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ABSTRACT:  
 
Many studies have utilized the spatial correlations among traffic crash data to develop crash prediction models with the aim to 
investigate the influential factors or predict crash counts at different sites. The spatial correlation have been observed to account for 
heterogeneity in different forms of weight matrices which improves the estimation performance of models. But very rarely have the 
weight matrices been compared for the prediction accuracy for estimation of crash counts. This study was targeted at the comparison 
of two different approaches for modelling the spatial correlations among crash data at macro-level (County). Multivariate Full 
Bayesian crash prediction models were developed using Decay-50 (distance-based) and Queen-1 (adjacency-based) weight matrices 
for simultaneous estimation crash counts of four different modes: vehicle, motorcycle, bike, and pedestrian. The goodness-of-fit and 
different criteria for accuracy at prediction of crash count reveled the superiority of Decay-50 over Queen-1. Decay-50 was 
essentially different from Queen-1 with the selection of neighbors and more robust spatial weight structure which rendered the 
flexibility to accommodate the spatially correlated crash data. The consistently better performance of Decay-50 at prediction 
accuracy further bolstered its superiority. Although the data collection efforts to gather centroid distance among counties for Decay-
50 may appear to be a downside, but the model has a significant edge to fit the crash data without losing the simplicity of 
computation of estimated crash count. 
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1. INTRODUCTION 
 
From the past few decades, many fields have utilized the 
power of spatial nature of data for understanding the 
influence of space on different factors (Best et al., 2001). The 
transportation research has also exploited the capability of 
spatial correlations to better understand the crashes on road. 
The field of roadway traffic safety primarily focuses on 
investigation of influential factors for different types of 
crashes and then providing countermeasure treatments for the 
hazardous sites to mitigate the crashes (Gill et al., 2017a). 
Many researchers noted the presence of spatial correlations 
among crash data and incorporated them within the 
regression models to derive better inferences and develop 
more precise crash prediction models. An extensive body of 
literature exists which accounts for the spatial correlations at 
different scales (Macnab, 2004; Song et al, 2006; Huang et 
al., 2010). The roadway environment may be divided into 
two different scales: macro and micro entities. The macro 
level comprises of larger spatial levels such as block group, 
census tract, Traffic Analysis Zone (TAZ), County (Gill et 
al., 2017b), and so on, while the micro level includes the 
smaller entities such as intersections, segments, ramps, and 
so on. The understanding of spatial correlations among crash 
data may be explained by a simple example: the intersections 
on a roadway corridor are exposed to similar amount of 
vehicle traffic and roadway geometry which lends a spatial 
influence to the types of crashes occurring on the 
intersections of that corridor. During the analysis, grouping 
of such intersections may be advantageous for understanding 
the potential significant explanatory factors for crashes. Such 
correlations are necessary as the other factors may not be 
able to include the unobserved heterogeneity within the crash 
locations.  
 
The selection of spatial scale of crash analysis is governed by 
the motivation behind such analysis. The macro level 
analysis of crash data usually serves the purpose to 
understand the impact of demographic or socioeconomic 
changes within an area on the crash trends. This broader 
perspective is highly beneficial to the planners who design 
and propose policies to control different factors with the aim 
to reduce crashes (Abdel-Aty et al., 2013). On the other 
hand, the micro level approach investigates the geometric or 
traffic flow factors and proposes engineering solutions for 
mitigation of crashes.  
 
Many studies have focused on the exploration of different 
spatial units for macro level modeling for analysis of certain 
crash types (Rhee et al, 2016). As illustrated by the previous 
research, the spatial correlation could be incorporated to 
account for heterogeneity in different forms of weight 
matrices. The spatial models have been developed to identify 
usually hidden factors or improve the estimation 
performance of models. These correlations help account for 
the spatial dependency, which often escapes from the 
explanatory variables. But very rarely have the weight 
matrices been compared for the prediction accuracy for 
estimation of crash counts. This study focuses on this often 
overlooked aspect of spatial modeling which governs the 
appropriate selection of matrices for different approaches. 
Two different spatial models are developed for the crash data 
of 58 counties and the results are compared to assess 
superiority from different perspectives. 
 
 

2. DATA AND METHODOLOGY 

 
2.1 Data Description 
 
This study developed crash prediction models for different 
modes of crashes occurring in the 58 counties of California 
during the year 2012. It should be noted that the focus of the 
present study was on the comparison of alternate weight 
matrices, hence only the traffic exposure factor of Daily 
Vehicle Miles Travelled (DVMT) was considered for model 
development, which was collected from Highway 
Performance Monitoring System (HPMS). DVMT was 
chosen as the exposure factor for county safety performance 
as it usually represents the vehicular activity at the planning 
level. The four crash modes considered for this study were: 
Vehicles, Motorcycles, Bikes, and Pedestrians. The crash 
data were obtained from Statewide Integrated Traffic 
Records System (SWITRS). As this study builds spatial 
models for 58 counties of California, the requirement for 
geometric distances between the centroids of the counties 
was fulfilled by the Southern California Association of 
Governments (SCAG). The data statistics are given in Table 
1 for the different crash modes as well as the weight 
matrices. As expected, the highest number of crashes were 
Vehicle crashes while the other modes had a comparable 
number of crashes. The centroid distance among counties 
had a significant variation with a minimum and maximum 
distance of 25 and 962 miles, respectively.  
 
Variable 
(unit) 

Mean Med Min  Max SD 

Vehicle 
Crashes 

2,171 560 16 38,477 5,388 

Motorcycl
e Crashes 

200 54.5 4 3,349 483 

Bike 
Crashes 

241 44.5 0 4,955 685 

Pedestrian 
Crashes 

228 35 0 5,024 684 

Daily 
vehicle 
miles 
travelled 
(miles) 

14,76
8,115 

4,551,
148  

166,
923  

214,48
2,442  

31,75
3,245  

Centroid 
Distance 
(miles) 

273  227  25  962  176  

Weight Matrices 
Queen-1 
(Number 
of 
neighbors 
per 
county) 

4.91  5 2 8 1.3 

Decay-50 
(Number 
of 
neighbors 
per 
county) 

57 57 57 57 N/A 

 
Notes: Med refers to Median, Min refers to Minimum, Max 
refers to Maximum, and SD refers to Standard Deviation 

 
Table 1. Descriptive statistics 
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The two alternate weight matrices considered for spatial 
modeling can be associated with two different approaches for 
selection of neighbors: adjacency-based and distance-based. 
These are depicted clearly in Figure 1, where Queen-1 and 
Decay-50 are the adjacency and distance matrices, 
respectively. To understand the criterion of selection for two 
approaches, let us consider the county of Tehama in Figure 2. 
In case of Queen-1, the county of Tehama has six immediate 
neighboring counties, namely: Plumas, Butte, Glenn, 
Mendocino, Trinity, and Shasta. The prefix “1” for the 
Queen-1 represents the order of neighbors being considered, 
which in this case means the immediate neighbors of the 
concerned county. Table 1 shows the average number of 
neighbors for each county in California to be around 5. In 
case of Decay-50 (distance-based) weight matrix, the 
selection of counties is not governed by the sharing of 
border, but rather every county is considered to be a neighbor 
(with different spatial influence) for every other county. As 
the state of California has 58 counties, so each county has 57 
neighbors. It is noteworthy that based on the two 
aforementioned approaches, there is a significant disparity 
between the number of counties considered as neighbors.  
 

 

Figure 1.  Types of weight matrices 
 

 
Figure 2.  Section of California counties and associated 

centroids. 
 
2.2 Model Development 
 
Most of the studies model the different modes separately but 
some researchers observed the presence of correlations 
among crash modes which should be accounted for 
developing more robust models. To address the potential 
bias, this study simultaneously estimated the different crash 

modes by employing multivariate model. Crash data is 
mostly overdispersed in the field of traffic safety. To account 
for the overdispersion, this study developed the Poisson 
lognormal model under the Full Bayesian framework 
(Aguero-Valverde and Jovanis, 2009). To accommodate the 
spatial correlation, a hierarchical approach was utilized 
where the structural heterogeneities were incorporated. The 
model is of the following form: 
 
𝑦𝑦𝑖𝑖𝑖𝑖~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑒𝑒𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖)                                                                    
(1) 
 
Where, 𝑦𝑦𝑖𝑖𝑖𝑖 is the observed crash count at county i for the 
crash mode j, 𝜃𝜃𝑖𝑖𝑖𝑖  is the Bayesian mean expected crash rate at 
site i for crash mode j, and 𝑒𝑒𝑖𝑖 is the exposure in county i. In 
this case, the traffic exposure is accounted by DVMT of the 
specific county i. The crash rate is modeled as shown in the 
following equation:          
           
𝐿𝐿𝐿𝐿𝐿𝐿(𝜃𝜃𝑖𝑖𝑖𝑖) =  𝛽𝛽0 + ∅𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖                                                          
(2) 
 
𝑢𝑢𝑖𝑖𝑖𝑖~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (0, ∑)                                                                 
(3) 
 

 ∑ = �
𝜎𝜎11 ⋯ 𝜎𝜎14
⋮ ⋱ ⋮
𝜎𝜎41 ⋯ 𝜎𝜎44

�                                                             

(4) 
 
Where, 𝛽𝛽0 is the intercept, ∅𝑖𝑖𝑖𝑖 is a spatially structured 
random effect which is fit by a zero-centered multivariate 
conditional auto-regressive (MCAR) model (For more details 
on MCAR, please refer Cheng et al., 2017), and uij is a 
spatially unstructured random effect which captures the 
extra-Poisson heterogeneity among locations. ∑ is called the 
covariance matrix. The diagonal element 𝝈𝝈𝒋𝒋𝒋𝒋 in the matrix 
represents the variance of 𝒖𝒖𝒊𝒊𝒊𝒊, where the off-diagonal 
elements represent the covariance of crash counts of different 
modes. The inverse of the covariance matrix represent the 
precision matrix and has the following distribution: 
 
∑−1~𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐼𝐼, 𝐽𝐽)                                                                  
(5) 
 
Where, I is the J x J identity matrix, and J is the degree of 
freedom, J=4 herein representing 4 crash outcomes based on 
mode. 
 
The MCAR allows the incorporation of spatial structures for 
a specific site, where the two alternate weight matrices of 
this study differ on assignment of following: the identity of 
neighboring sites, number of neighboring sites, and the 
weight of spatial influence.  In case of Queen-1, the distance 
between the county centroids was ignored and only those 
counties were considered as neighbors which shared an 
immediate border with the concerned county. This resulted in 
a varied number of neighbors for each county. It is 
noteworthy that this adjacency-based weight matrix gives a 
binary or dichotomous output for weight with only two 
responses, zero for non-neighbors and one for neighbors. In 
case of the distance-based matrix (Decay-50), all the counties 
were considered as neighbors of each other and the weight 
was calculated as follows:  

Spatial 
Matrices 

Adjacency 
(Queen-1) 

Distance 
(Decay-50) 
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𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒
−dist𝑖𝑖𝑖𝑖

  λ0                                                                              
(6) 

Where, wik is weight of the kth neighbor of the ith county, 
distik is the geographic centroid distance between counties i 
and k, and λ0 is the decay constant. The selection of decay 
was done by a sensitivity analysis of total collision count and 
average county distance of 250 miles. It is noteworthy that 
the Decay-50 potentially accounts for more flexibility is 
weight assignment compared to the binary weights of Queen-
1 matrix. 
 
2.3 Model Comparison 
 
The two models were assessed for goodness-of-fit with the 
observed crash data and the criterion employed for 
assessment was the Deviance Information Criterion (DIC) 
developed by Spiegelhalter et al., (2002). DIC provides the 
measure of complexity and fit of the models which are 
developed from same sample size. DIC is computed as the 
sum of the posterior mean deviance and estimated effective 
number of parameters: 
𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐷𝐷� + 𝑃𝑃𝐷𝐷                                                                          
(7) 

Where, 𝐷𝐷� is the sum of the posterior mean deviance which 
measures how well the model fits the data and 𝑃𝑃𝐷𝐷 represents 
the effective number of parameters utilized for model 
building.  
 
As mentioned earlier, one of the primary goals for the 
development of crash prediction models is to achieve more 
precise estimate for prediction of crash count at sites. Hence, 
it is worthwhile to assess the prediction accuracy of the 
models to ensure that better fit of model estimates with crash 
data is transferred to similar performance at prediction 
accuracy. Different criteria were employed to compare the 
prediction accuracy of the models such as Mean Absolute 
Deviance (MAD), Mean Square Predictive Error (MSPE), 
and Total Rank Difference (TRD). 
 
The MAD quantifies the discrepancy between the observed 
crash count and the ones predicted by the model for the same 
site. It can be calculated with the following equation:  
 
MAD = 1

n
∑ �Cp − Co�n
i=1                                                             

(8) 
 
Where, 𝐶𝐶𝑝𝑝 is the estimated crash count of county i by the 
model and 𝐶𝐶𝑜𝑜 is the observed crash count of the same county 
i.  
 
The MSPE was calculated as follows:  
 
MSPE = 1

n
∑ (Yi − Oi)2n
i=1                                                           

(9) 
 
Where, 𝑌𝑌𝑖𝑖 is the predicted crash count of site i by a model, 
and 𝑂𝑂𝑖𝑖 is the observed crash count of i by the same model at 
the same time period. The smaller value of MSPE indicates 
that the discrepancy between the predicted and observed 
crash value for a site is relatively small and hence that model 
has better prediction accuracy.  
 

TRD takes into account the rank difference of a site, which is 
calculated based on the higher crash count. The 
corresponding calculation is shown as follows: 
 
TRD = ∑ |𝑅𝑅(𝑖𝑖𝑃𝑃) − 𝑅𝑅(𝑖𝑖𝑂𝑂)|𝑛𝑛

𝑘𝑘=1                                                  
(10) 
 
Where,  𝑅𝑅(𝑖𝑖𝑃𝑃) is the rank of site i based on the predicted 
crash count while 𝑅𝑅(𝑖𝑖𝑂𝑂) is the rank of the same site based on 
observed crash count. The smaller value indicates that the 
particular model was able to consistently identify and rank 
the sites.  
 
 

3. RESULTS 
 
Model 𝐷𝐷� PD DIC MAD MSPE TRD 
Queen-1 1,819 314 2,133 282 1,762,99

1 
3,709 

Decay-
50 

1,742 244 1,987 199 842,669 3,561 

 
Table 2. Model fit and prediction accuracy 

 
DIC is a penalized criterion which is a trade-off between 
model complexity (PD) and model fit (𝐷𝐷�). For comparison of 
models with similar sample size, the difference of 5 points 
between DIC values of two models is considered to be 
comparable while higher than 10 points hints at a significant 
difference of model fit. As shown in Table 2, the DIC values 
vary substantially for the two weight matrices based on the 
aforementioned criterion. A significant difference of 146 
points was observed, where Decay-50 had the better overall 
fit. As discussed earlier, DIC is a mix of model fit and 
complexity. To further analyze the models and understand 
their superiority at handling crash data, it is worthwhile to 
observe the values of 𝐷𝐷� and PD. Similar trend may be 
observed for the fit (𝐷𝐷�) and complexity (PD) as well, where 
the difference between two models was 77 and 70, 
respectively. It seems that the inclusion of continuous 
county-wise varying distance weights provided the flexibility 
to fit the crash data better compared with the rigid binary 
weight structure of Queen-1 matrix.  
 
As expected, the significant performance at model fitness 
was observed to be correlated with the superiority at 
accuracy of predicting the crash counts. The prediction 
accuracy criteria which comprised of MAD, MSPE, and 
TRD, established the substantial advantage of Decay-50 at 
precise estimation of crashes. Since MAD and MSPE 
measure the deviation from observed count, so relatively low 
values are desirable which reflect the discrepancy between 
the observed and predicted crash count for the counties and 
hence indicate better crash prediction capability. The MAD 
of Queen-1 was observed to be 41% greater than Decay-50. 
The difference was more pronounced in case of MSPE with a 
109% increase from MSPE value of Decay-50. These trends 
indicate that the Decay-50 model was able to capture the 
spatial structural heterogeneities which accounted for better 
prediction capability. Another measure which was calculated 
to compare the site ranking performance again established 
Decay-50 to be superior with the TRD value 148 points 
lower than Queen-1. This advantage of distance matrix may 
be accredited to the criterion which forms the basis of 
selection of neighbors, i.e. more counties are selected as 
neighbors and spatial dependency is based on mutual 
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distance, which potentially fits the crash data better and 
results in more precise estimates to rank the counties.  
 
 

4. CONCLUSIONS 
 
This study was targeted at the comparison of two different 
approaches for modelling the spatial correlations among 
crash data at macro level. Multivariate Full Bayesian crash 
prediction models were developed using Decay-50 and 
Queen-1 weight matrices for simultaneous estimation crash 
counts of four different modes: vehicle, motorcycle, bike, 
and pedestrian. The goodness-of-fit and different criteria for 
accuracy at prediction of crash count reveled the superiority 
of Decay-50 over Queen-1. Decay-50 was essentially 
different from Queen-1 with the selection of neighbors and 
more robust weights. This inclusion of extra data was 
expected to make the model more flexible but at the same 
time it was anticipated that their addition would remarkably 
increase the model complexity. However, the lower value of 
PD reflects that the extra information may have rendered the 
Decay-50 model more subtle to accommodate the spatially 
correlated crash data. The consistently better performance of 
Decay-50 at prediction accuracy further bolstered its 
superiority. Although the data collection efforts to gather 
centroid distance among counties for Decay-50 may appear 
to be a downside, but the model has a significant edge to fit 
the crash data without losing the simplicity of computation of 
estimated crash count. 
 
The study illustrated the remarkable superiority of a distance-
based model (Decay-50) over an adjacency-based one 
(Queen-1). However, it is recommended not to generalize the 
results of this study and conclude the dominance of distance-
based models as there could be many factors which may 
influence the performance of models such as different spatial 
levels; inclusion of explanatory variables; adjacency-
matrices of higher order or different types (Queen-2, Queen-
3, Rook-2), and so on. Hence, this study recommends the 
sensitivity analysis of different weight matrices to determine 
the suitability for development of crash prediction models. 
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