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ABSTRACT:

In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous
Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method,
but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing
algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre
Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the
adjustment. We adopt the proposed method to the practical case study of Chiang Mai University’s allocated land for a mixed-use
complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557%.
Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.

1. INTRODUCTION

Land-use optimization problem (LUOP) is one of the most impor-
tant problems in computational landscape design. In this prob-
lem, we want to divide a land into several parts. Each part must
have a specific area, and two adjacent parts must have a strong
compatibility. There are many methods proposed to solve the
problem. Most of them are based on combinatorial optimiza-
tion techniques such as simulated annealing (Santé-Riveira et al.,
2008), tabu search (Qi et al., 2008), genetic algorithms (Karakostas
and Economou, 2014), and a hybrid of those methods (Moham-
madi et al., 2016).

Those combinatorial optimization algorithms can output a very
satisfiable output for the problem in less than 100 hours. When
the problem inputs, which include many design issues, are de-
cided beforehand, this computation time is acceptable. However,
in many cases, the design process needs to be interactive (Michalek
and Papalambros, 2002). Landscape architects usually cannot de-
sign the inputs beforehand. They have a rough idea and use that
rough idea as an input of an optimization process. After that,
they will iteratively improve their inputs based on the outputs
they have got from the process. To have a successful interac-
tive design, our optimization process cannot be longer than a few
seconds. We have to consider a method that is much faster than
those combinatorial optimization techniques.

For this propose, we can use techniques based on computational
geometry techniques such as Voronoi diagram (Karimi et al., 2009),
multiplicatively weighted Voronoi diagram (Karimi et al., 2009,
Dong, 2008), adaptive multiplicatively weighted Voronoi diagram
∗Corresponding author

(Reitsma et al., 2007), and LaguerreVoronoi diagram (Song et al.,
2015). In this paper, we choose to develop our methods based on
the Laguerre-Voronoi diagram because of two reasons. First, the
boundaries of each cell in the diagram are straight lines (Imai
et al., 1985), which are more desirable in practice than curves
obtained from the multiplicatively weighted Voronoi diagrams.
Second, we can adjust the weight of cells based on their area re-
quirements. We can give a larger weight to a cell that requires a
larger area, and give a small weight to the others.

1.1 Our Contribution

All Voronoi diagram-based approaches assume that generating
points, which denote centers of all cells, are given as inputs. In-
deed, those point positions are not given in many cases. Placing
the points in inappropriate positions results in a partition of which
cells do not have an expected area or pair of adjacent cells are not
compatible with each other.

In this paper, we propose a method to place the generating points
to the best positions as possible.

Our inputs include a network of cells, where two cells are adja-
cent in the network if they are compatible with each other. Then,
we use a force-directed graph drawing algorithm (Bannister et
al., 2012) to place the cell in a plane. By the algorithm, a pair of
cells that is not compatible with each other is pushed to be apart
from each other, and a pair of compatible cells is placed at a close
position.

Based on the generating point positions obtained from the graph
drawing algorithm, we construct a Laguerre Voronoi diagram in
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a way that the area of each cell is not so different from the de-
sired area, and the cells are adjacent as desired. We formulate
the optimization problem to search the Laguerre Voronoi diagram
satisfying the properties which is the multiobjective optimization
problem.

We adopt our proposed method to the practical case study of Chi-
ang Mai University’s allocated land. The land is called as CMU
square, and its area is 140,800 sq.m. (Prachachat Online, 2015).
In 2015, the university plan to develop the land into a mixed-use
complex, which contains areas of arts, culture, nature, and com-
munity. Although the land allocation has been finalized, we think
that the compatibility between adjacent areas can be improved.

We use the center of each cell in the finalized land allocation as
our baseline generating point positions. Compared to the base-
line, we decrease the land allocation error, which indicates how
much the areas of each cell are different from the desired areas, by
62.557%. In addition to that, the compatibility value is increased
by 28.010%.

Our computation time is 839.78 s in Matlab. Because computa-
tion times in Matlab is usually more than a hundred times larger
than those in C or C++ (Andrews, 2012), we strongly believe that
our computation time will reduce to a few seconds when our soft-
ware is implemented in those languages. Hence, the algorithm is
fast enough for the interactive design.

1.2 Paper Organization

This paper is organized as follows: In Section 2, we will explain
the techniques which we use in this work, Laguerre Voronoi di-
agram and force-directed graph drawing. Then, in Section 3, we
will formally state our problem definition. In Section 4, we will
give our methods, and, in Section 5, we will show the experi-
mental results of our case study. We then conclude the paper in
Section 6.

2. PRELIMINARIES

2.1 Laguerre Voronoi Diagram

The concepts of Voronoi diagram have been widely studied in
many areas as complied in (Okabe et al., 2009). There are many
generalizations of Voronoi diagram. One of the generalizations
is to put weights to the generators of the Voronoi diagram such
as additively and multiplicatively weighted Voronoi diagram. In
this study, we mainly focus on the use of Laguerre Voronoi di-
agram, the special case of the additively weighted Voronoi dia-
gram, which was introduced by (Imai et al., 1985, Aurenhammer,
1987). Let S = {c1, ..., cn} be a set of generating circles in
R2 such that ci = (pi, ri), where pi = (xi, yi) is the position of
generator and ri is it weight, which is interpreted as a circle in the
plane. The Laguerre distance (or recognized as power distance)
is defined by the distance

dL(p, ci) = ‖pi − p‖2 − r2i . (1)

For each adjacent circles ci and cj , Laguerre bisector is defined
by

BL(ci, cj) = {p : dL(p, ci) = dL(p, cj)} (2)

which is a straight line in R2. The half space of pi dominated by
the generator pj is

H(pi, pj) = {p ∈ R2 : dL(p, ci) ≤ dL(p, cj)},

and finally the Laguerre Voronoi region is defined by L(pi) =
∩j∈In\{i}H(pi, pj). Therefore, the Laguerre Voronoi diagram
can be constructed from the set of regionL = {L(p1), ..., L(pn)}
including their boundaries. The properties were widely studied as
shown in (Okabe et al., 2009), and the robust algorithm was pre-
sented in (Sugihara, 2000).

In the case of Laguerre Voronoi diagram, remark that cells of the
corresponding generators may be lost, or generating points may
not be contained in the Voronoi cell as mentioned in (Reitsma
et al., 2007). However, (Cheng et al., 2000) gave the necessary
condition for keeping the generator positions lay inside the cell
by the following theorem.

Theorem 1. (Cheng et al., 2000) For a set S of points, letw(p) ≥
0 be the weight of point p ∈ S. If, for all q,

d(p, q) ≥ 2 · w(p),

then no cell of the Laguerre Voronoi diagram is lost, and each
point of S lays inside its cell.

Remark that the Laguerre Voronoi diagram has its dual structure
called the Laguerre triangulation, which can be considered as a
planar graph. If a cell L(pi) is adjacent to cell L(pj), there exists
an edge {pi, pj} in the graph whose the vertex set is {p1, ..., pn}.

2.2 Force-Directed Graph Drawing

Graph drawing is a technique to visualize a given network (V =
{v1, . . . , vn}, E) on a 2-dimensional plane by a map function
f : V → R2. To find the best visualization for each network, one
can define energy for all map functions, and search for a function
that minimizes the defined energy. To have generating point posi-
tions that satisfies Theorem 1, in this paper, we choose the energy
function defined in (Kamps et al., 1995).

The energy of each function is defined based on two types of
energy. Given a parameter α, we wants the Euclidean distance
between vi and vj to be α · d(vi, vj) when d(vi, vj) is a shortest
path length between vi and vj in (V,E). The energy between vi
and vj , which is defined by the expected Euclidean distance, can
be defined as follows:

ρi,j(f) :=

(
1− D(f(vi), f(vj))

α · d(vi, vj)

)2

, (3)

where D(f(vi), f(vj)) is a Euclidean distance between f(vi)
and f(vj). The energy ρi,j(f) is minimized when the distance
D(f(vi), f(vj)) is equal to the expected distance α · d(vi, vj),
and the energy becomes large when the difference between two
distances becomes large.

The first type of energy for mapping function f , defined as ρ(f),
can be defined as follows:

ρ(f) =

n∑
i=1

n∑
j=1

ρi,j(f)

d(vi, vj)2
(4)

The second type of energy comes from the fact that we draw
each node vi as a rectangle on the plane, and we want to have
an overlap area between two rectangles to be as small as possi-
ble. We assume that the size of a rectangle for vi is given as
si, and Rec(f(vi), si) be a rectangle centered at f(vi) with size
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si. Given a parameter ω, the energy between vi and vj , which is
defined by the overlap area, can be defined as follows:

γi,j(f) = ω · |Rec(f(vi), si) ∩Rec(f(vj), sj)| (5)

The second type of energy, γ(f), is defined as follows:

γ(f) =

n∑
i=1

n∑
j=1

γi,j(f) (6)

We are now ready to define the energy function, denoted byE(f),
in the following equation:

E(f) = ρ(f) + γ(f) (7)

In most graph drawing settings, there are some points with given
fixed positions. Let V ′ ⊆ V be the set, and f : V ′ → R2

be a function that give those fixed positions. The set of possible
function, denoted by F , is

F = {f : V → R2 : f(v) = f ′(v) for all v ∈ V ′}.

Because the function E is differentiable at most points, to find
f ∈ F such that E(f) is minimized, it is shown in the paper that
the gradient descent method can be used.

2.3 Nelder-Mead Method for Optimization

The Nelder-Mead method is a technique for solving the optimiza-
tion problem proposed by Nelder and Mead (Nelder and Mead,
1965), which is known as a derivative-free optimization method.
In brief, for a function f : Rd → R which is supposed to find
the minimum of f(X) where X ∈ Rd, a simplex consisting of
d+ 1 vertices of dimension d is chosen. In the optimization pro-
cesses, the simplex is expected to move and converge to the local
minimum.

From a set of simplex vertices {x1, ..., xd+1}, the set {f(xi)}d+1
i=1

is ordered and relabelled with respect to the sequence f(x1) ≤
... ≤ f(xd+1). After ordering and relabelling, x1 is said to be
the best vertex and xd+1 the worst vertex. From the worst vertex,
we try to replace the worst vertex with a new vertex which is ac-
quired from the reflection, expansion, or contraction through the
direction of the centroid among the remaining points, or shrink-
age all vertices (except for the best vertex) to the direction of the
best vertex. The parameters for reflection, expansion, contrac-
tion, and shrinkage are written as {α, β, γ, δ}, and normally set
as {α, β, γ, δ} = {1, 2, 1/2, 1/2}.

It is remarkable that the Nelder-Mead method is easy to imple-
ment. The convergent properties of the Nelder-Mead in low di-
mension was proved in (Lagarias et al., 1998).

3. PROBLEM DEFINITION

In this section, we will give a formal definition for our LUOP.
We assume that a designer gives us a landscape object of region
(V,E). Each vi ∈ V denotes an object, and, for any v1, v2 ∈ V ,
{v1, v2} ∈ E if v1 and v2 are compatible with each other. For
each vi, the designer also gives us an expected area of the region
vi, denoted by A∗i , and a land before an allocation R.

Our input defined in the previous paragraph are a particular case
of the input of the LUOP in (Mohammadi et al., 2016). In that pa-
per, instead of defining if there is a compatibility between two ar-
eas, they give a compatibility value between all pairs of areas. Al-
though their input provides more flexibilities to designers, putting
values for all pairs of areas is a tedious task, and is not possible
for the interactive design. Because of that, we limit the values to
only 0 and 1, and make the inputs be a network, which can be
entered interactively.

We aim to find a partition of regionsR = {R1, . . . , Rn}, where
Ri is a region corresponding to object vi. The regions must cover
a whole land area, i.e. R =

⋃n
i=1Ri. Two regions are adjacent

to each other if they share some boundary lines.

Definition 1 (Compatibility of Partition). Let Ri ⊆ R be a set
of regions that is adjacent to Ri. A compatibility of R, denoted
by C(R), can be defined as follows:

C(R) :=
n∑

i=1

|{Rj ∈ Ri : {vi, vj} ∈ E}|
|Ri|

. (8)

The previous compatibility definition is slightly different from
the definition given in (Mohammadi et al., 2016). In the previ-
ous definition, the geographic properties of the regions, such as
lengths of lines that two regions share each other, are also con-
sidered. We do not consider those geographic properties because
calculating those properties is time-consuming. If we have to
calculate their compatibility value, our method might not be ef-
ficient enough for interactive design. Also, we strongly believe
that, when two landscape objects are allocated adjacent to each
other, users of the objects can easily walk between them. Having
them sharing a long line does not make the walk between two
regions more convenient.

Next, we will define the land allocation error of partition R :=
{R1, . . . , Rn} in the following definition. The definition is same
as that defined in (Karimi et al., 2009).

Definition 2 (Land Allocation Error). Recall that the area of Ri

is |Ri|. The land allocation error of R, denoted by err(R), as
follows:

err(R) :=

n∑
i=1

||Ri| − A∗i |
A∗i

(9)

In this paper, we aim to find a partition of regions that maximize
the compatibility and minimize the land allocation error.

4. METHODOLOGY

4.1 Graph Drawing-Based Point Placement

Our point placement method is based on the graph drawing tech-
niques explained in Section 2.2. In the following subsection, we
construct Laguerre Voronoi diagram from f(v1), . . . , f(vn) ob-
tained from the techniques. Let wi be the weight corresponding
to vi in the construction, and Ri be the region obtained. Because
we do not want Ri to be an empty region, by Theorem 1, we re-
quire that the distance from f(vi) to any other points have to be
at least 2 · wi. We can have that requirement, when no rectangle
overlap withRec(f(vi), 4 ·wi). Because of that, we choose si in
Section 2.2 to 4 · wi, and, to guarantee that the overlapping does
not happen, we set the parameter ω to a very large real number.
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On the other hand, during the interactive design, we ask design-
ers to choose the appropriate α for their design. A larger α will
make the generating points spread more on the plane.

While there is not a drawing boundary in the graph drawing tech-
nique, we have to place all points in a given boundary. We up-
date the energy function E(f) to include the constraint in our
point placement. Let `1, . . . , `m be line segments that define the
boundary, and let D(f(vi), `j) be a shortest distance from f(vi)
to `j . Given a parameter θ, we define another type of energy for
vi, denoted by φi(f), as follows:

φi(f) = θ ·
m∑

j=1

1

(D(f(vi), `j))
2 . (10)

The energy of φi(f) is very large when the point f(vi) is very
close to some boundary. The third type of energy φ(f) and the
updated energy function E′ is defined as in the following equa-
tion:

φ(f) =

n∑
i=1

φi(f). (11)

E′(f) = E(f) + φ(f) (12)

Similar to function E, function E′ is also derivable, and we can
use the gradient descent method to search for f ∈ F that mini-
mize E′.

4.2 Laguerre Approximation

Let S = {c1, ..., cn} be a set of circles such that ci = (f(vi), wi),
where f(vi) is a of point which is determined by the graph draw-
ing in section 4.1, and wi is a weight corresponding to the posi-
tion f(vi).

In this process, we would like to find the Laguerre Voronoi dia-
gramR = {R1, ..., Rn} satisfying the following properties.

P1 In the set E denoted from a designer, the Laguerre triangu-
lation ofR contains edges of E as much as possible.

P2 Area of Ri is not much different to the expected area A∗i ;

Therefore, the search of the Laguerre Voronoi diagram which sat-
isfies the mentioned properties is necessary. Therefore, we for-
mulate this issue to the optimization problem.

For satisfying the property [P1], we use the compatibility as de-
fined in Definition 1 for determining the connection between any
two cells as the desired structure in the graph {V,E} from the
designer. Also, we consider the property [P2] when the i-th area
of Laguerre Voronoi diagram is computed as |Ri| which is the
area of the convex polygon. Then we use the criterion of land al-
location error as defined in Definition 2 to the Laguerre Voronoi
diagramR.

Since the Laguerre Voronoi diagram is constructed with respect
to the set of of generators S, we can consider the compatablity
and land allocation error as a function of generator set, i.e. C(S)
and err(S) is a function from R3d to R defined by.

C(S) :=
n∑

i=1

|{Rj ∈ Ri : {vi, vj} ∈ E}|
|Ri|

. (13)

and

err(S) :=
n∑

i=1

||Ri| − A∗i |
A∗i

. (14)

We would like to find the set S∗ which maximizesC(S) which is
equivalent to the minimization problem min−C(S), and mini-
mizes err(S).This problem leads to the multi-objective optimiza-
tion, that is, to find

min
S∈R3d

{−C(S), err(S)}. (15)

In this study, we solve the multi-optimization problem (15) using
the weighting method. Therefore, we define a function

F (S) = ωC(S)− (1− ω)err(S), (16)

and the minimization is done by solving minF (S).

We treat the function F (S) defined in (16) as the black-box func-
tion, i.e. we can implicitly compute the value of the function
without knowing the explicit formula. Therefore, we solve the
optimization problem using the derivative-free method. In this
study, we will use the Nelder-Mead method for finding the mini-
mum of F (S).

5. CASE STUDY

Our application of the experiment will be conducted on the plot of
land in Chiang Mai, Thailand, owned by Chiang Mai University.
Originally, the land is utilized by the Faculty of Agriculture for
education and experiments, however, will later be allocated as
an area to promote education and Lanna’s historical heritages.
This project is called CMU Square as announced in (Prachachat
Online, 2015).

Along with the original programmatic scheme design, the pro-
posed master plan seems like the design went through without
any regards to the surrounding context as shown in Figure 1.
Hence, this is where the external anchor points on the graph come
to play. To create a contextually related master plan, one must be
mindful of what the surrounding contents are. The selected site
is located between various important landmarks of Chiang Mai,
whether it be the Chiang Mai University to the west, the univer-
sity’s hall to the east, and even the famous Nimmanhaemin road
towards the north. With multiple characters surrounding the site,
it is safe to assume the local demographic of the users, as well as
where and how will they access the area.

5.1 Our Assumptions

Our method’s objective is to maximize the usable spaces while
minimizing hard to reach areas resulting from a long clean-cut
zoning plan. While the original design portrays a solid and or-
ganized, there are certain portions of the zoning that could be
underutilized. On the other hand, our experiment method will
allow us to optimize these space into polygons surrounding the
center point of the zoning which would be the structure, meaning
that the circulation distance within the zoning would be equally
distributed rather than taking a long distance walk from a corner
of a rectangle to another.

Using our proposed method, we define the graph G = (V,E)
consisting of the vertices represented as the facilities and edges
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Commercial

Commercial

Park

Figure 1. The master plan of CMU square from a newspaper. The figure is adapted from Google R©map.

external anchor

topological structures

parking

greenspaces

learning center

commercial

landmark

foodcourt

amphitheater

existing structures

water feature

Figure 2. The graph G which reflects the facilities and their connection. The figure is adapted from Google R©map.

meant the connected parts between two facilities as shown in Fig-
ure 2 where the shaded area is the area for allocation. We assume

that the area for allocation is a convex polygon written as P .
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In this experiment, there were 21 vertices in the graph whose
seven vertices represented as the existing buildings. Five vertices
among all fixed vertices are fixed points laid outside the shaded
area. The weightwi for point i is computed bywi =

√
A∗i /π. In

the case of outer fixed points, we assume that weights are equal
to zero.

We follow the process discussed in Section 2.2 and 4.1 to find an
appropriate generator positions. After that, we used the resulting
positions in the optimization processes using the Nelder-Mead
method. In this case, the optimizations were done among all
non-fixed points with parameters of generator positions and their
weights. In the case of fixed points, we only optimized radii of the
inner fixed-points. In the step of the Laguerre Voronoi diagram
construction, since the Laguerre Voronoi regions of outer fixed
points may affect the Laguerre Voronoi diagram cell inside the
polygon P , the construction of Laguerre Voronoi diagram were
done only the vertices of the polygon P .

Hence, this experiment considered the function F (S) as a func-
tion from R44 to R when the parameter ω was chosen.In this
sense, ω was determined to show the priority between the com-
patibility and land allocation error.

We optimized F (S) using Nelder-Mead method with a chosen
parameter ω. Remark that the simplex contained 45 vertices. For
the initial simplex, the first vertex S0 ∈ R44 was chosen from the
resulting parameters of graph drawing. The remaining vertices
were chosen from by Si = S0 + kSR, where each coordinate sj
of SR was a random number from 0 to 1, and k was chosen for
scaling the size of the simplex. In this study, the Nelder-Mead
method was terminated when the standard deviation of computed
function values of all simplex vertices was smaller than a fixed
threshold ε.

5.2 Experimental Results

5.2.1 Experiments using the proposed framework In the
experiment, coordinate of points in the initial step were located
using GeoGebra 5.0. The graph drawing was implemented us-
ing Java. The construction of the Laguerre Voronoi diagram and
Nelder-Mead optimization were done using the software
MATLAB R©R2017a with libraries ’Bounded Power Diagram’ and
’Nelder-Mead Simplex Optimization’ published in file exchange
system of MATLAB R©.

During the graph drawing process, we set α = 0.5, ω = 20.0,
and θ = 0.5. For the Nelder-Mead optimization to minimize
F (S), we set ω = 1/8 with the simplex size k = 0.1. The
initial function value from the initial point S0 is 15.606. The
land allocation error value was 18.170, and the compatibility was
2.3417.

After 4,915 iterations with threshold ε = 10−5, the function
value of F (S) converges to 5.5773, as shown in Figure 4. The
land allocation error was 6.8033, which decreased by 62.557%,
and the compatibility was 2.9976 which increased by 28.010%.
The optimization with Nelder-Mead method took 839.78 seconds.
The resulting diagram plotted from the converged value of the
function is shown in Figure 3.

The experimental result shows that we can automatically locate
the facilities using graph drawing schemes. Also, we can allocate
the area to facilities using the Laguerre Voronoi diagram in a way
that land allocation error is minimized, and the compatibility is
maximized.

Remark that the computational time can be shortened when we
use other compilers such as C or C++, as discussed in (Andrews,
2012). In many cases, the computations in C or C++ is more than
a hundred time faster than those in Matlab. Hence, we strongly
believe that our computation time will decrease to a few seconds
if we implement our software in those languages.

5.2.2 Comparison with the previous studies We validate how
useful our point allocation method by comparing our result with
point positions extracted from the master plan of CMU square
(Prachachat Online, 2015), which is designed by a professional
architect. The point positions are shown in Figure 5. Then, we
generate Laguerre Voronoi diagram and multiplicative Voronoi
diagram from the point positions in the master plan, and compare
their land allocation error and compatibility with our results.

When we construct Laguerre Voronoi diagram from the point po-
sitions in the master plan, the land allocation error was 17.1373,
which was worse than the result from the framework by 86.3037%.
On the other hand, the compatibility was 3.5881, which was bet-
ter than the optimal result 17.9328% difference. Although the
compatibility obtained from the professional architect is slightly
larger than our automatically generated point positions, their land
allocation error is much larger than ours. Because the whole area
is about 42.21, we strongly believe that the land allocation error
of 17.14, more than 30% of the whole area, is not acceptable.

The results are even worse in the multiplicative Voronoi diagram.
The compatibility obtained in the setting is 4.0, 28.6498% bet-
ter than ours and slight better than Laguerre Voronoi diagram’s.
However, the land allocation error is as unacceptable as 33.0. By
the multiplicative Voronoi diagram, many areas are significantly
larger than the others. For example, we found that the region for
Mall1 occupies almost all areas in the upper half of the space.
We obtain a large compatibility. because those large regions con-
nect to almost every regions, not because the large value do not
indicate that the point positions follows the expected topology.

Although the experimental results cannot be used to judge whether
or not our proposed method is better than the previous methods,
the tendency of the results shows that the dynamic generating
point allocation method together with the optimization can pro-
vide the smaller land allocation error as well.

6. CONCLUSION

Ultimately, the experiment is conducted to acquire the balance
between maximizing the functionality of the land and the aes-
thetics of the design as a whole. Tackling the design project with
computer-aided design software would reduce the time required
for creating a complex design while still maintaining human er-
rors to a minimum.

The allocation of functions, initially done by hand, is gradually
optimized through the process by a design tool to maximize the
compatibility for the adjacent land use.

For a further experiment, our focus is the development of simple
but useful software to instantly allocate land uses according to
their contributing factors such as the external context, internal re-
lationship, and size. In parallel, a survey shall be conducted with
a selected target group to acquire inputs for further development.
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Figure 3. (Left) The Laguerre Voronoi diagram of the generator set generated from the graph drawing-based point placement; (Right)
The resulting Laguerre Voronoi diagram after employing the optimization with parameter ω = 7/8
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Figure 4. The graph shows the convergence of the function
F (S) using the Nelder-Mead method.
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