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ABSTRACT: 
 
Massive trajectory data contains wealth useful information and knowledge. Spectral clustering, which has been shown to be effective 
in finding clusters, becomes an important clustering approaches in the trajectory data mining. However, the traditional spectral 
clustering lacks the temporal expansion on the algorithm and limited in its applicability to large-scale problems due to its high 
computational complexity. This paper presents a parallel spatiotemporal spectral clustering based on multiple acceleration solutions 
to make the algorithm more effective and efficient, the performance is proved due to the experiment carried out on the massive taxi 
trajectory dataset in Wuhan city, China. 
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1. INTRODUCTION 

Trajectory data provides an important data source for urban 
computing and behavior analysis. Massive taxi trajectory data 
contains much regular knowledge (Wang et al., 2012). The 
behavior patterns (Das et al., 2016) and travel hotspots can be 
explored from these data, they provide important supports for 
urban management and traffic management (Han et al., 2016).  
 
Clustering is a common method in the trajectory data mining 
(Luxburg et al., 2007), including partitional clustering (Aidos et 
al., 2012), density-based clustering, hierarchical clustering, 
spectral clustering etc. There are deal of researches on the first 
three methods, and the spectral clustering is less yet (Xing et al., 
2016).  
 
Spectral clustering is an algorithm based on graph theory, it 
does not demand the shape of clusters and converges to the 
global optimum. It has been proved to have good effect for 
trajectory data (Yan et al., 2009; Cai et al., 2014) and used more 
frequently in the field of trajectory analysis. However, the 
researches have a few limitations: traditional spectral clustering 
method mainly takes into account the spatial relationship of 
clustering objects, and less in temporal relationship (Díaz et al., 
2010). To overcome it, the expansion on time dimension is 
necessary (Povinelli, 2000).  
 
Trajectory data is an essentially time series data which has 
different characteristics in structure and length, thus compared 
with the point data, the clustering of time series data has its 
complexity. A few methods have been proposed to solve it 
while the key is finding a way to calculate the spatiotemporal 
similarity among the time series data. One method is to use the 
features of time series data, for examples, ARMA model is 
widely used to extract features of time series data (Cadzow, 
1982), Markov chain model is also used to describe time series 
data (Zheng et al., 2008). Another method is based on the 
morphological characteristics.  
 
In this paper, we present a spatiotemporal spectral clustering to 
analyse the time series data in taxi trajectory and discover the 
spatiotemporal knowledge. We use dynamic time warping 
method (Silversides et al., 2016) to calculate the spatiotemporal 
distances among the time series data which have different 
structures and lengths, and then use Gaussian kernel function to 
calculate the similarity and put it in the spectral clustering to get 
the final result. The time series data reflects the change of taxi 
location in space-time, so the clustering results also includes 
both spatial and temporal information. 
 
Spectral clustering has low efficiency when deals with massive 
trajectory data for its  high computational complexity (Chen et 
al., 2007; Birant et al., 2006; Wang et al., 2007). Thus speeding 
up the spectral clustering is necessary.  
 
In recent years, a series of parallel computing solutions have 
been developed, such as solutions based on CPU (Song et al., 
2007) and GPU, or based on MapReduce and Spark (Xin et al., 
2013). Also, some data structures such as R-tree (Mondal et al., 
2004) and KD-tree are proposed to speed up the spatial 
algorithm.  
 
In order to speed up the spatiotemporal spectral clustering, we 
present a parallel method based on multiple acceleration 
solutions in this paper. While constructing the similarity matrix 
and Laplacian matrix, we use a load balanced multi-threading 
method to parallelize the calculation procedures based on CPU. 

We choose CPU to realize the parallelization because it has 
intuitive effect and doesn’t depends much on hardware 
environment. Then, in the process of eigenvalue decomposition, 
we use Lanczos method to accelerate the algorithm.  
 
 

2. SPATIOTEMPROAL SPECTRAL CLUSTERING 

2.1 Basic Spectral Clustering 

Spectral clustering is an algorithm based on graph theory. It 
aims to maximize the similarity in the subgraphs as well as 
minimize the similarity among the subgraphs by dividing the 
undirected graph into several optimal subgraphs as shown in 
Figure 1. There are many variants of spectral clustering, in this 
paper, we choose a commonly used normalized spectral 
clustering (Ng et al., 2001). 
 

 
 

Figure1. Dividing method for spectral clustering 
 

The principle of spectral clustering is related to mathematical 
knowledge, it is a process of dimensionality reduction. Given n 
data points 1,..., nx x , the spectral clustering constructs a 
similarity matrix S  where ijS  reflects the relationship between 

ix and jx .We use Gaussian kernel function to calculate ijS : 
 

2exp( )
2

ij
ij

D
S

σ
= −                                  

(1) 
 
Where σ refers to the width of Gaussian kernel function which 
influences the effect of clustering, it is generally set as 
experimental data.  ijD  refers to the distance between ix and 

jx , it is the vital variable of the spatiotemporal spectral 
clustering and we will explain the calculation method later. 
Laplacian matrix is also an important factor in the algorithm. 
We define the normalized Laplacian matrix as: 
 

1/2 1/2L I D SD− −= −                               (2) 
  
Where S refers to the similarity matrix, D is a diagonal matrix, 
and the calculation method is: 
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The normalized Laplacian matrix is a positive semidefinite 
matrix, for any vector f  , it has such mathematic quality: 
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Where iw  refers to the sum of the weights in the line i . 
 
There are a few methods to cut the graph such as minimum-cut 
(Fiedler, 1973), ratio-cut (Hagen et al., 2002) and normalized-
cut (Shi et al., 2002). In this paper, for co-operating with the 
chosen Laplacian matrix, we use normalized-cut method, the 
objective function ( , )ncut A B  is: 
 

1
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ij ij
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k

i i
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                (5) 

 
It can be deduced that solving the optimal objective function is 
equal to find the corresponding eigenvector of the second- 
minimum eigenvalue of the normalized Laplacian matrix L for 
binary classification. 
 
We can go a step further and conclude that the spectral 
clustering converts the process of dividing the original data to 
dividing the eigenvectors-matrix which corresponds to the k-
minimum eigenvalue of L. It is essentially a conversion of 
reducing the features, generally the algorithm uses k-means 
clustering to realize the final co-clustering (Ng et al., 2002) 
 

2.2 Temporal expansion on spectral clustering 

In the formula (1) we can deduce that the important step of the 
spatiotemporal spectral clustering is calculating the distance 
between time series data in taxi trajectory. However, different 
time series data have different spatial and temporal information, 
thus the distance is difficult to calculate. 
 
In this paper, we use dynamic time warping (DTW) to calculate 
the spatiotemporal distance between time series data and realize 
the expansion on the algorithm. Compare with Euclidean 
distance, DTW is a much more robust distance measure for time 
series, allowing similar shapes to match even if they are out of 
phase in the time axis (Keogh et al., 2005) 
 

 
 

Figure2. Sketch of Euclidean and DTW. 
 
While the two time series (a, b) have different length, Euclidean 
distance, which only calculate the coincident part, will perform 
a bad effect. Dynamic time warping can stretch the series and 
allow a more robust measure. 
 
In this paper. We use DTW to measure the different time series 
data in taxi trajectory and realize the spatiotemporal spectral 
clustering. Suppose we have two taxi track Q and C, of length n 
and m, obviously they are time series data: 
 

, ,..., ,...,
, ,..., ,...,

1 2

1 2

=
=

i n

j m

Q q q q q
C c c c c

                            (6) 

Where iq is the taxi trajectory point which contains spatial 
(longitude and latitude) and temporal information. The distance 
between iq and jc can be calculate by this information. Because 
the different length of Q and C, using Euclidean distance is 
difficult to measure to distance. To align the sequences by DTW, 
we construct an n-by-m matrix. Each matrix element ( ,i j ) 

corresponding to the distance between iq and jc . A warping 
path W is contiguous set of matrix elements that defines a 
mapping between Q and C: 
 

1 2, ,..., ,..., w
max(m,n) k 1

=
≤ ≤ + −

i kW w w w
m n

                         (7) 

 
Where 1 (1,1)=w  and (m,n)=kw , the path W should start and 
finish in diagonally opposite corner cells of the matrix like 
figure 3.  

 
 

Figure 3: Calculate method of DTW. 
 
The n-by-m warping matrix constructed to align the taxi track Q 
and C, while the solid squares show the chosen warping path W. 
Obviously there are few paths meet the requirements. In the 
DTW, we choose the path which minimizes the warping cost. 
And the cost is defined as: 
 

k 1
cost( , )

K

kQ C w
=

= ∑                               (8) 

 
We use dynamic programming to find the optimal path, which 
defines ( , )v i j  as the cost of the optimal path from i  to j , 

thus (1, )v k  is equal to the minimum cost of Q and C. 
 

( , ) ( , ) min( ( 1, ), ( , 1), ( 1, 1))i jv i j d q c v i j v i j v i j= + − − − −      (9) 
 
The distance between taxi track Q and C can finally be obtained 
after the dynamic programming. Thus we can evaluate ijD  in 
the formula (1) and realize the spatiotemporal spectral 
clustering of the time series data in taxi trajectory.  
 

3. PARALLEL SPATIOTEMPORAL SPECTRAL 
CLUSTERING 

While the spatiotemporal spectral clustering perform well on 
time series data, it increase the complexity of the algorithm and 
cost too much time on large dataset like massive taxi trajectory.  
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In this paper, we propose a parallel method based on multiple 
acceleration solutions, while constructing the similarity matrix 
and Laplacian matrix, we use a load balanced multi-threading 
method to parallelize, and in the eigenvalue decomposition, we 
use the lanczos method to accelerate the algorithm. 
 

3.1 Constructing Similarity Matrix 

The similarity matrix is an n-by-n matrix, each matrix element (
,i j ) refers to the similarity of time series i  and j  by 

calculating the DTW distance between i  and j : 
 

2

( , )exp( )
2ij

DTW i jS
σ

= −                           (10) 

 
Using DTW to measure the distance will cost much time and it 
is necessary to accelerate the process. From formula (10) we 
can deduce that the process of calculating each element of the 
whole similarity matrix is independent thus we can assign the 
task to different threads and realize the parallelization. 
 

 
 
Figure 4. Multi-thread solution for constructing similarity 
matrix 
 
The similarity matrix is a symmetric matrix, and we just need to 
calculate half of the matrix (white part in figure 4). The 
computation can be divided into n task with different volume, 
we can assign the tasks to few threads on average. 
 
General multi-threading method splits the tasks continuously 
and put the task into a thread, however, the volume of each task 
is different and it leads to the load imbalances on threads. Multi-
threading programming blocks until every thread finishes its 
task, thus the time cost of is equal to the slowest thread. 
 
In this paper, we use a load balanced multi-threading method. 
The method splits the tasks in fixed intervals and put them into 
thread. Each thread costs roughly same time because of the 
balanced load on it. And the whole multi-threading 
programming will cost less time obviously. 

 
 

Figure 5. The diagram of general multi-threading and load 
balanced multi-threading. 

3.2 Constructing Laplacian Matrix  

The Laplacian matrix is calculated by subtraction of two matrix 
(formula 2). Alike to the similarity matrix, the computation on 
each element is independent and we can directly assign them to 
the different thread. 
 

 
 
Figure 6. Multi-thread solution for constructing Laplacian 
matrix 
 
The method converts the subtraction of the matrix to the 
subtraction of each row on its thread to realize the 
parallelization of constructing the Laplacian matrix. 
 

3.3 Laplacian Matrix Eigenvalue Decomposition 

By decomposing the Laplacian matrix and obtaining the 
eigenvectors which correspond to the top k-minimum 
eigenvalues, spectral clustering could get the clustering results 
after further processing.  
 
When dealing with the massive taxi trajectory, the Laplacian 
matrix is usually a large-scale matrix, and it will take lots of 
time to decompose the matrix and obtain its eigenvalues and 
eigenvectors. 
 
It is worth noting that the Laplacian matrix is a real symmetric 
matrix and another point is that we only need to obtain the top 
k-minimum eigenvalues not all eigenvalues. In this paper, we 
use Lanzcos method to accelerate decomposing the Laplacian 
matrix.  
 
Symmetric matrix have special data structures, and its 
eigenvalue’s decomposition method is an important problem in 
numerical computation. Lanczos method is suitable for 
calculating the top k-maximum and top k-minimum eigenvalue 
problems of large-scale symmetric matrix (Sonneveld, 2006). 
 
The Lanczos method create a tridiagonal matrix kT  first, and it 
transforms the problem into finding the eigenvalues of the 
tridiagonal matrix to approximate the eigenvalues of L, which 
obviously simplifys the problem. Then, with the increase of k, 
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the maximum and minimum eigenvalue of kT  will be closer to 
the maximum and minimum eigenvalue of the Laplacian matrix 
L. 
 
The matrix kT  can be calculated as: 
 

T
k k kT = V LV                                         (11) 

 
Where kV  is an orthogonal matrix, and 1 2[ , ,..., ]k kV v v v= . kT  
is a tridiagonal matrix: 
 

1 1
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
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Lanzocs method uses Lanzocs iteration (Duchon 1979) to 
determine the value of kT and uses its eigenvalues to 
approximate the eigenvalues of Laplaican matrix. 
 
 

4. EXPERIMENT 

4.1 Experiment Data  

In this paper, we use the taxi trajectory data of Wuhan city of 
Hubei Province in China in 2015 to carry out the experiment. 
The data consists of car ID, latitude, longitude, speed and time 
information, it is collected by hundreds of taxi and upload every 
10 second. 
 
The dataset contains abundant spatial and temporal information. 
 
The original trajectory data contains a bit of error, thus we first 
carry out the data cleaning, the methods includes outlier 
elimination, road network matching and so on. 
 

4.2 Experiment Environment  

The experiment is carried out to validate the quality and the 
performance of the presented method, the main environment 
configuration is set as:  
 
Processor: Inter(R) Xeon CPU E5-2630 v3 @ 2.4GHz 
Memory: 64GB 
  
The whole programming (including data process and algorithm) 
is written by Java and runs in JVM heap. The jdk version 
chosen in the programming is jdk8. ArcMap software is used to 
display the result of clustering. 
 

4.3 Clustering Results 

The spatiotemporal spectral clustering presented in this paper 
uses the dynamic time warping method to correct the spatial 
distortions caused by time problems and obtain the 
spatiotemporal distance. The effect of clustering is checked by 
experiment. 
 
In the experiment, we carried out spectral clustering on 
trajectories of the different taxis that have the same starting 
point and destination point on the same day, in order to mine the 

different route pattern from the selected starting point to 
destination point. 
 
We chose two different routes to operate the experiment, 
namely, from Wuchang Railway Station to WuHan Railway 
Station in Wuhan City, and from Wuchang Railway Station in 
Wuhan to Guanggu Square in Wuhan City. 
 
Firstly, the DTW method is used to calculate the spatiotemporal 
similarity between different trajectories, and the spatiotemporal 
similarity matrix between them is plotted: 
 

     
 
Figure7. The diagram of spatiotemporal similarity matrix 

 
Where (a) represents the result matrix from Wuchang Railway 
Station to Wuhan Railway Station while (b) represents the 
matrix from Wuchang Railway Station to Guanggu Square, and 
the depth of color represents the value of distance. 
 
Then, the spatiotemporal spectral clustering method is used to 
cluster the trajectories, and the clustering results are displayed 
on ArcMap. 
 

 
 
Figure8: The clustering results of the trajectories from Wuchang 

Railway Station to Wuhan Railway Station. 
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Figure9: The clustering results of the trajectories from Wuchang 

Railway Station to Guanggu Square. 
 
Figure8 and figure9 show that the spectral clustering method 
proposed in this paper considers both time and space factors, 
and the clustering result is basically based on the spatial 
similarity. From the clustering result, we can find the different 
patterns on the routes.  
 

4.4 Runtime and Speedup 

We use the dataset to calculate the runtime of original spectral 
algorithm and parallel spectral algorithm, according to that we 
calculate the speedup. 
 
In the experiment, we split the whole algorithm and count the 
runtime and the speedup of the part of multi-thread acceleration 
and eigenvalues decomposition acceleration respectively. 
 
Firstly we analysis the part of multi-thread acceleration, we 
adopt Java to implement it for its low encapsulation in multi-
thread, thus we can dispatch the resource in CPU and memory 
flexibly. While implementing, we use the thread pool 
technology of Java to optimize the whole process, thread pool 
technology unified management of each thread, avoids the 
opening and destruction of each thread and saves a great deal of 
the time cost (Weij et al., 2009). 
 
The part of multi-thread acceleration includes similarity matrix 
construction and Laplacian matrix construction. The two parts 
are unitedly calculated and counted in order to make the 
statistics more intuitive,  
 
We count the runtime of original spectral algorithm and parallel 
spectral algorithm on same dataset (20000 lines) and compare 
the speedup with different number of threads. 
 

Threads Time (Sec) Speedup 
2 26.707 1.51 
5 17.821 2.26 
10 12.205 3.30 
50 4.73 8.51 

100 2.82 14.24 
200 2.91 13.85 
300 2.89 13.93 

 
Tabel1: Speedup comparison for different number of threads in 

similarity and Laplacian matrix construction.   
 

 
 
 

 
 

Figure10. Runtime and speedup for different number of 
threads in similarity and Laplacian matrix construction. 

 
We choose the thread that has the best performance in figure 10 
(100) to count the runtime and speedup on different size of 
dataset. 
 
 

Data(line) O-Time(Sec) P-Time (Sec) Speedup 
1000 0.132 0.078 1.69 
2000 0.577 0.277 2.08 
5000 2.075 0.393 5.27 

10000 8.323 0.798 10.42 
20000 40.277 2.91 13.85 
40000 196.986 17.406 11.31 

 
Tabel2. Speedup comparison for different size of dataset in 

similarity and Laplacian matrix construction. 
 
In table2, O-Time represents the runtime of original spectral 
method while P-Time represents the parallel method. 
 

 
 

Figure11. Speedup for different size of dataset in similarity 
and Laplacian matrix construction. 

 
Then we validate the performance of the part of eigenvalues 
decomposition in our algorithm.  
 
We compare the Lanczos method with a classical fast eigen 
decomposition software which names LAPACK. LAPACK is a 
high performance linear algebra computing library written by 
Fortran. LAPACK is widely used in eigen problems and it is 
one of the underlying algorithms Library in MATLAB and 
Spark (Demmel et al., 2009). 
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In the experiment, we compare the runtime of Lanczos and 
LAPACK on the same datasets and calculate the speedup using 
Lanczos (k = 10). 
 
Data(line) LAPACK-

Time(Sec) 
Lanczos-

Time(Sec) 
Speedup 

1000 1.351 1.404 0.96 
2000 1.692 1.523 1.11 
5000 7.791 2.943 2.65 

10000 31.458 6.294 5.00 
20000 110.264 21.438 5.14 
40000 221.63 90.039 4.92 

 
Tabel3: Runtime and speedup comparison for Lanczos and 

LAPACK. 
 

  
 

Figure12. Runtime and speedup comparison for Lanczos 
and LAPACK. 

 
Tabel3 and figure12 show that in the normal size dataset, 
Lanczos performs is closed to LAPACK while in the large size 
dataset, Lanczos performs well. 
 
Finally, we count the runtime and speedup on the whole parallel 
spatiotemporal clustering algorithm. 
 

Data(line) 0-Time(Sec) P-Time (Sec) Speedup 
1000 1.573 1.582 0.99 
2000 2.369 1.723 1.37 
5000 7.791 3.836 2.03 
10000 41.781 8.092 5.16 
20000 154.541 26.348 5.87 
40000 537.431 104.685 5.13 

 
Tabel4: Runtime and speedup comparison on the whole parallel 

algorithm for different size of dataset. 
 

 
Figure13. Speedup comparison on the whole parallel 

algorithm for different size of dataset. 
 

 
5. CONCLISION AND FURTURE WORK 

This paper presents a parallel spatiotemporal spectral clustering 
to cluster the trajectory data effective and efficient. The 
important principles and procedures of the algorithm are 
introduced in the paper like DTW and Lanczos. The experiment 
is carried out in Wuhan city, China and it show that our parallel 
spatiotemporal spectral clustering performs well on the real 
dataset and actually accelerate the algorithm especially on the 
large dataset. 
 
The presented method still has some limitations, though it 
considers time and space factors by DTW, it mainly correct the 
spatial distortions caused by time problems and the research on 
temporal expansion of spectral clustering is not enough yet. In 
the later research, we will continue to research the 
spatiotemporal expansion of spectral clustering methods, and 
explore more effective spatiotemporal spectral clustering 
methods. Meanwhile, the application of trajectory clustering 
results with the related problems should be further studied. 
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