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ABSTRACT: 

Discrete global grid system is a new data model which supports the fusion processing of multi-source geospatial data. In discrete 

global grid systems, all cell operations can be completed by codes theoretically, but most of current spatial data are in the forms of 

geographic coordinates and projected coordinates. It is necessary to study the transform between geographic coordinates and grid 

codes, which will support data entering and getting out of the systems. This paper chooses the icosahedral hexagonal discrete global 

system as a base, and builds the mapping relationships between the sphere and the icosahedron. Then an encoding scheme of planar 

aperture 4 hexagonal grid system is designed and applied to the icosahedron. Basing on this, a new algorithm of transforms between 

geographic coordinates and grid codes is designed. Finally, experiments test the accuracy and efficiency of this algorithm. The 

efficiency of code addition of HLQT is about 5 times the efficiency of code addition of HQBS. 

1. INTRODUCTION

Discrete Global Grid Systems (DGGS) is a new global-oriented 

data model, of which the main characteristic is the digital 

representation of geospatial location. DGGS partition the globe 

into uniform grid cells in hierarchical structure and address 

every cell using location code to substitute for traditional 

geographic coordinates in operation. Compared with the 

traditional spatial data models, DGGS take the globe as the 

research object and provide worldwide uniform space datum. 

Each grid cell is correspond to one geographical location and 

cell size will change in terms of the level of grid, which help 

process of multi-resource, isomerous and multi-resolution 

geospatial data. Moreover, in DGGS, geometrical operation of 

grid cells can be achieved completely by location codes which 

improve efficiency of data computation and process.1 

Common cell shapes used by DGGS are triangles, quadrangles 

and hexagons. Compared with other two shapes, the topological 

relationship of hexagonal grids is consistent, which is beneficial 
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for spatial analysis like adjacency and connection (Sahr et al., 

2003; Ben et al., 2015a). Spatial sampling efficiency of 

hexagonal grids is highest and helps data visualization (Sahr, 

2011). The processing efficiency of sampling values is about 20 

percent to 50 percent higher than quadrangles (Sahr, 2011).  

In the regular polyhedral DGGS, the icosahedron has the most 

face, hence its geometric distortion after projection is minimum. 

Now, many researchers at home and abroad have made relevant 

research into the icosahedral hexagonal discrete grid systems. 

Sahr et al. (Sahr, 2005; Sahr, 2008) realized the fast indexing of 

cells at different resolutions based on the Icosahedral Snyder 

Equal Area aperture 3 Hexagonal grid (ISEA3H). Vince and 

Zheng (Vince and Zheng, 2009) designed the algorithms of 

location code operation and Fourier Transform of the 

icosahedral aperture 3 hexagonal grid system. Tong et al. 

(Tong , 2010; Tong et al., 2013) designed an indexing structure 

called the Hexagonal Quad Balances Structure (HQBS). Ben et 

al. (Ben et al., 2015a; Ben, 2005; Ben et al., 2007; Ben et al., 

2010; Ben et al., 2011; Ben et al., 2015b) researched into the 

generation algorithm, code indexing and real-time display of 

hexagonal DGGS. In engineering, PYXIS Innovation 
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Corporation in Canada developed the spatial data integration 

software based on the ISEA3H grid system and its core 

technology is PYXIS grid indexing patent (Peterson, 2006). 

 

Although current research has made considerable progress, 

some deficiency exists. In the PYXIS scheme, the direction of 

grid cells will change with levels of resolution, which is not 

beneficial to spatial analysis like adjacency. The concept model 

of HQBS is so complicated that there are frequent failure in 

code regularization and operaions will rollback, which seriously 

affects computational efficiency.  The operations of cells can 

be completely realized by location code in grid systems, but at 

present most spatial data are still represented and stored in the 

form of traditional geographic coordinates or projection 

coordinates. To ensure that spatial data can transform between 

the traditional data organization framework and grid systems at 

a high speed, it is necessary to make research on conversion 

between geographic coordinates and location codes. 

 

Above all, this paper chooses the icosahedral DGGS and firstly 

establishes the mapping relationship between the regular 

icosahedron and the sphere. Then, an encoding scheme of the 

planar aperture 4 hexagonal grid system is designed and applied 

into the icosahedron skillfully. Based on this, we desinged a 

new algorithm of conversion between geographic coordinates 

and location codes of grids and compares with the scheme 

HQBS to verify validity and high efficicency of the algorithm. 

 

2. LOCATION OF THE REGULAR ICOSAHEDRON 

AND MAPPING RELAITON WITH THE SPHERE 

 

In order to establish the mapping relation between the surface 

of a regular icosahedron and the sphere, firstly we should 

determine the location relationship between the regular 

icosahedron and the earth spheriod. Locate two vertices of the 

regular icosahedron at the north and south poles respectively 

and locate another one vertex at (0±;25:56505±N ). Then 

flatten the regular icosahedron and number each vertex or 

assign every vertxe an index as illustrated in Figure 1. The rule 

is as the following: Vertex located at the North pole and South 

pole are indexed as 0 and 11 respectively. The number 1 vertex 

is at the baisi meridian and the restcan be done in the same 

manner. Apart from vertices, faces are needed to be indexed as 

well: faces north of 25:56505±N  are assigned 0-4 and faces 

sharing common edges with them are assinged 5-9. Similarly, 

faces south of 25:56505±S  assigned 15-19 and faces sharing 

common edges with them are assinged 10-14. According to the 

above relations, given a point P (B ;L ) whose geograohic 

coordinates, that is longitute and latitude, is known, the index 

T P  of the triangular face P (B ;L ) belongs to can be 

obtained.  

 

For the projection between the regular icosahedron and the 

sphere, this paper adopts Snyder Equal-area Map Projection for 

polyhedral globes to establish the mapping relations of single 

face of the icosahedron and the sphere. The Snyder projection 

ensures the continuity of network of longitude and latitude and 

decrease the distortion at the same time. The forward and 

inverse solution, detailed procedure and algorithms of Snyder 

Equal-area Map Projection can be referenced in Snyder (1992) 

and Ben et al. (2006) but not discussed in this paper.  

 

In terms of the above location and projection, given a point 

P (B ;L ), compute the triangular face number T P  it locates at, 

then via Snyder projection, the 2D Cartesian coordinate 

p(xp;yp) of P  in the triangular face can be obtained. Herein 

introduce the coordinate system O ¡ X Y  in triangular face 

as shown in Figure 1. The origin O  is at the centroid of the 

regular face. Face indexed as 0-4 and 0-14 are called ‘ Up 

Triangular Face’ whose directions of axis are the same as Face 

2. Similarly, Face 5-9 and Face 15-19 are called ‘ Down 

Triangular Face’, whose directions of axis are the same as Face 

7. Hence, conversion between geographic coordinates and 

locaiton codes are simplified into a single triangular face. 
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Figure 1. Indexes of vertices and faces in the 

icosahedron and the coordinate system in triangular face 

 

3. ENCODING OF THE A4H 

 

3.1 Encoding scheme and code addition of the planar A4H 
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Above analysis, in order to complete the conversion, we need to 

research relationship between locaiton codes on the triangular 

faces and the correspongding 2D Cartesian coordinates. Centers 

of grid cells are called lattice, which are identified with grid 

cells in our research. For convnence of code substitution, this 

paper adopts complex numbers to represent lattice locations 

(Vince, 2006a, 2006b). Thereinaftet, let n  denote the partition 

level of grids, and the higher the level, the finer the resolution 

or the size of grid cell. According to geometry of the aperture 4 

hexagongal grid system (A4H), lattice at level n , n > 1, 

comprises lattice and midpoints of each cell edges at level 

n ¡ 1.  

On the complex plane, let ! 0 =
1

2
+

p
3

2
i, D 0 = f0;! 0;! 02, 

;! 03;! 04;! 05;! 06g , ! = ¡
1

2
+

p
3

2
i and D = f0;!;! 2 , 

;! 3g, the set of lattice of A4H is given by  

8
>><

>>:

L 1 =
1

2
D
0

L n = L 1 +
nP

i= 2

1

2i
D

          (1) 

where ‘
P

’ and ‘+’ mean accumulation among sets. 

 

In equation (1), representation of each lattice is unique, which 

satifies the requirement of the location code for uniqueness. Let 

x = :d1d2 ¢¢¢dn (d1 2 D
0;d2;¢¢¢;dn 2 D )  denote 

x 2 Ln;n > 1, d1,d2,…dn  are all complex numbers so it is 

not convenient for expression and computation. Now, replace 

di, 1 6 i6 n , with location codes. Omit the base of power 

exponents in equation (1) and make replacement as below 

d1 = !
0e ! e(1 6 e 6 6);di = !

e ! e(1 6 e 6 3; 

;2 6 i6 n), where the digit set D 0 becomes E 0 = f0 ;1 ;2 ; 

3 ;4 ;5 ;6 g and similarly D  becomes E = f0;1;2;3g. 

Hence, we get the unique identifier of x 2 L n  e1e2 ¢¢¢en .   

(e1 2 E
0;ei 2 E ;2 6 i6 n) Location codes of L3 is shown 

in Figure 2. Lattices at different levels and their relations are 

expressed using circles and triangles with different size. For 

convenience of representation, thereinafter name the 

hierarchical structure of lattice of A4H Hexagonal Lattice Quad 

Tree (HLQT). 
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Figure 2. Representation of codes in the 3rd level and 

examples of code operation 

 

Code operation is more suitable for computaionally processing 

geometric operation of cells and used to substitute for 

traditional operation using floating points. In HLQT, the 

location code records the distance and direction of the lattice to 

the origin whose code is conpletely made up of digit 0 and the 

addition and substraction of location codes are equivatent to the 

addition and substraction of vectors on the complex plane and 

satisfy parallelogram law of vectors. In the conversion from 

geographic coordiantes to locaiton codes, we also use the 

addition operation of location codes, hence we simply introduce 

some properties of code addition and operation rule by 

induction.  

 

In HLQT, Code set H n;n > 1 , is a commutative group 

G fH n ;© g and has the following properties: 

1. Closure. 8® ;̄ 2 H n，® © ¯ 2 H n . 

2. Associativity. 8® ;̄ ;µ 2 H n , (® © ¯)© µ = ® © (̄ ©  

µ). 

3. The Identity element exists. 8® 2 H n , 9e, ® © e = e©

® = ® . For G fH n ;© g, e = 0 . 

4. The inverse element exists. 8® 2 H n ， 9¯ , if 

® © ¯ = ¯ © ® = 0 , ¯  is the inverse element of ® and 

denoted ® . For G fH n ;© g, ¯ = ® = ¡ ® . 

5. Commutativity. 8® ;̄ 2 H n , ® © ¯ = ¯ © ® . 

 

As illustrated in Figure 2, for the identity element, 
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233 © 000 = 233 . For the inverse element, 010©  

510 = 0;510 = 010 . For the property (5), 010 © 123 = . 

123 © 010 = 233 . And these properties make G fH n ;© g 

the Abelian group.The operation rule of code addtion is similar 

to the decimal addition essentailly. In operation , we reference 

the addition table as Table 1. 

 

Table 1. Addition table of seven code cells 

 

©  0  1  2  3  4 5  6  

0  0  1  2  3  4 5  6  

1  1  100  20  2  0  6  10  

2  2  20  200  30  3  0  1  

3  3  2  30  300  40  4 0  

4 4 0  3  40  400  50  5  

5  5  6  0  4 50  500  60  

6  6  10  1  0  5  60  600  

 

3.2 Extend of the encoding scheme onto the icosahedron 

 

Hereinbefore, we discussed the encoding scheme on the infinite 

2D plane, but the surface of the regular icosahedron is closed. 

In order to extend the encoding scheme to the regular 

icosahedron, ‘face tile’ and ‘vertex tile’ are used to depict its 

structure. The flattened icosahedron is shown in Figure 3. The 

face tiles are centered at the center of each triangle of the 

icosahedron and the cells of them are filled in white. The vertex 

tiles are centered at the center of each vertex of the icosahedron 

and the cells of them are filled in red and green. 

 

Denote the set of lattice of the icosahedral A4H at level n  

G n (n > 1). G n  comprises two parts. One part is 20 face 

tiles A in ;i= 0;1;¢¢¢;19  and i  is the index of the 

triangular faces the face tile is centered at. Another part is 12 

vertxe tiles V jn ;j = 0;1;¢¢¢;11 and j is the index of the 

vertex the vertex tile is centered at. That is  

G n =
19[

i= 0

A in [
11[

k= 0

V jn。 

Denote the triangular face T a;b;ci , where a, b and c are 

indexes of the vertices of the triangle and i is the index of the 

triangle, i= 0;1;¢¢¢;19. T a;b;ci  comprises a complete Pi 

and part of Va , Vb and Vc. According to Section 2, we can 

compute T P  , which is i herein equivalently, using 

geographic coordinates. If T P  is obtained, it is easy to get the 

indexed of vertices in term of Figure 1 and the code structure in 

this triangular face.  

 

The arrangement of location codes on the face tile is consistent 

with that on the vertex tile except the number of grid cells as 

illustrated in Figure 4, which has no effect on the algorithm. 

According to this, make the tile as the unit when executing code 

operation. Hence define the 2D coordinate system O 0¡ X 0Y 0

in the face tile and vertex tile. As shown in Figure 4, define the 

lattice whose code is all made up of digit 0 as the origin O 0, 

the line of origin and lattice whose code is 010 as X-axis and 

Y -axis conforms to the right-handed coordinate system. 

Obviously, O 0¡ X 0Y 0 of the face tiles is equal to the 

corresponding O ¡ X Y  in the triangular faces, but 

O 0¡ X 0Y 0 of the vertex tile will translate and rotate 

according to the triangular face and vertex it associates with. 

 

 

Figure 3. Vertex tiles and face tiles in the flattened icosahedron 
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Figure 4. Codes and coordinate systems in Vertex tiles and face tiles 

4. CONVERSION BETWEEN GEOGRAPHIC

COORDINATE AND LOCATION CODE

The conversion has two forms. One is from geographic 

coordinates to location codes, another is from location codes to 

geographic coordinates. 

4.1 Conversion from geographic coordinates to location 

codes 

In this conversion, we introduce a three-axis coordinate system 

IJK ¡ O  as shown in Figure 5. The origin of IJK ¡ O  is

consistent with O 0¡ X 0Y 0, and J-axis is the same as Y 0-axis.

The included angles of the three axes in the positive direction 

are all 120±, which divides the plane into six quadrants.

The basic idea of this conversion is that given a point 

P (B ;L ) on the sphere, compute the 2D Cartesian coordinate

p(xp;yp) on the O ¡ X Y  of a single triangular face

according to the location parameters of the regular icosahedron 

and forward solution of Snyder Projection. Then, in terms of 

the relationship of the triangular faces, face tile and vertex tile, 

converse p(xp;yp) to p(xq;yq) on the correspongding tile

O 0¡ X 0Y 0 this point belongs to. In IJK ¡ O , using the

parallelogram law, project p(xq;yq) to the 2 axes wich are

more closer to it and obtain two component code ®1 and ® 2 

in the two axes. Finally, add ®1 and ® 2 in terms of rule of

code addition and get the location code where p is located.

The result (A i;®) or (Vi;® ) comprises the tile and location

code associated with p.
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Figure 5. Conversion from geographic coordinates and 

location codes 

The choose of projection axes can be judged by the angle 

between the line of p and the origin O  and X 0 axis. I , J

and K  axes are lines through a series consecutive lattice and

via induction, the lattter n ¡ 1 digits of location codes of

lattice at these three axes have the following relaitonship with 

k
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N fn ¡ 1g =

8
><

>:

3 ¢D B in (k) ® 2 I

1 ¢D B in (k) ® 2 J

2 ¢D B in (k) ® 2 K

 

where k  denotes the position of lattice at the axis and 

D B in (k) represents the binary number of k . Although the 

first digit doesn’t match the rule of binary system, its relation 

with k  is easy to obtain as well. Finally, in terms of code 

addition, the location code of the cell p is inside is given by 

® = ® 1 © ® 2 

 

4.2 Conversion from location codes to geographic 

coordinates 

 

The conversion from location codes to geographic coordinates 

is easier. For the icosahedral code structure, the same code will 

exist in different tiles, hence apart from the location code, the 

index of the face tile or vertex tile is needed to be given as well. 

Given (A i;®) or (Vi;® ), the detailed steps are as the 

following: 

1. Compute the complex number representation of the 

location code ® . 

According to Section 2, the lattice is number of a special form 

on the complex plane and the form of location code is just 

another efficient representation for it. Location code and 

complex number of the lattice can transform each other. Let the 

level of grid be n , ® = e1e2 ¢¢¢en , ²en = 0 ¢¢¢0| {z }
n ¡ 1

;n > 2; 

e 2 f0 ;1 ;2 ;3 g, the complex number of ®  denoted C (® ) is 

that 

C (®) = C (e1e2 ¢¢¢en )

= C (e1)+ C (²
e2
1 )+ C (²

e2
2 )¢¢¢+ C (²

en
n )

= 2n ! 0e1 + 2n ¡ 1! e2 + ¢¢¢+ 2! en

= 2n ! 0e1 +
nX

i= 2

2n ¡ i+ 1! ei

 

here the real part and imaginary part of C (® ) are 

corresponding to (xq;yq) in the coordinate system of tiles 

. 

2. Translate and rotate (xq;yq) into p(xp;yp) in the in 

the coordinate system of triangular faces. 

 

3. Via the inverse computation of Snyder Equal-area Map 

projection, obtain the resulitinf (B ;L ). The detailed 

process of inver computation can refer to Snyder (1992) 

and Ben et al. (2006). 

 

5. EXPERIMENTS AND ANALYSIS 

 

To verify the efficiency of the algorithm, we test the efficiency 

of code addition for the HLQT scheme and compare it with 

HQBS in that both the 2 shcemes use A4H and Snyder 

projection and the important factor influencing efficiency is the 

effiency of code operation. We adopt Visual C++ 2012 ad the 

development tool, compile the two algorithms into release 

versions and operate on the same compatible PC (Configuration: 

Intel Core i5-4590 CPU@3.3GHz ,8G RAM, KingSton 120GB 

SSD; Operating System：Win 7 X64 Ultimate SP1; ). The result 

and the correlation curve of efficiency are shown in Table 3 and 

Figure 6 respectively. 

 

We can see from Figure 6 that the efficiency of code addition of 

HLQT is obviously higher than HQBS and about 5 times the 

efficiency of code addition of HQBS. 

 

Table 2. Statistical Results of computaional efficency 

about the two codes schemes 

 

Scheme 

 

 

Level 

HQBS HLQT 

Cells’ 

number 

Efficiency 

（cells/ms） 

Cells’ 

number 

Efficiceny 

（cells/ms） 

6 4096 1442 5000 9540 

7 3000 1354 5000 8011 

8 3000 1265 5000 6734 

9 3000 1260 5000 5892 

10 3000 1212 5000 4946 

 

HQBS

HLQT

Level of grid (level)

E
ffic

ie
n

c
y
 (c

e
lls

/m
s
)

 

Figure 6. Comparison of computational efficiency 

about addition in the two schemes 
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6. CONCLUSIONS

This paper designs an encoding scheme named HLQT for the 

planar hexagonal aperture 4 grid system. Via the struture ‘face 

tile’ and ‘vertec tile’, we map this scheme onto the surface of 

the regular icosahedron and based on this, purpose a new 

algorithm of conversion between geographic coordinates and 

location codes. By contrast experiments, the superiority of 

HLQT in efficiency is verified.Moreover, this paper just realize 

the conversion between geographic coordinates and location 

codes. In order to realize geospatial data with different forms 

entering and getting out of DGGS, there is still lot of work 

needed to be done. 
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