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ABSTRACT: 

Discrete Global Grids System (DGGS) is a kind of digital multi-resolution earth reference model, in terms of structure, it is 

conducive to the geographical spatial big data integration and mining. Vector is one of the important types of spatial data, only by 

discretization, can it be applied in grids system to make process and analysis. Based on the some constraint conditions, this paper put 

forward a strict definition of discrete lines, building a mathematic model of the discrete lines by base vectors combination method. 

Transforming mesh discrete lines issue in n-dimensional grids into the issue of optimal deviated path in n-minus-one dimension using 

hyperplane, which, therefore realizing dimension reduction process in the expression of mesh discrete lines. On this basis, we 

designed a simple and efficient algorithm for dimension reduction and generation of the discrete lines. The experimental results show 

that our algorithm not only can be applied in the two-dimensional rectangular grid, also can be applied in the two-dimensional 

hexagonal grid and the three-dimensional cubic grid. Meanwhile, when our algorithm is applied in two-dimensional rectangular grid, 

it can get a discrete line which is more similar to the line in the Euclidean space. 

1. INTRODUCTION

Discrete Global Grid System (DGGS) is a kind of multi-

resolution hierarchy structure, which can take a particular 

approach to subdivide infinitely and it takes data manipulation 

by using code instead of traditional coordinate. Compared with 

traditional spatial data organization and application pattern, 

DGGS is more suitable to solve the global large-scale problem. 

And in terms of structure, DGGS support for efficient 

processing of multi-resolution data. 

Vector data grid expressions are widely used in the spatial 

topology analysis and grid index, regarded as one of the key 

issues in the discrete global grid study. Their core is the 

expression of the points, the lines and the surfaces in the grid. 

For the points in the grid, their expression is so easy, just the 

grid unit that their coordinates correspond to. And if we want to 

express the discrete surfaces, we should also express the 

corresponding lines firstly. So, we can know that the most 

important thing in vector data grid expression is the expression 

of the grid discrete line. Currently, the discrete line generation 

algorithm has been widely studied, and there have been many 

efficient algorithms. Among them, the DDA (Digital 

Differential Analyzer) algorithm, the midpoint Line algorithm 

and the Bresenham algorithm are several representative 

algorithms. In addition, Wu and Rokne et al improve the 

Bresenham algorithm, and raise double-step line generation 

algorithm. Liu Jing and Jia Yinliang et al consider the 

correlation between pixels and raise an improved Bresenham 

algorithm based on pixel row. 

Now, although the existing discrete line generation algorithm 

can fit straight line, there is a common problem. That is, there is 

no concrete description of the generation of discrete lines from 

a mathematical abstract angle. So, we can can’t reveal the 

essential because lack theoretical support. Pointing to the 

question, in this paper, we use the method of vector basis linear 

combination to establish the strict mathematical model of the 

discrete line, and turn it into the optimal deviation path problem. 

According to this thought, we design the generation algorithm. 

Experimental results show that the new algorithm is not only 

effective but also has certain advantages in the accuracy of 

expression. 

2. THE MATHEMATICAL MODEL OF GRID DISCRETE

LINE

2.1. The Constraints Of Grid Discrete Lines 

The basic principle of vector data expression in grid is that the 

expression of a vector in the grid is as close to its shape in the 

Euclidean space as possible to ensure data characteristics. 

However, the discrete lines expressed by grid units are very 

different from the linear segment in the traditional European 

space. There are many possible paths to connect two grid units 

within a certain range (as shown in Figure 1). So, if we want to 

generate a grid line which is the most close to the reality, tighter 

restrictions are needed. The restrictions in n dimensional space 

are defined as follows: 

(1) The length is the shortest(that is, minimum number of

units are passed;

(2)Calculate the vertical distance of each grid to the line,

find the maximum distance and minimize this

maximum distance; 

They are expressed mathematically, in n dimensional space, the 

discrete grid line ab = a, p1, p2, … , pN, b , p1, p2, … , pN  is the

grid unit that passes in turn. It should meet the following 

conditions: 

(1)N should be smallest;

(2)The discrete grid that meet condition (1) should make

d(pk,1≤k≤N
max ab) is minimal;
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Under these constraints, we can determine the optimal path 

for connecting two grid units. 
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Figure 1. Schematic diagram of hexagon grid discrete line 

2.2.  Vector Expression Of The Discrete Line 

In order to describe the grid discrete line accurately, this paper 

use vector to describe multi-dimensional grid discrete line. This 

approach has the following benefits: 

(1)We can guarantee that the number of mathematical

object parameters described is consistent with the

spatial dimension, that is, the discrete grid line can be 

expressed by n linearly independent vectors. We can 

describe it by mathematical language: 
ab
→ = x0V0 +

x1V1 +⋯+ xn−1Vn−1, {x0, x1 , ⋯ , xn−1} ∈ Z,   and

{V0 , V1, ⋯ Vn−1} are n linearly independent vectors,

called the vector base for the grid discrete line; 

（2）The expression of the vector base is applied to the

orthogonal grid as well as the non-orthogonal grid. So,

in this way, the general expression of grid can be

carried out and the method has universal applicability;

Also, to ensure that each step for generation of discrete grid is 

equal, we just choose the vector base from the edge adjacent 

grid unit vector, shown as the red vector in Figure 2. 

a. The two-

dimensional

triangle grid

vector base

b. The two-

dimensional

square grid

vector base

c. The two-

dimensional hexagon 

grid vector base 

Figure 2.  Schematic diagram of the direction vector 

2.3. Determine The Optimal Vector Basis 

The choice of vector base is not blind, only the vector group 

that is best suited for the expression of grid discrete line can be 

defined as the optimal vector base. Notice that the n dimensions 

discrete grid space is divided into different spaces by the cone, 

each cone is composed of n independent vectors from the origin 

of the same coordinate.  So, actually, the cone is the geometric 

expression of the vector base. But the cone-shaped space that 

contains the discrete line is not exclusive, the deviation of the 

grid in the tracing of the discrete line should not exceed the 

conical space and the smaller the conical space, the smaller the 

deviation of the grid in the tracking process. Based on this, we 

can define the vector base which forms a minimum cone as the 

optimal vector base. Figure 3 is the smallest conical space for 

different types of two-dimensional grids. For n dimensional 

discrete grid space, the optimal vector base is composed of n 

neighbouring linearly independent vectors.  Now we can 

determine the optimal basis for the discrete line. 
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Figure 3. Schematic diagram of the smallest conical space 

3. PROPOSING THE DIMENSION REDUCTION 

ALGORITHM

3.1. The Basic Thought Of Dimension Reduction Algorithm 

In fact, after determining the optimal vector base, we can design 

algorithm using the optimal vector base and generate multi-

dimensional discrete grid line directly under the 

above constraints. But we should know what we study is a 

multi-dimensional problem, if we follow the discrete line 

directly in the multi-dimensional discrete space, the complexity 

of the problem and the difficulty of computing will increase 

rapidly as the dimensions rise. In this case, it's more 

advantageous to take a reduce dimension approach to generate 

discrete lines. 

In fact, the mathematical model of the n dimension discrete grid 

line model and n-1 dimension optimal deviation path model is 

equivalent, so, we can generate n dimension discrete grid line 

by dealing with n-1 dimension optimal deviation path question. 

The basic idea is as follows: 

Generate a hyperplane that Perpendicular to the vector line 
ab
→ ,

the so-called hyperplane is the mapping subspace of n 

dimensional space to n-1 dimensional space. We call the 

vertical projection of the vector base to H as  projH . Let

V={projH(v
′)|v′ ∈ V′}, V′ is a collection of the optimal vector

base for the grid discrete line. To separate the elements in V 

from the elements in V′, we call V the vector projection base. In

addition, we define  mv = mv
′ , mv  is the sum of the vector

projection base, mv
′  is the sum of the vector base. Because v =

projH(v
′) and∑ mv

′ v′v′∈V′ =
ab
→ , 

ab
→  and H is orthogonal, so

∑ 𝑚𝑣𝑣∈𝑉 = 𝑁 , ∑ 𝑚𝑣𝑣𝑣∈𝑉 = 0

We define the elements in the set W′ = (w1
′ , w2

′ , ⋯ ,wN
′ )

consist of arbitrary vector in  V′ . Let wi = projH(wi
′)  and

define uk  as uk = w1 +w2 +⋯+wk , so P( 0 =

u0, u1, u2, ⋯ uN = 0) is a closed path and d (pk,
ab
→ ) = uk.What

we're looking for is the optimal path for A, it corresponds to the 

grid discrete line. At this point, the discrete linear model of n 

dimension grid space is transformed into an n-1 dimension 

optimal deviation path model successfully. 
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3.2. Generation Algorithm 

According to the basic idea proposed in 2.1, we propose a 

simple, efficient optimal deviation path generation algorithm, 

and then we can convert the optimal path to the corresponding 

space vector to get the ideal discrete grid line. The 

implementation steps are as follows: 

（1）Initialization: i = 0, u0 = 0;

（2）Take the smaller vector v from V:

ui+1 = ui + v，v ∈ V and |ui + v| ≤ |ui + v
′|

 ui+1 = ui + v，i = i + 1;

（3）When ui = ui0 and i0 < i, return the best closed path,

otherwise, go to the second step;

This algorithm can be represented by flowchart as shown in 

Figure 4, Rn is the set of the optimal vector base that is selected

by the input vector line. 

Start

Enter the base 
set in Rn

Initialization

i=0,μ0=0

Chooseνbelong to V make sure that for 
allν’that belong to V ,|μi+ν| 

<=|μi+ν’|  is right

μi+1=μi+ν
i=i+1

For i0<i,μi=μi0? 
No

Output path：
P=(0，μi0+1-μi0,μi0+2-μi0…,0) 

Yes

End

Figure 4. Flow chart of dimension reduction algorithm 

4. TEST AND RESULT ANALYSIS

Currently, the more widely used two-dimension discrete grid 

line generation algorithm is the Bresenham algorithm, the basic 

principle is to select the grid unit which is most approximating 

the line in the maximum displacement direction. Because of the 

limitations of the principle, the Bresenham algorithm fails to 

track all the grids that the vector line passes through. In this 

paper, we propose dimension reduction algorithm which can 

trace all the grid units that the vector line passes through, so the 

final result of the two algorithms should be different. To 

validate and compare this difference, we do a comparative 

experiment firstly. 

The data used in the experiment are data on the border of Henan 

province, a total of 21567 points and the data form is the 

longitude and latitude coordinates. 

4.1.  The Contract Of Efficiency Between Bresenham 

Algorithm And Dimension Reduction Algorithm 

To get the algorithm run time as accurately as possible, in two-

dimension, we set the length of the grid edge to 1. So the data of 

3872098 two-dimension grid data points can be obtained by 

using the Bresenham algorithm with 21,567 original data points 

and 5345314 for dimension reduction algorithm. To compare 

the efficiency of the two algorithms, we repeat the experiment 

five times using two different algorithms and took the mean 

time. The result is shown in Table 1: 

First Second Third Forth Fifth Mean 

Value 

dimension 

reduction  

53.27ms 58.27ms 56.16ms 51.13ms 55.55ms 54.88ms 

Bresenham 33.86ms 37.76ms 35.84ms 35.34ms 32.23ms 35.01ms 

Table 1. Table of efficiency statistics

4.2.  The Contract Of Result Between Bresenham Algorithm 

And Dimension Reduction Algorithm 

To visualize the results of the two algorithms, we convert the 

generated grid data into a Shapefile file and display it in the 

Global Mapper software. Firstly, the overall effect of the Henan 

provincial boundary is basically consistent with the two 

algorithms, shown as Figure 5. 

Figure 5. Schematic diagram of the overall effect of the Henan 

provincial boundary in the rectangle grid 

Bresenham algorithm Dimension 

reduction 

algorithm 

Overlap 
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Table 2. Comparison table of the detail effect in the rectangle 

grid 

The comparison of the Table 2 shows that the dimension 

reduction algorithm can indeed track all the grid units which are 

passed by the vector line. Precisely for this reason, the discrete 

grid line generated by the dimension reduction algorithm has 

the following advantages over the result of Bresenham 

algorithm: 

（1）The vector line is closer to the central axis of the

discrete grid line, this means that the generated

discrete grid line is closer to the expression of the

vector line in the European space;

（2）The continuity of generated discrete grid line is

better, all adjacent grid units exist in adjacent edge

forms;

（3）The display of the corners is more detailed;

4.3. The Application Of Dimension Reduction Algorithm 

On one hand, because the discrete line is described by vector 

base, the dimension reduction algorithm can be applied not only 

to the orthogonal grid but also to the non-orthogonal grid. In 

other words, the dimension reduction algorithm can be applied 

to other shapes. In this paper, the discrete line is successfully 

generated by the dimension reduction algorithm in the hexagon 

grid. We express the hexagon grid in a flat rectangular 

coordinate system, to facilitate the definition of coordinates, we 

set the length of hexagon grid edge is 
√3

3
. Table 3 records the 

coordinates of each node of the vector line. Figure 6 shows the 

generated vector line in the hexagon grid, red grid is node of 

discrete grid line. It is known by the generated results that, 

similar to the effect in the square grid, in the hexagon grid, the 

dimension reduction algorithm still selects all the grid units that 

the vector line passes through. 

Node Coordinate 

1 （1，√3） 

2 （0，4√3） 

3 （2，9√3） 

4 （9.5，
7√3

2
） 

5 （10.5，
15√3

2
） 

6 （18.5，
11√3

2
） 

7 （17,9√3） 

Table 3. The coordinates of each 

node of the vector line 

Figure 6. The generated vector line in the hexagon grid 

On the other hand, reduce the dimension is the core of 

dimension reduction algorithm, it can be extended to multi-

dimension. Take the three-dimension grid for example, still use 

the Henan data and generate discrete grid line in the Space 

rectangular coordinate system. Figure 7 shows the overall effect 

and Figure 8 shows some of the details. From the results, we 

can know that dimension reduction algorithm can generate the 

discrete grid line which is homogeneous, continuous and can 

match the vector line accurately. And it proves the feasibility of 

dimension reduction algorithm in multi-dimension. 

Figure 7. Sketch chart of the overall effect in the cube grid 
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Figure 8. The detail effect in the cube grid 

5. CONCLUSION

The expression of discrete grid lines is an important problem in 

the research of the global discrete grid, aiming at the problem, 

On the basis of the rigorous mathematical model of the discrete 

grid line, we converted the n-dimension discrete grid line model 

into n-1-dimension optimal deviation path model. Based on this 

idea, a new discrete grid line generation algorithm is proposed, 

called dimension reduction algorithm. Through the experiment, 

the applicability and accuracy of the dimension reduction 

algorithm in two-dimension and three-dimension space are 

verified. The result of the dimension reduction algorithm can 

select all the grid units that are passed by the vector line and 

make the result is closer to the expression in the Euclidean 

space. Of course, the dimension reduction algorithm is just a 

relatively rudimentary algorithm, further extensions to it are the 

next step in the research. 
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