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ABSTRACT:

The shape of a live pig is an important indicator of its health and value, whether for breeding or for carcass quality. This paper
implements a prototype system for live single pig body surface 3d scanning based on two consumer depth cameras, utilizing the 3d
point clouds data. These cameras are calibrated in advance to have a common coordinate system. The live 3D point clouds stream of
moving single pig is obtained by two Xtion Pro Live sensors from different viewpoints simultaneously. A novel detection method is
proposed and applied to automatically detect the frames containing pigs with the correct posture from the point clouds stream, according
to the geometric characteristics of pig’s shape. The proposed method is incorporated in a hybrid scheme, that serves as the preprocessing
step in a body measurements framework for pigs. Experimental results show the portability of our scanning system and effectiveness
of our detection method. Furthermore, an updated this point cloud preprocessing software for livestock body measurements can be
downloaded freely from https://github.com/LiveStockShapeAnalysis to livestock industry, research community and can be used for
monitoring livestock growth status.

1. INTRODUCTION

The shape, or conformation, of a live pig is an important indicator
of its health and value, whether for breeding or for carcass qual-
ity. Currently most assessments of live animal conformation are
carried out by eye or hand, and depend on the subjective opin-
ion of the buyer or stockman. Shape plays a role in measuring
the general health of the animal. In case of pigs, this is typi-
cally estimated from fatness, which is expressed as a condition
score on a scale from 1 to 5(Wu et al., 2004). The main method
for determining the score is by touch, combined with a visual
inspection of the shape as seen from the rear(Whittemore and
Schofield, 2000). Weight can be estimated from shape measure-
ments. Regular weighing is important because it allows the diet
to be matched to the requirements of the pigs. The traditional
method of weighing without scales is to measure the girth just
behind the front legs with a weight tape, but researchers showed
that it can also be estimated non-invasively from images or 3D
point clouds(Li et al., 2014).

To measure body shape of pigs, we implement a portable 3D
scanning system to acquire point clouds stream of live single pig
body surface and propose one novel detection method to automat-
ically detect the frames containing pigs with the correct posture
from the point clouds stream, according to the geometric charac-
teristics of pig’s shape. Finally, the proposed method is integrated
into a body measurements framework for livestock as the prepro-
cessing step.

The overall structure of the paper is organized as follows. The
next Sec.2 gives a summary of the related work on livestock body
shape measurements from point cloud data. In Sec.3 portable 3D
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scanning system for live pig under farming circumstances is ad-
dressed. In order to measure body shape of pig, the novel de-
tection method for recognition of frames with correct posture is
presented in Sec.4. Sec.5 includes scenarios from agricultural ap-
plications and thus addresses the initially stated problem. Then
we show results in Sec.6. Concluding remarks and prospective
problems are discussed in the final section.

2. RELATED WORKS

The use of imaging or vision systems to predict or measure pigs
body shape has been presented in several papers during the last
30 years(Wongsriworaphon et al., 2015, Kongsro, 2014). Vision
systems based on visible light is often affected by variation in
ambient lighting, and must be calibrated accordingly. Differ-
ences in animal color and subtraction of background is often a
difficult task. Additionally, the lack of the third dimension in vi-
sion limits applications utilizing depth information. Photogram-
metry stereo techniques have been introduced to measure farm
animals in three dimensions(3-D)(Wu et al., 2004). However,
these photogrammetric systems are difficult to implement under
farming circumstances. Novel 3D scanning systems can solve
the problems posed by conventional 2-D vision systems, includ-
ing photogrammetry stereo techniques(Kongsro, 2014). As a re-
sult, there has been increasing demand for these techniques in
livestock farming. Recently, consumer depth sensors based on a
structured infrared-light(IR) system, such as the Microsoft Kinect
(Weber et al., 2015)or the ASUS Xtion Pro, provide 3D data at
low cost and have opened new possibilities for acquiring informa-
tion of livestock conformation. Weber et al. have written the soft-
ware for recording 3D images from TOF camera(SwissRanger
SR4000, MesaImaging, Switzerland), taken several cuts along
aligned pose of cow through a cow’s surface in order to calcu-
late traits that are meaningful to the surface’s changes induced by
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varying body condition during lactation(Weber et al., 2014). But
they only observed part body surface of livestock. A calibrated
3D reconstruction system for cattle using three Kinect sensors
was introduced to 3D scan the whole body, the important traits
for evaluating the shape and posture of the cow were estimated
using the point cloud data aligned with tilt sensor(Kawasue et al.,
2013). However, this whole livestock body surface 3D scanning
system needs to be fixed in one room. Thus users have to pull
the livestock into the right spot. However, this whole livestock
body surface 3D scanning is time consuming and costly for farm-
ers due to that user have to pull the livestock into the right spot
in order to scan the whole body surface. On the other hand, high
levels of stress can be induced by pulling the livestock into the
right spot, especially in the case of younger livestock.

As increasing number of studies for shape measurement purposes
in livestock farming, many software have been developed in or-
der to acquire 3D surface data of livestock(Kawasue et al., 2013,
Weber et al., 2014, Guo et al., 2013), to measure livestock con-
formation(Weber et al., 2014). However, many of these systems
were designed only for scanning part of livestock body and state
of art livestock whole body surface scanning systems were hard
to deploy under livestock production circumstances.

In this work, our contribution is to implement one portable 3D
scanning system for live pig under farming circumstances, pro-
pose one novel detection method to automatically detect the
frames containing pigs with the correct posture from the point
clouds stream, according to the geometric characteristics of pig’s
shape and apply it on the livestock body measuring pipeline suc-
cessfully.

Figure 1. Capturing setup for scanning live pig

3. 3D SCANNING SYSTEM OF LIVE PIG

A point cloud generated by an RGBD camera is a 2.5D descrip-
tion of the actual scene. Thus these kinds of data are unmeasur-
able due to occlusions from one view point. This motivated the
usage of double RGBD cameras setup to achieve a full 3D de-
scription of a pig as shown in Fig.1. This typical capturing setup
would avoid interference issues(Macknojia et al., 2013) between
two depth cameras due to the fact that two depth cameras face
each other, but are occluded by the scene content. In the follow-
ing subsections we describe how to scan the whole live pig with
this setup.

3.1 Calibration tool for two RGBD camera(Xtion pro live)

In general, techniques for 3D reconstruction using RGBD images
combine scans from a single moving camera. These techniques

build a 3D model of the scene over time by aligning and concate-
nating successive scans(Zollhöfer et al., 2014, Hao and Mayer,
2013). In contrast, our goal is to provide the reconstructed 3D
non rigid object observed from two views simultaneously. To
realize a system using multiple Kinects, it is one of fundamen-
tal and essential tasks to calibrate their cameras, that is, intrinsic
parameters including their focal length and radial distortion and
extrinsic ones consisting of their rotation and translation. Many
automated calibration solutions were proposed (Staranowicz et
al., 2014, Macknojia et al., 2013). However, those methods are
heavily dependent on man made objects(checkerboard etc) which
may be easily damaged under farming circumstances. More over,
automated calibration solutions are not always be robust enough
under different conditions. The work presented this section intro-
duces a calibration tool we implemented for two Xtion pro live
devices, which specifically addresses only external parameters
that are the relative position and orientation between both depth
cameras. Research shows that improvement of accuracy is lim-
ited by internal calibration of depth sensors. Therefore intrinsic
parameters for the color and IR cameras and extrinsic parameters
between them are obtained from SDK driver directly in our work.

The calibration procedure starts by acquiring two point clouds
denoted by S = {si} and T = {ti}, from both depth cameras
respectively. Then the relative position and orientation between
both depth cameras can be estimated by aligning S and T . To do
so, the calibration tool is designed to allow users choose multi-
ple corresponding points from two point clouds which are then
used to estimate the rigid transformation for alignment of two
point clouds. The resulting set of correspondences is denoted
by K = {(si, ti)} with si ∈ S and ti ∈ T . Based on the corre-
spondences from the previous stage, the transformation supported
by the correspondences is computed and it is refined using least
squares fitting on all correspondences.

Tst = argmin
R,t

|K|∑
i=1

||(Rsi + c)− ti||2 (1)

where Tst is the rigid transformation between the two point
clouds and K is the set of all correspondences and (si, ti) ∈ K.
Note that in order to avoid switching between homogeneous
and inhomogeneous coordinates when applying rigid transforma-
tions, we will treat Tst as a function that operates on points and
applies a rotationR followed a translation c to them. The calibra-
tion tool further saves Tst as calibration file which will be used
in the next stage. Note that calibration will be needed as long
as the relative pose of both depth cameras is adjusted to fit the
size of pig, and vice versa. Fig.2 shows an example of calibra-
tion session by using our calibration tool. For quantitative results
of calibration tool we refer the readers to our another published
paper(Guo et al., 2014).

3.2 Software for streaming 3D point cloud realtime

To scan the live pigs, based on the calibration parameters from
previous stage we have implemented a point clouds acquiring
software framework for streaming 3D point cloud from both
depth cameras simultaneously, which integrate the calibration
procedure as one critical step. This software is a desktop applica-
tion with graphical user interface(GUI). It is developed in C++.
The cross-platform application framework Qt is used for GUI re-
lated tasks. The Point Cloud Library (PCL)(Rusu and Cousins,
2011) is used for many of the supporting tasks, like point cloud
saving, transforming, visualization and depth cameras operations.
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(a) Users choose multiple corresponding points.

(b) Calibration results.

Figure 2. An example of calibration session by using our
calibration tool.

Figure 3. Whole pipeline for scanning live pig

The block diagram illustrating the overall live pig 3D scanning
process is shown in Fig.3. The software starts by detecting avail-
able depth cameras. Then the coordinate system of first depth
camera will be set as the global coordinate system. User could
either load the calibration parameters estimated before or do the
calibration by following the procedure in Sec.3.1 at one time. Af-
ter that the point clouds acquired from second detph camera will
be transformed into the global coordinate system. In order to
scan the whole pig, the transformed point clouds will be merged
with point clouds from first depth camera directly. Eventually,

dynamic 3D point cloud sequences recorded from one moving
pig will be saved.

4. CORRECT POSTURE DETECTION

3D scanning of live pigs is generally given in arbitrary posture in
3D-space. However, most of traits are measured only if that pig
has the correct posture(Wongsriworaphon et al., 2015). There-
fore, the input to this stage is dynamic 3D point cloud sequences
from last section and the desired output is a set of frames with
correct posture which will be used to take body measurements
in Sec.5. We begin by downsampling the point cloud sequences
using an octree with leaf size dr . At most one point per leaf is
retained and all subsequent steps are applied on the donwsampled
point clouds denoted by D = {Dt} where Dt = {pti}. Where t
is the frame index and i is the point index. Typically, 2r is used as
the leaf size, where r is the resolution of the point cloud defined
as the average distance between neighboring points.

4.1 Geometric definition of correct posture

When a pig is measured for body measurements, the animal needs
to be standing with the correct posture; its dorsal line and cheek
must make a straight line, and its four hooves must make a rect-
angle(Wongsriworaphon et al., 2015). To comply with these re-
quirements, we make the following two assumptions about a pig
with correct posture in geometrical sense.

1. When a pig stands naturally, its four hooves must make a
rectangle. In other words, the line L3 formed by two front
hooves of the pig is parallel to the line L1 formed by its two
rear hooves, perpendicular to the lines L2,L4 formed by its
two lateral hooves, as shown in Fig.4.

Figure 4. One example of qualified scanning frame with correct
posture.

2. A pig stands on the horizontal ground plane with its head
forward. That is to say, the skeleton of pig top view is almost
a straight line.

The first assumption is a requirement of the pig posture that make
sure objective measurement in vertical direction. The second one
is an assumption that ensure objective measurement in horizon-
tal direction. Fig.4 shows an example of qualified point cloud
scanning in last section.
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4.2 Segmentation of live pig automatically

Before we proceed to further processing, the segmentation of
each frame Dt into pig and background is a necessary opera-
tion in the our workflow. To do so we firstly detect the ground
plane based on RANSAC(Schnabel et al., 2007) as follows. The
RANSAC paradigm extracts plane by randomly drawing three
points from the point clouds Dt and constructing corresponding
plane. The resulting candidate planes are tested against all points
inDt to determine how many of the points are well approximated
by the candidate planes(called the score of the plane). After a
given number of trials, the plane which approximates the most
points is extracted and is defined as ground plane denoted by Pg .
Typical values for the parameters of RANSAC are: 10,000 it-
erations and ε = 3r. Where ε is largest distance allowed be-
tween the inliers and plane. Fig.5(b) shows a visualization of
ground plane detection results on the data of Fig.5(a). Based on
the ground plane detected, our algorithm removes ground plane
from the Dt. Specifically, we remove all the inliers denoted by
P p
g . Inliers here are points with distance from the ground plane
Pg less than ε = 3r. Once this operation has been performed,
the different structures are no longer connected through the floor,
so they could be clustered by labeling neighboring 3D points on
the basis of their Euclidean distance. Thus, we cluster points of
Dt−P p

g using region growing to obtain a set of clusters, as shown
in Fig.5(c).

C = {C1, · · · , CM}

Each of these clusters is grown from a point pi, an unclustered
point, in Dt − P p

g . A new point pj is added to the cluster if it
is the single nearest neighbor of a point pm which is already in
the cluster. In order to avoid the clusters formed due to clutter,
clusters with less than a minimum number of points (500) are
discarded. Then, the largest cluster in C, in terms of number of
points, is denoted by C∗. Without loss of generality, we assume
that the input point clouds mainly consist of one pig standing on
a planar ground plane with possible parts of other facilities. Thus
we can infer that the largest cluster C∗ contains all points lying
on the livestock. Fig.5d shows a visualization of pig segmentation
results on the data of Fig.5a.

4.3 Automated correct posture recognition using geometric
features

Based on the segmentation results from the previous stage, we
manage to construct the geometric elements mentioned in Sec.4.1
by exploring geometric constraints of four legs with ground plane
so as to recognize the pigs with correct posture.

4.3.1 Geometric elements extraction In order to construct
the rectangle formed by four hooves, we begin by computing the
intersection between one horizontal plane above the ground plane
and the pig point cloud C∗. Specifically, we obtain the upwards
direction by using the relative positions of ground plane and pig
as follows. We define one vector vu to represent upwards direc-
tion using following equation:

vu = vpig − vgd,

vpig =

N∑
i=1

pi

N
, pi ∈ C∗

vgd =

M∑
j=1

pj

M
,pj ∈ P p

g ,

(2)

where vpig is the center of mass of C∗ with N points, vgd is the
center of mass of P p

g with M points, both C∗ and P p
g are point

cloud of pig and ground plane from Sec.4.2 respectively. Let ng

denote the normal vector of ground plane P p
g . In general, there

is no mathematical way to make sure that the normal vector of
ground plane points upwards. Thus we reverse the direction of
the vector ng only if ng · nu < 0.

Given the vector, we start from determining one horizontal plane
Ph by moving ground plane Pg along the vector ng a distance of
d in the postive direction. Here d is a parameter which has to be
set big enough to avoid the errors induced by ground plane esti-
mation, is set to 5r for the point clouds data from Xtion pro in our
case. Then the points set in C∗ lying on the plane Ph is obtained
by determining the set of points with distance from the plane Ph

less than f , is denoted by H . Note that f is another parame-
ter which determines the thickness of our plane in the discrete
sense. Thus the different hooves are on longer connected through
the body, so they could be clustered by labeling neighboring 3D
points on the basis of their Euclidean distance. Thus, we clus-
ter points of H using same procedure performed in Sec.4.2, as
shown in Fig.6.

H = {h1, · · · , h4}

Luckily, pigs have four hooves, so we can infer that each of these
clusters is corresponding with one hoove. Subsequently, we can
easily get one quadrilateral by computing the convex hull of a
four mass center points of those clusters. Fig.6 shows a visual-
ization of the quadrilateral extracted result on the data of Fig.4.

4.3.2 Correct posture recognition Based on the quadrilat-
eral from previous stage, we can measure how much theC∗ agree
with the first item in Sec.4.1 by using the accumulated difference
between each angle of the quadrilateral and right angle as follow-
ing equation.

S1 =

4∑
i=1

|ai − π/2|

Where S1 is measurement defined for determining how good is
current posture according to the first item in Sec.4.1, ai is radians
of one of interior angles of quadrilateral. Obviously, the smaller
the measurement S1, the better the posture. Eventually, we can
compute the S1 for each frame in D so as to classify it using a
threshold T .

5. BODY MEASUREMENTS APPLICATION

Since the implemented 3D scanning system and the correct pos-
ture recognition algorithm can obtain the digitized live pigs with
correct posture, it is applicable to body measurements of multiple
livestock species with four legs. To demonstrate the potential of
the algorithm, we have implemented a livestock body measure-
ment software framework that integrates the proposed approach
as one critical step. A screen shot of the software as a collage
of some of its features is shown in Fig.7. For more details about
the measurement software, we refer readers to our published pa-
per(Guo et al., 2017).

6. RESULTS AND DISCUSSION

We present results of our 3D scanning system, correct posture de-
tection method and body measurement application respectively.
The dataset we validate our correct posture recognition method,
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(a) Input point clouds. (b) Ground plane detection. (c) Clustering points of Dt − P p
g

using region growing.
(d) Pig segmentation.

Figure 5. Visualization of entire pig segmentation pipeline.

Figure 6. Geometric elements extraction results on the data of
Fig.4. Note that semi-transparent grey plane represents the

horizontal plane Ph, four colored clusters indicate {h1, · · · , h4}
while four small semi-blue spheres represent the mass centers.

Quadrilateral with cyan color is final output of geometric
element extraction.

Figure 7. Selected features of the developed livestock body
measurement software(Guo et al., 2017).

body measurement software on is point clouds sequences of live
pigs. The heights of these animals were between 52 and 66 cen-
timeters(cm), while their lengths varied from 80.5 to 104 cm. All
datasets are processed with constant parameter values. In detail,
the resolution of the point cloud r is set equal to 0.04 cm, the oc-
tree leaf size for downsampling dr is set equal to 2r, the distance
between ground plane and virtual plane d is 5r, the thickness of
virtual plane f is 10r, while the parameters for RANSAC are:
10,000 iterations and ε = 3r. Where ε is largest distance al-
lowed between the inliers and plane. Scanning speed results are
reported on an Intel Core i7-2670QM CPU at 2.20 GHZ.

Figure 8. The final setup of our 3D scaning system for live pigs.

Results for 3D scanning system. The first step we validate our
study is scanning live pigs under farming circumstances. Specif-
ically, ten Landrace pigs with long bodies, short hair ranging in
age from 130 to 220 days were scanned by using our 3D scan-
ning system at the ShangDong WeiHai swine-breeding center of
DA BEI NONG GROUP. Fig.8 shows our portable scanning se-
tups, while Fig. 9 shows visualization of point clouds sequences
for one pig. Our 3D scanning system is capable of scanning the
target at 10 frames per second(FPS). Although it is enough for
scanning the live pigs, scanning speed can be improved to 15
FPS by using IO efficient saving device, solid state drive, etc.
The accuracy of registration of two point clouds from two depth
cameras is dependent on correspondences chosen manually. An-
other error source of scanning result is the Xtion Pro live sensor.
Basically speaking, the random error of depth measurement is
proportional to the square distance from the sensor to the object.
Which is well analyzed in (Khoshelham, 2011). Thus we only
present the accuracy evaluation of scanning system in terms of
our body measurement application in Sec.6.

Results for correct posture detection Here we present correct
posture detection results on the point cloud sequences of 10 pigs.
Fig.6 show results on each procedure of correct posture detection
for each pig. The final output of correct frame with correct pos-
ture was manually evaluated by experts in terms of the geometric
definition of correct posture in Sec.4.1. The smallest value of
S1 is 0.2 and its corresponding frames contains pigs with correct
posture. So we set the threshold as 0.3. We can extract frames
with correct posture for all 10 pigs by keeping the frames with
S1 value less than 0.3. Fig.10 demonstrates how measurement S1

get changed along with the posture transforming for one pig with
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Figure 9. Visualisation of point cloud sequences capturing in pig farm.

different posture. However, our method failed to acquire correct
quadrilateral formed by hooves due to missing legs caused by oc-
clusion.

Results for body measurement application The final exper-
iment was carried out to validate our body measurement appli-
cation. Specifically, each subject of 10 live pigs was manually
measured using the Lydtin stick in order to assess heights, widths
and lengths while the circumference was evaluated through a tape
meter. We performed the corresponding body measurements on
frames detected with correct posture of these live pigs by using
the software. Figure 7 illustrates the measuring interface of the
software. Table 1 shows the comparisons between the mean value
of live pigs body measurements measured manually and using our
software. Error percentage achieved demonstrated that our soft-
ware can reach levels of measurement accuracy comparable to
those obtained by traditional measuring instruments. Generally
speaking, most of agricultural application can tolerate 10% body
measurement errors. So our body measurement system is feasible
and practicable in livestock industry. It should be noted that more
accuracy can be obtained by using more advanced 3D scanning
system.

statistic BL WW WH HW HH

Ave(%) 2.4 5.8 7.4 4.7 4.8
SD(%) 5.3 4.8 5.1 8.5 2.8

Table 1. Comparisons between the mean value of live pigs body
measurements measured manually and using our software.

Ave: average percent errors for different traits on the 10 pigs.
SD: standard deviation for corresponding percent errors. BL:

body length. WW: withers width. WH: withers height. HW:
hip width. HH: hip height.

7. CONCLUSIONS

In order to measure body traits of pigs, we have implemented a
3D scanning system for live pigs under farming circumstances
that is capable of save the point cloud sequences at speed of more
than 10 FPS. Additionally, we have presented a novel approach
for detecting frames with correct posture from the point cloud se-
quences that is fully automatic and is able to recognize the frames
with correct posture. Our approach can be pre-processing step
for body measurement of pigs. We have shown results on ten
pigs including comparisons with current measuring method that
demonstrate that our method and application are competitive even
though it makes less restrictive assumptions about the scaning
data.

There are two limitations of our method. The first is that if the
scanning subject is larger, such as cow, etc, our scanning system
cannot work properly. This can be addressed by using more depth
cameras, as in (Macknojia et al., 2013). The second limitation
is that our current implementation of body measurement cannot
handle scanning data that appear missing legs due to occlusion.

Missing legs do not allow the algorithm to construct correct S1.
The implementation will be augmented to handle this case in our
future work by taking the second assumption in Sec.4.1 into con-
sideration when computing S1. Additionally, we will have the
complete calibration procedure fully automatic without manual
selection of point correspondences in the future.
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