The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLII-2/W7
https://doi.org/10.5194/isprs-archives-XLII-2-W7-1083-2017
https://doi.org/10.5194/isprs-archives-XLII-2-W7-1083-2017
14 Sep 2017
 | 14 Sep 2017

MONITORING URBAN LAND COVER/LAND USE CHANGE IN ALGIERS CITY USING LANDSAT IMAGES (1987–2016)

B. Bouchachi and Y. Zhong

Keywords: Landsat Time Series, Monitoring, Urbanization, Support Vector Machine, Land Cover Change, Remote Sensing

Abstract. Monitoring the Urban Land Cover/Land Use change detection is important as one of the main driving forces of environmental change because Urbanization is the biggest changes in form of Land, resulting in a decrease in cultivated areas. Using remote sensing ability to solve land resources problems. The purpose of this research is to map the urban areas at different times to monitor and predict possible urban changes, were studied the annual growth urban land during the last 29 years in Algiers City. Improving the productiveness of long-term training in land mapping, were have developed an approach by the following steps: 1) pre-processing for improvement of image characteristics; 2) extract training sample candidates based on the developed methods; and 3) Derive maps and analyzed of Algiers City on an annual basis from 1987 to 2016 using a Supervised Classifier Support Vector Machine (SVMs). Our result shows that the strategy of urban land followed in the region of Algiers City, developed areas mostly were extended to East, West, and South of Central Regions. The urban growth rate is linked with National Office of Statistics data. Future studies are required to understand the impact of urban rapid lands on social, economy and environmental sustainability, it will also close the gap in data of urbanism available, especially on the lack of reliable data, environmental and urban planning for each municipality in Algiers, develop experimental models to predict future land changes with statistically significant confidence.