panning, styling and labeling. Therefore,
a system with these functionalities could make efficient use of re-
sources and also be cost effective. So, there is a need for adapting
latest technologies and implementing open source client based
rendering GIS application. We develop and demonstrate such a
system with the following objectives.

• Building an installation free, platform-independent applica-
tion which is accessible openly to everyone on the web to
visualize the locally-stored1 vector data anytime they want
with a reliable internet connection.

• With the development of the latest web technologies, trans-
ferring the server-side functionalities to the client side.

• Data rendering speeds on the developed system to be com-
parable to the traditional Desktop GIS application.

In this paper, we present LSIViewer *2, a client-oriented frame-
work for rendering spatial vector data in native HTML5. As part
of the working prototype developed and presented here, the scope
of this application is limited to a basic set of rendering function-
alities. The analytical processing capabilities are currently out of
scope of this paper. In section 2, we illustrate the architecture of
LSIViewer and show a brief implementation of its components.
In section 3, we show the performance comparison of LSIViewer
with a typical Desktop GIS application and its performance on
multiple web browsers. Finally, in section 4, we conclude and
discuss the future applications.

2. ARCHITECTURE OF LSIVIEWER 2.0

LSIViewer is based on a client-server architecture as shown in
Figure 1, where the role of the server is to provide an instance of

1Locally-stored here implies data stored on your device either mobile,
laptop or computer

2*LSIViewer in this paper refers to LSIViewer 2.0
http://lsi.iiit.ac.in/lsiviewer/(accessed May 8, 2017)

the client application, act as an adapter and convert the input vec-
tor data into a client suitable format by encoding, compressing
the encoded data and sending it as a response to the client. The
client decompresses the encoded response and renders the map
on HTML5 canvas using JavaScript. Traditionally, most of the
client server architecture are server-centric where the server does
all the computations and the client is only used for displaying the
response. But here an effort is made to use the client as much
as the server, for rendering the vector data as well as for func-
tionalities like zoom, pan, label and apply color. The detailed
architecture is delineated in the below subsections.

Figure 1. Architecture of LSIViewer 2.0

2.1 Data Upload

The application allows the user to input necessary vector data
files through a HTML form and supports five Geospatial vec-
tor formats which are ESRI ShapeFile, Geography markup lan-
guage(GML), Keyhole markup language(KML), GPX and Geo-
JSON. ESRI Shapefile is the standard de facto format for vector
data(Kelso and Patterson, 2009) and is also the most commonly
used vector data format, although it is not accepted as an official
standard by OGC. GPX(GPS eXchange) is a standardized XML
format for GPS data(Morris et al., 2004) whereas GML, KML
and GeoJSON are popular vector formats that are used on the
web. While selecting the data for upload, the user has to take
care of the necessary file formats for successful visualization. In
case of ESRI Shapefile, the user has to upload files with Mul-
tipurpose Internet Mail Extensions(MIME) type .shp, .shx, and
.dbf. For GML, GPX and KML the user has to upload .gml, .gpx
and .kml files respectively. When the filled form is submitted, the
data is sent to the server using the multipart/form-data algorithm.

2.2 Data Ingestion and Validation

Here, the server side implementation of endpoint handlers re-
quired to validate the user-uploaded vector files are emphasized.
When the server receives the data, it extracts the contents from
the client’s request, processes it and returns the vector data in a
client-suitable format as a response. The server-side application
is built on Node.js framework.

Node.js(also termed as Node) is a platform built on Google
Chrome V8 JavaScript runtime engine that is event-oriented,
non-blocking I/O model framework for coding JavaScript on the
server(Jun and Doh, 2013). The main purpose for using Node
is to make the application fast, scalable, and lightweight(Nair
et al., 2016). Node is implemented in C and C++ focussing
on low memory consumption, high performance and allows
using JavaScript end to end, both on the server and on the
client(Chaniotis et al., 2014). This important aspect helps the sys-
tem to run the application efficiently without the need of parsers.
This has modules that help to process the data passed from the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-107-2017 | © Authors 2017. CC BY 4.0 License.

 
108

LSViewer 2.0


client. These modules are in the form of plugins, add-ons, and ex-
tensions to facilitate the development process of the application.
They are broadly divided into the following categories, which are
core modules, third-party modules, and local modules.

For this application, we use Express, a Node.js web framework,
which provides methods to develop web applications. This ap-
plication has a POST handler to receive the vector files that are
uploaded from the client. Request handling methods in Express
application use a callback function whose parameters are request
and response objects. This request object contains information
passed from the client such as headers, type of encoding and input
vector files. Then these vector files are passed to a local module
which does the validation of vector data files uploaded from the
client. Validation includes determining the type of vector format,
file name, and a MIME type, an identifier for file format. The
local module returns these parameters after successful execution,
from which we know the format of the input files uploaded and
its contents.

2.3 Data Conversion

Data interchange format has compelling consequences on data
transmission rates and client-side rendering performance. Here
we explain the tool used for conversion of the client-uploaded
vector files and reasons for choosing GeoJSON as a data in-
terchangeable format between the client and the server. Data
conversion is done using a simple, efficient, and popular open
source tool, GDAL/OGR, a translator library for raster and vec-
tor geospatial data formats. It is an open source, cross platform
tool that supports read/write operations for more than 52 vector
formats(Bunting et al., 2014). LSIViewer uses a third-party mod-
ule, ogr2ogr3, in Node.js. The module converts vector data into
GeoJSON format using the GeoJSON OGR driver.

GeoJSON is a JavaScript Object Oriented Notation(JSON) which
is simple, human-readable, lightweight format used on the web
for transferring geographical information. Each feature in Geo-
JSON has two parts: geometric and attribute data. Geometric
features include point, line, polygon, multi-Point, multi-Line,
and multi-Polygon. The other popular data interchange format is
GML, a XML-like format introduced by OGC which provides en-
coding for points, polylines, polygons and other complex spatial
data structures. GeoJSON is better at encoding point data while
GML is good at encoding polyline and polygon data(Li et al.,
2015). Although GML has advantage over GeoJSON in polygon
and polyline encoding, we had to choose GeoJSON deliberately
for the reasons described in Table 1.

GeoJSON GML
De-serialization of GeoJ-
SON is very fast

De-serialization of GML is
slow

It has simple APIs in
Javascript

An external parser is
needed to parse the GML
data

Key-value pair representa-
tion in GeoJSON makes
it look simple and human
readable

GML is very lengthy due to
tags and namespaces

Table 1. Advantages of GeoJSON over GML in a JavaScript
environment

3ogr2ogr npm module https://www.npmjs.com/package/ogr2ogr/(accessed
May 8, 2017)

Data transmission rate depends on the response size. To reduce
the size of encoded GeoJSON and make it smaller than its origi-
nal size without loss of information, a DEFLATE algorithm com-
pression method is used. It achieves faster compression speed
with relatively lower compression ratio compared to LZMA(Li et
al., 2015). This observation is shown in performance comparison
section. After sending the compressed GeoJSON, the client de-
compresses it, parses it and render on the browser using HTML5
canvas.

2.4 Data Visualization

When the client receives a compressed GeoJSON response from
the server it should then be visualized on the client. To visual-
ize data on the client, we have two types of viewers, a Simple
Data Viewer(SDV) and WMS viewer (WMSV). Figure 2, shows
a 5MB shapefile consisting of data of the roads in South Africa,
visualized on SDV and WMSV.

Figure 2. Roads of South Africa on a Simple data viewer(SDV)
and WMS viewer (WMSV)

2.4.1 Simple Data Viewer(SDV) The client decompresses
the GeoJSON response and sends decompressed data to the
JavaScript modules. Web 2.0 has introduced HTML5, a new stan-
dard to create interactive, high quality web pages on a PC, tablet
and a smartphone(Juntunen et al., 2013). Canvas element, which
is introduced in HTML5, is crucial for heavy graphics based ap-
plications. Its vector rendering performance is more suitable to
GIS applications(Park et al., 2011). It provides Application pro-
gramming interface(API) which has methods to draw line, arc,
circle, text, rectangles and render images. Using these canvas
API methods we can render the GIS vector data smoothly on the
browser.

The functional modules implemented in the JavaScript which are
required to render the map on the canvas are listed below. While
GetMapExtent and GetFeatureCoordinates define the canvas size
and the feature mapping, the DrawMap and Symbology functions
help render the data onto the canvas. Detailed description of the
functions implemented are listed below.

(A) GetMapExtent() =⇒ return (xMin, xMax, yMin, yMax)
We need extent of the GeoJSON features to draw the map
on the canvas, which can be computed with GetMapEx-
tent() method. It returns (xMin,yMin) the coordinates for the
leftmost corner, (xMax,yMax), the coordinates for the right
most corner. So, xMax, xMin here are the maximum and
minimum longitude coordinates respectively. yMax, yMin
are the maximum and minimum latitude coordinates respec-
tively

(B) GetFeatureCoordinates() =⇒ return (coordinates : [X′, Y′])
This method scales the map with respect to the canvas size.
This is done by computing new coordinates X′ and Y′. We
can scale the size of map by scaling each co-ordinate by
multiplying it with a scaling factor. If the original 2D coor-
dinates are (X, Y), for the scaling factor (xScale, yScale), (X′,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-107-2017 | © Authors 2017. CC BY 4.0 License.

 
109



Y′) are obtained as the new scaled co-ordinates. This can be
mathematically represented as below:

xScale = canvas.width÷ (xMax− xMin). (1)

yScale = canvas.height÷ (yMax− yMin). (2)

Scale = xScale < yScale?xScale : yScale. (3)

From (1), (2), (3),

X′ = (X − xMIN) ∗ Scale. (4)

Y ′ = (Y − yMIN) ∗ Scale. (5)

(C) DrawMap()
After the coordinates scaling, we use canvas built-in meth-
ods lineTo(), moveTo(), fillRect() to render the features on
the canvas.

(D) Symbology
Symbology in GIS greatly affects how map can be inter-
preted. SDV allows the user to perform GIS abilities zoom,
pan, color, label and export the map. Table 2 contains the
list of functionalities and canvas API methods used to im-
plement them.

Client side functionalities Canvas API methods
Zoom in, Zoom out scale()
Pan translate()
Color fill(), stroke()
Pen width Uses linewidth property
Labelling fillText()

Table 2. Shows the list of functionalities available on the toolbar
and their respective implementation methods

2.5 WMS Viewer

In SDV, the user can not validate the vector data by comparing
with the actual satellite imagery. So, we integrated WMS which
helps us to visualize the GeoJSON data by overlaying it on a base
map like Google Map or Openstreetmap(OSM). WMS layer pro-
vides a set of geo-referenced raster images which renders on the
browser viewing area. WMS layer is loaded using Openlayers,
an open source JavaScript library that supports OGC standards.
It is implemented using AJAX and JavaScript programming lan-
guage(Han et al., 2009). After a WMS layer is loaded, canvas
adds the GeoJSON data as a layer on top of it.

3. PERFORMANCE COMPARISON

LSIViewer’s performance can be primarily evaluated on the
grounds of its rendering speeds in comparison to the Desktop
GIS application viz., QGIS. The datasets used in this comparison
study are ESRI Shapefiles downloaded from the United States

Name of the
Shapefiles
downloaded

Layer
Selected

File
Size

Vertices Features

Rhode island Secondary
schools

7KB 445 1

Kentucky Secondary
schools

23KB 1385 5

Connecticut Secondary
schools

104KB 6319 8

Arizona Secondary
schools

274KB 17093 15

Massachusetts Secondary
schools

395KB 24192 31

Rhode Island County
subdivision

630KB 37325 40

Virgin islands
of the U.S

Estate 897KB 50276 336

Michigan S L D U 1MB 62574 39
Rhode Island Roads 1.5MB 82843 1299
Hawaii Roads 2.5MB 150813 1057
South Africa Roads 5MB 55858 5559
Mexico Roads 8MB 103918 10425
India Roads 15MB 210329 19148
Australia Roads 23MB 316655 27651
USA Roads 35MB 431026 46995

Table 3. ESRI Shapefile datasets used for observations

Census4 and DivaGIS5 websites. Each dataset varies in size, be-
tween 5KB and 35MB covering the geometries including points,
lines and polygons. To achieve this performance we used data
compression algorithms like DEFLATE and LZMA on the server
side. The data sizes are compared for uncompressed data and
compressed data with both the algorithms to delineate the degree
to which the data transmission rate has been reduced. We also
analyze the time taken for data processing and rendering in each
of the algorithms and show why we choose one over the other.
Finally for the efficient use of LSIViewer, we compare render-
ing speeds on different web browsers for datasets of varying size.
Table 3 contains information related to the datasets used for anal-
yses and Table 4 contains the system configuration of the client
and the server instances used for comparison study.

3.1 Compression Method for Efficient Transmission of Data

While choosing a compression method, there are various fac-
tors involved like the compression ratio(CR) and the compres-
sion time(CT). For our study, we chose DEFLATE and LZMA
algorithms due to browser support and their popularity. Figure
3 Compares the difference in size of data transferred back to the
client side using GeoJSON encoding by using compression tech-
niques(DEFLATE and LZMA). The x-axis shows the file size of
datasets in increasing order. Figure 4 indicates that the overall
time taken for a response to reach the client when used DEFLATE
compression method is faster than LZMA for all the datasets.

For example, in Figure 3 a 35MB dataset is reduced to 6.4 MB
and 7.2 MB with LZMA and DEFLATE respectively. And from
Figure 4 for the same file, the time taken to reach the client for
LZMA compressed data is 18 seconds while DEFLATE takes
6 seconds. This result clearly indicates that, though the size of

4US Census https://www.census.gov/cgi-
bin/geo/shapefiles/index.php/(accessed May 8, 2017)

5DIVA GIS http://www.diva-gis.org/gdata/(accessed May 8, 2017)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-107-2017 | © Authors 2017. CC BY 4.0 License.

 
110



Instance type Specifications
Server where Node.js is
running

Intel(R) Core Duo CPU
E8500 @3.16 GHz
OS: Ubuntu/Linux
SMP-Kernel 3.2.0-64-
generic
8 GB DRAM

Client system to test
application on Firefox,
Chrome, Opera and Sa-
fari

Intel Core i5 @1.4 GHz
OS : MAC OS X El
Capitan
RAM : 4 GB DDR3

Client system used for
testing on IE

Intel Core i5 @1.80
GHz * 4
OS : Windows 10
RAM : 4 GB DDR3

Table 4. System specifications of the instances used for testing

Figure 3. Data size comparison : LZMA v/s DEFLATE v/s
Uncompressed GeoJSON

Figure 4. Data processing and transmission time comparison :
LZMA v/s DEFLATE v/s Uncompressed GeoJSON

LZMA is lesser than DEFLATE, the time taken to compress the
data on the server is more in LZMA method, which complements
the conclusions derived by (Li et al., 2015). Based on these ob-
servations that the data processing time is equally crucial to the
data compression ratios achieved, the application implements the
DEFLATE method instead of LZMA.

Figure 5. Rendering time comparison between LSIViewer and
QGIS

3.2 Is Online Rendering Comparable to Desktop Rendering
speeds?

One of the challenges to a data-heavy application like GIS to shift
to an Online platform is the response time for rendering these
datasets. So, in this study, we compare the time taken to render
above datasets in both LSIViewer 2.0 and QGIS, a popular open
source Desktop GIS application. As can be seen from Figure 5,
across all datasets the performance of the desktop GIS is only
marginally better than the online toolkit irrespective of the data-
size, for example even a 35 MB shapefile, containing 46995 fea-
tures with 431026 vertices, can be rendered in time that is very
close (8∼ 10% slower) to QGIS rendering time, which is less
than a second. This implies that the suite of online technologies
that have been implemented as part of LSIViewer 2.0 do show
comparable data handling efficiencies.

3.3 HTML5, Browser type and Rendering performance of
LSIViewer 2.0

Figure 6. Comparison of rendering time over five popular
browsers

The suite of technologies used in LSIViewer 2.0 are compatible
with the current web technology standards that supports HTML5.
Hence, the application should be agnostic to the user’s browser
of choice and follow the current development model of not us-
ing any additional plugins or software to be installed on the client
side. In this subsection, we report the performance of the applica-
tion across five popular browsers, in alphabetical order, - Chrome,
Firefox, Internet Explorer (IE), Opera and Safari. From Figure 6,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-107-2017 | © Authors 2017. CC BY 4.0 License.

 
111



Figure 7. LSIViewer application in a browser on a iPad
Mini device

Figure 8. LSIViewer application in a browser on
Nexus4(Android) device

it can be observed that the rendering of the ESRI Shapefiles over
these five popular browsers happens in less than one second.

3.4 Rendering on multiple devices

As the number of smartphones and tablets increasing day by
day(Khan and Shah, 2016), it is important to test the application
on multiple devices. Figure 7 and Figure 8 shows LSIViewer
running on a mobile web browser on both smartphone and a
tablet. The application can be opened on any web browser on
any device, as shown in the previous section. Hence, we can say
that LSIViewer is compatible on multiple devices across different
platforms.

4. CONCLUSION AND FUTURE WORK

In current architecture and deployed version of LSIViewer 2.0,
it is successfully demonstrated that the server dominant pro-

cesses which include rendering and other GIS operations, can
be migrated to client side with similar performance characteris-
tics as the desktop based versions of GIS tools. This does show
that geospatial data handling and rendering can no longer be a
platform-specific, operating-system-specific application and can
use/share and work with the geospatial data across multiple de-
vices with different operating systems, as long as they do have
a browser and connectivity to access a central or enterprise level
server where LSIViewer is deployed. The recent developments
in web technology standards, primarily HTML5, have brought
to the fore some of the capabilities that a core geospatial toolkit
looks for and by integrating these with the geospatial data models
has enabled the development of an online geospatial rendering
application, LSIViewer. As the client level processing is being
done in a JavaScript environment, it was found that GeoJSON,
as the data model, is more appropriate than the use of GML,
the current standard for WebGIS. Although LSIViewer 2.0 fol-
lows a client-server architecture, using the DEFLATE algorithm
for compression of the GeoJSON data being transferred between
client and server, the processing and transmission time is largely
improved to an extent of 75%.

The experiments with multiple data size files containing varied
spatial features, has shown that the rendering speeds achieved
on LSIViewer 2.0 are very similar to a desktop GIS application,
which can be considered as a great precursor to the rise of web-
based GIS applications. For instance, in a client-server model, a
single server with 100 clients where rendering is happening on
client’s side is far more scaleable than 100 requests with its as-
sociated overheads, all being processed by a single server. All
the web browsers that supports HTML5 give this capability to
the client making this application a platform-independent and
installation-free toolkit. LSIViewer 2.0 requires continuous de-
velopment of its features and performance improvement tech-
niques on both the server side and the client side. While the cur-
rent implementation takes care of the basic functionalities, there
can be an option for other operations like support for multiple
vector formats, adding projection support, overlaying multiple
layers of vector data and could be extended to support visual-
ization of CityGML data. Since the application is a web-based
one, we can always integrate GIS specifications like WFS, WCS.
Also, this design can be a starting point to build an enterprise
level collaborative platform for developers and users to share and
process/work on their data.

REFERENCES

Anthes, G., 2012. HTML5 leads a web revolution. Communica-
tions of the ACM 55(7), pp. 16.

Boulos, M., Warren, J., Gong, J. and Yue, P., 2010. Web GIS
in practice VIII: HTML5 and the canvas element for interactive
online mapping. International Journal of Health Geographics
9(1), pp. 14.

Bunting, P., Clewley, D., Lucas, R. M. and Gillingham, S., 2014.
The remote sensing and GIS software library (RSGISLib). Com-
puters & Geosciences 62, pp. 216–226.

Chaniotis, I. K., Kyriakou, K.-I. D. and Tselikas, N. D., 2014.
Is node.js a viable option for building modern web applications?
a performance evaluation study. Computing 97(10), pp. 1023–
1044.

Dangermond, J., 1988. Trends in GIS and comments. Computers,
Environment and Urban Systems 12(3), pp. 137–159.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-107-2017 | © Authors 2017. CC BY 4.0 License.

 
112



Han, W., Di, L., Zhao, P. and Li, X., 2009. Using ajax for
desktop-like geospatial web application development. In: 2009
17th International Conference on Geoinformatics, Institute of
Electrical and Electronics Engineers (IEEE).

Herrick, D. R., 2009. Google this! In: Proceedings of the
ACM SIGUCCS fall conference on User services conference -
SIGUCCS’09, Association for Computing Machinery (ACM).

Jun, S. H. and Doh, K. T., 2013. Design and implementation of
web GIS server using node.js. Journal of Korea Spatial Informa-
tion Society 21(3), pp. 45–53.

Juntunen, A., Jalonen, E. and Luukkainen, S., 2013. HTML 5 in
mobile devices – drivers and restraints. In: 2013 46th Hawaii In-
ternational Conference on System Sciences, Institute of Electrical
and Electronics Engineers (IEEE).

Kelso, N. V. and Patterson, T., 2009. Natural earth vector. Carto-
graphic Perspectives 64, pp. 45–50.

Khan, M. H. and Shah, M. A., 2016. Survey on security threats
of smartphones in internet of things. In: 2016 22nd International
Conference on Automation and Computing (ICAC), Institute of
Electrical and Electronics Engineers (IEEE).

Li, W., Song, M., Zhou, B., Cao, K. and Gao, S., 2015. Per-
formance improvement techniques for geospatial web services in
a cyberinfrastructure environment – a case study with a disaster
management portal. Computers, Environment and Urban Systems
54, pp. 314–325.

Lu, X., 2005. An investigation on service-oriented architecture
for constructing distributed web GIS application. In: 2005 IEEE
International Conference on Services Computing (SCC’05) Vol-
1, Institute of Electrical and Electronics Engineers (IEEE).

Morris, S., Morris, A. and Barnard, K., 2004. Digital trail li-
braries. In: Proceedings of the 2004 joint ACM/IEEE conference
on Digital libraries - JCDL’04, Association for Computing Ma-
chinery (ACM).

Nair, L. R., Saleem, S. and Shetty, S. D., 2016. Scal-
able interactive geo visualization platform for GIS data anal-
ysis. In: 2016 IEEE 14th Intl Conf on Dependable, Au-
tonomic and Secure Computing, 14th Intl Conf on Pervasive
Intelligence and Computing, 2nd Intl Conf on Big Data In-
telligence and Computing and Cyber Science and Technol-
ogy Congress(DASC/PiCom/DataCom/CyberSciTech), Institute
of Electrical and Electronics Engineers (IEEE).

Park, M.-R., Park, K.-H. and Ahn, J.-S., 2011. Design and im-
plementation of a computing environment for geovisual analytics
using HTML5 canvas. Journal of the Korean Association of Ge-
ographic Information Studies 14(4), pp. 44–53.

Peng, Z.-R. and Zhang, C., 2004. The roles of geography markup
language (GML), scalable vector graphics (SVG), and web fea-
ture service (WFS) specifications in the development of internet
geographic information systems (GIS). Journal of Geographical
Systems.

Porta, J., Parapar, J., Garcı́a, P., Fernández, G., Touriño, J.,
Doallo, R., Ónega, F., Santé, I., Dı́az, P., Miranda, D. and Cre-
cente, R., 2013. Web-GIS tool for the management of rural land
markets. Earth Science Informatics 6(4), pp. 209–226.

Puder, A., 2004. Extending desktop applications to the web.
ISICT ’04 Proceedings of the 2004 international symposium on
Information and communication technologies pp. 8–13.

Steiniger, S. and Bocher, E., 2009. An overview on current free
and open source desktop GIS developments. International Jour-
nal of Geographical Information Science 23(10), pp. 1345–1370.

Wenjue, J., Yumin, C. and Jianya, G., 2004. Implementation of
OGC web map service based on web service. Geo-spatial Infor-
mation Science 7(2), pp. 148–152.

Winter, S. and Frank, A. U., 2000. Topology in raster and vector
representation. GeoInformatica 4(1), pp. 35–65.

Wood, D., King, M., Landis, D., Courtney, W., Wang, R., Kelly,
R., Turner, J. A. and Calhoun, V. D., 2014. Harnessing modern
web application technology to create intuitive and efficient data
visualization and sharing tools. Frontiers in Neuroinformatics.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-107-2017 | © Authors 2017. CC BY 4.0 License.

 
113


	Introduction
	Architecture of LSIViewer 2.0
	Data Upload
	Data Ingestion and Validation
	Data Conversion
	Data Visualization
	Simple Data Viewer(SDV)

	WMS Viewer

	Performance Comparison
	Compression Method for Efficient Transmission of Data
	Is Online Rendering Comparable to Desktop Rendering speeds?
	HTML5, Browser type and Rendering performance of LSIViewer 2.0
	Rendering on multiple devices

	Conclusion and Future work



