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ABSTRACT: 
 
Carbon dioxide emissions from urban road traffic mainly come from automobile exhaust. However, the carbon 
dioxide emissions obtained by the instruments are unreliable due to time delay error. In order to improve the 
reliability of data, we propose a method to correct the measured vehicles’ carbon dioxide emissions from 
instrument based on the CMEM model. Firstly, the synthetic time series of carbon dioxide emissions are simulated 
by CMEM model and GPS velocity data. Then, taking the simulation data as the control group, the time delay 
error of the measured carbon dioxide emissions can be estimated by the asynchronous correlation analysis, and the 
outliers can be automatically identified and corrected using the principle of DTW algorithm. Taking the taxi 
trajectory data of Wuhan as an example, the results show that (1) the correlation coefficient between the measured 
data and the control group data can be improved from 0.52 to 0.59 by mitigating the systematic time delay error. 
Furthermore, by adjusting the outliers which account for 4.73% of the total data, the correlation coefficient can 
raise to 0.63, which suggests strong correlation. The construction of low carbon traffic has become the focus of the 
local government. In order to respond to the slogan of energy saving and emission reduction, the distribution of 
carbon emissions from motor vehicle exhaust emission was studied. So our corrected data can be used to make 
further air quality analysis. 
 
 

1. INTRODUCTION 

The domestic and international research shows 
that the vehicle exhaust has become the main source 
of urban air pollution (Davics et al., 2006a). As one of 
the main ways of carbon emissions, urban traffic 
accounts for about 25% of the total carbon emissions 
of human activities (Cao et al., 2010). The 
construction of low carbon traffic has become the 
focus of the governments of the world (Castro et al., 
2012). Carbon dioxide emissions from urban road 
traffic mainly come from automobile exhaust (Ge et 
al., 2011). 

In order to respond to the slogan of energy 
saving and emission reduction, the distribution of 
carbon emissions from motor vehicle exhaust 
emission was studied. However, all these studies 
require accurate emission data. 

He, et al. used CMEM to simulate the emission 
characteristics of light vehicles in Wuhan, compared 
with the measured data, it found that the overall trend 
is basically consistent (Chengwei et al., 2008a).  

Lagged correlation analysis plays an important 
role in data mining based on time series (Zuojian et al., 
2016a), which can be used extensively in real life such 
as weather forecast, stock market analysis, moving 
object tracking, network analysis, and so on. Hailin Li 
proposed a method of asynchronous correlation 
analysis based on dynamic time warping, the 
experimental results demonstrate that the proposed 
method expands the research of correlation analysis 

for time series and has a strong robustness (Hailin et 
al., 2014a). 

Since most of the carbon dioxide emissions 
obtained by the instruments are unreliable due to time 
delay error (Brand et al., 2008a). To ensure the 
accuracy of the automobile exhaust emission analysis, 
we propose a method to correct the measured vehicles’ 
carbon dioxide emissions from instrument based on 
the CMEM model (Vincenzo et al., 2016a). Firstly, 
the synthetic time series of carbon dioxide emissions 
are simulated by CMEM model and GPS velocity data 
(Zheng et al., 2017a). Then, we automatically identify 
missing data in the measured data, so the travel data is 
broken into a series of consecutive time intervals in 
seconds. Finally, taking the simulation data as the 
control group, the segment time delay errors of the 
measured carbon dioxide emissions can be estimated 
using the asynchronous correlation analysis (Duan et 
al., 2013a). 
 

2. DATA 

Taking the taxi trajectory data within the scope 
of Wuhan City tricyclic and the Tianhe airport high 
speed line. We measured for seven consecutive days 
from November 4th to 12th in 2016, and there are five 
to eight segments each day from 8:00 am to 9:00 pm, 
which can be seen in table 1. We used three 
instruments at the same time during the experiment, 
they are installed on one taxi, from which we can get 
three sets of measured data. The following elaborates 
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all these instruments and their measured data. 
The GPS collects one data per second, mainly 

recording the vehicle’s velocity and trajectory data 
measured every second during the measured time 
(Hengfeng et al., 2013a). There are about 30,600 
locus points during 85 hours’ collection. And the 
trajectories are about 1,200km in total. The driving 
details and trajectories are given below in Table 1 and 
Figure 1. 
 
Date Start time End time Distance 
2016.11.04 8:01:35 20:30:03 183.7km 
2016.11.05 8:03:30 20:32:43 168.4km 
2016.11.06 7:52:03 20:03:03 203.9km 
2016.11.09 8:00:34 19:04:16 143.8km 
2016.11.10 7:53:05 20:54:23 201.9km 
2016.11.11 8:20:32 20:23:53 160.6km 
2016.11.12 8:28:23 20:12:23 156.5km 

Table 1. Trajectory basic information 
 

 
Figure 1. Trajectories 

 
The Optima7 portable flue gas analyser is 

mainly used to monitor carbon dioxide in the 
automobile exhaust in this paper. The AFRISO flue 
gas analyser M60 is used to monitor exhaust gas flow 
rate. And use the formula below, we can get the data 
waiting to be corrected: 
 

2co gas gas pipeVg V Sρ= ∗ ∗         (1) 

 
Where gasV is the data obtained from the 

AFRISO flue gas analyser, gasρ is the exhaust gas 

density, and pipeS is Cross sectional area of 

automobile exhaust duct. 
 

3. METHODOLOGIES 

This paper mainly used three methods to correct 
data error. We used CMEM model to simulate carbon 
dioxide emissions in real time, then the time delay 
error of the measured carbon dioxide emissions can be 
estimated by the asynchronous correlation analysis, 
and with the help of DTW algorithm, we can finally 
remove the delay error and extreme outliers of the 
CO2 emission data obtained by the Optima7 portable 
flue gas analyser and the AFRISO flue gas analyser 
M60. The data processing flow is shown in Figure 2. 
 

 
Figure 2. Data processing flow 

 
3.1 CMEM Model 

CMEM is a parametric analytical model based 
on exhaust emissions, it breaks down the emission 
process into many parts, and each part corresponds to 
the physical phenomena associated with emission 
during vehicle running. This process is decomposed 
and expressed by constructing characteristic 
parameters. CMEM the basic principle of calculating 
the content of each component in the exhaust gas is: 
Firstly, the engine power is calculated by vehicle 
dynamics principle, The fuel consumption rate is then 
obtained based on power, speed, and the current 
air-fuel ratio, The engine emission rate is calculated 
by the fuel consumption rate and the current burning 
ratio, Finally, the emission rate of the exhaust pipe is 
calculated by the engine emission rate and catalyst 
pass rate. The CMEM model is shown in figure 3. 
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Figure 3. Modal Emissions Model Structure 

 
As we can see in Figure 3, the CMEM model 

consists of six sub modules [6]. Respectively, the 
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engine power demand module, the engine speed 
module, the equivalent fuel to air ratio module, the 
fuel consumption module, the engine emission 
module, and the catalyst pass rate module. 
 
3.2 Asynchronous correlation analysis of time 

series 

For two time series Q  and C , if the data at 
the time point t  in time series Q  has an influence 

on the data at the time point t t+ ∆  in time series C , 
then it is considered that the data point ( , )Q t  has a 
relationship with the data point ( , )C t t+ ∆ . For 
simplicity, let ( , ) , ( , )i jQ t q C t t c= + ∆ = and 

( , ) ( , )i jr i j r q c=  which represents the relationship 

between data point iq and data point jc . 

According to the definition, there are three basic 
situations to reflect the relationship between different 
data points in time series: a) There is a correlation 
between synchronous time points, that is i jq c⇔ ;b) 

The data point iq has an impact on the data point

jc ,that is i jq c→ ;c) The data point jc has an impact 

on the data point iq , that is 
j ic q→ . 

Therefore, the correlation coefficient of time 
series A and B can be defined as follows 
 

1 1 1 1
( , ) ( , ) ( , )

j iK Kn m

i jk i jk
i k j k

ACA Q C r q c r c q
= = = =

= =∑∑ ∑∑    (2) 

 
Where, iK or jK  represents that the specific 

data point of a certain time series has an impact on iK
or jK continuous data points of another time series. 

The working principle of ACA is to find two new 
sequences with equal length between the two time 
series 'Q and 'C to make the two time series accurately 
reflect the asynchronous correlation between the 
original time series Q and C .  
 
3.3 DTW algorithm 

Mining in time series data, dynamic time 
warping is a method of similarity measurement of 
strong robustness. Through the relationship between 
the points at different times, and adjust the sequence 
corresponding to the element, you can get a curved 
path. The optimal time series reflects the correlation 
between the minimum distance and the optimal path 
corresponding to the bending. 

The definition assumes that there are two time 
series { }1 2, , mQ q q q= L and 

{ }1 2, , ,mC c c c m n= ≠L ,which means the relationship 

between the time series of  DTW can deal with 
different length, and can find the optimal path in 
bending { }1 2, , kP p p p= L  to obtain the minimum 

distance metric ( ),DTW Q C , that is,  

 

( ) ( )
1

, min
k

lP l
DTW Q C d p

=

= ∑         (3) 

 
Where ( ) ( ) ( ) ( )2

, , ,l i j i jd p d i j d q c q c= = = , in the 

distance values of the corresponding sequences, 
between the different elements of the curved path. At 
the same time, the curved path must satisfy the 
boundary and continuity and monotonicity, the 
optimal bending path starting and ending in sequence 
starting and end point position, and the cost matrix of 

1lp +
may only appear in the three cell in the upper left 

corner of the in 
lp adjacent. In order to solve the 

equation (1), the dynamic programming method can 
be used to obtain the optimal bending path and 
minimum bending distance. 
 

4. ANALYSIS AND RESULTS 

4.1 Interruption of journey 

In the process of recording data, data loss is 
bound to exist. Therefore, when there is a missing 
data, we interrupt the trip once. Firstly, we identify 
missing data in the GPS and interrupt the recorded 
interrupt location at the missing point. And then, on 
the basis of the interruption trip of the GPS record, the 

time discontinuity in the
2coVg is identified, the 

interruption position is recorded again, and the 
segmentation is counted. Take the first day’s data as 
an example, section results are shown in Table 2. 
 

Trip 
Table Column Head 

Segments Start Time End Time 

1 47 8:17:39 9:40:04 

2 20 11:06:18 12:22:32 

3 1 13:20:26 14:22:26 

4 31 14:44:25 15:26:57 

5 100 15:47:20 17:19:20 

6 24 18:50:53 20:47:49 

Table 2. Segmentation results 
 
 As we can see in the Table 2, the trip is 
interrupted into many segments, and the amount of 
data in each section is greatly reduced, which provides 
great convenience for correlation analysis. 
 
4.2 The elimination of segment delay error and 

the outliers 

Take the first day’s journey as an example, in 
Figure 4, its driving trajectory is showed by the red 
line, and the other six days’ trajectory is showed by 
black lines. We can see that we have almost collected 
all the roads within the tricyclic Wuhan City. 
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Figure 4. The first day’s driving trajectory 

 
For one day’s data, after a number of 

interruption, we can refer to the simulated data 
obtained by the CMEM model, and doing 
asynchronous correlation analysis for each stroke. 
And then in each stroke, we figure out outliers and 
make modifications to recalculate the correlation 
coefficients between the two sets of data. 

To make an analysis, the first day’s first 
segment’s asynchronous correlation analysis result is 
show in Figure 5. There are 47 asynchronous 
correlation coefficients between control group and the 
measured taxicab exhaust emission data. Each blue 
line represents a package trip. We found out that most 
of the segments have high correlation coefficient with 
the simulated data, which means no time delay error 
in these segments. There are only five segments need 
to eliminate time delay error. In fact, our instrument is 
sensitive, and when the correlation coefficient appears 
the first maximum, the data has reached a strong 
correlation, so we take the first peak as the delay 
error. 

After the elimination of segment delay error, we 
found out the outlier and correct them. In Figure 6, 
before correcting outliers, the correlation coefficients 
is in the blue line. It is easy to see that there are five 
segments show low correlation with simulated data, 
which is consistent with the results shown in Figure 5. 
And after the outliers’ eliminate, the correlation 
coefficients is in the red line. And at the same time, in 
the rejection of outliers, we control the corrected 
outliers, which account for less than 5% of the total 
data points. It shows that the correlation coefficients 
have been improved definitely and most segments 
reached strong correlation. 
 

 
Figure 5. Asynchronous correlation coefficient 

 

 
Figure 6. The outliers’ elimination effect 

 

4.3 Analysis of error correction results 

In the process of data collection, there are a lot of 
reason to produce errors and it is impossible to avoid 
them. After the elimination of segment time delay 
error and the outliers, it is easy to see that we can get a 
better group of data. 

First, the asynchronous correlation coefficients 
before error correction are added to the attribute fields 
of the trajectory data. Then, the asynchronous 
correlation coefficients after error correction are 
added to the attribute fields of the trajectory data. Use 
different colours to indicate the different degree of 
correlation, so we can see the correct effect more 
intuitive.  

In Figure 8, there are 14 pictures. The picture in 
the same row represents the same day's data. The first 
to seventh row representing the first day to the 
seventh day respectively. The first column represents 
the correlation coefficient distribution before data 
correcting, and the second column represents the 
correlation coefficient distribution before data 
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correcting. In each picture, there are three kinds of 
lines in different colour. The red one represents low 
correlation coefficients, which means the correlation 
coefficients is lower than 0.4. The green one 
represents moderate correlation coefficients, which 
means the correlation coefficients is 0.4-0.6. The red 
one represents high correlation coefficients, which 
means the correlation coefficients is 0.6-1. 

We have statistics on the two sets of data. One 
set is before the error correction, the proportion of 
routes with less asynchronous correlation. The other 
group is after error correction, the percentage of 
routes with less asynchronous correlation. The result 
shows in figure7. 

 

 

Figure 7. The data correction result 

 
 As we can see in Figure 7, more than half of the 
low correlation coefficient segments have been well 
corrected. Then we visualize the result in Figure 8. 
After correcting the data, the red trajectories are 
obviously reduced, and the green and blue trajectories 
are increased equally.  
 It is obvious that we can get higher correlation 
coefficients after data correction. The trend of the 
measured data is closer to the theoretical simulation 
data, which indicates that the availability of actual 
measurement data is greatly improved. 
 

 
Figure 8. Trajectory data comparison 
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5. CONCLUSION 

In this study, we propose a method to correct the 
system delay error based on asynchronous correlation 
analysis. By applying this method to our measured 
data, we found that the correlation coefficient between 
the time series of the corrected data and the control 
group were significantly improved. The availability of 
actual measurement data is greatly improved, which 
suggested the feasibility of our method. The corrected 
emission data can be used to study the spatiotemporal 
visualization analysis, which will benefit the 
sustainable urban planning, such as urban traffic 
planning and environmental protection.  

However, there are still some deficiencies in the 
current research. In the actual measurement, time 
delay of the measured time series is dynamic, but we 
assumed that they are not changing in one segment. 
To be exact, the time series correction method based 
on dynamic time warping needs further investigation.  
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