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Abstract: 

As a key step in 3D scene analysis, point cloud classification has gained a great deal of concerns in the past few years. Due to the 

uneven density, noise and data missing in point cloud, how to automatically classify the point cloud with a high precision is a very 

challenging task. The point cloud classification process typically includes the extraction of neighborhood based statistical information 

and machine learning algorithms. However, the robustness of neighborhood is limited to the density and curvature of the point cloud 

which lead to a label noise behavior in classification results. In this paper, we proposed a curvature based adaptive neighborhood for 

individual point cloud classification. Our main improvement is the curvature based adaptive neighborhood method, which could derive 

ideal 3D point local neighborhood and enhance the separability of features. The experiment result on Oakland benchmark dataset shows 

that the proposed method can effectively improve the classification accuracy of point cloud. 

1 Introduction 

Due to the rapid development of LIDAR technology, it’s more 

convenient to obtain point cloud via various approaches such as 

Aerial Laser Scanning (ALS), Terrestrial Laser Scanning (TLS) 

and Mobile Laser Scanning (MLS) (Rodríguez-Cuenca et al., 

2015; Weinmann et al., 2015). The MLS can productively obtain 

precise point cloud from complex urban scene. And this makes 

the MLS widely used in the urban 3D scene analysis applications 

like the extraction of building structures (Demantké et al., 2012), 

the extraction of vehicle and road facilities (Rodríguez-Cuenca et 

al., 2015; Serna and Marcotegui, 2014), the traffic signs detection 

(Soilán et al., 2016, 2017) and so on. As a key step in 3D point 

cloud scene analysis, point cloud classification become one of the 

major research fields in photogrammetry and remote sensing 

(Weinmann et al., 2015). 

However, the defects in point cloud like partial loss and uneven 

density have brought tremendous challenges to the point cloud 

classification task. The general idea is to extract respective 

features and do classification task with supervised learning 

algorithms. The individual classification method assumes that 

each 3D point is independent and assigning a unique semantic 

label with local features automatically, which can be divided into 

three steps (Weinmann et al., 2014): the reconstruction of local 

neighborhood for each point, the extraction of low-level feature, 

and the point cloud classification based on point’s local features. 

This kind of methods typically do classification task with 

machine learning algorithm such as GMM (Lalonde et al., 2005; 
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Lalonde et al., 2006), SVM (Zhang et al., 2013), AdaBoost 

(Lodha et al., 2007) or Random Forest (Jie and Zulong, 2014) 

and treat every point as an individual entity which is very 

efficient. Unlike the individual classification method, since the 

nearby 3D points in point cloud tend to share a same semantic 

label, the contextual classification method takes the relationship 

between points into account (Triebel et al., 2006). And respective 

methods have been proposed with graphical model like 

conditional random field (Kumar and Hebert, 2003; Niemeyer et 

al., 2014), Associative Markov Networks (Triebel et al., 2006) 

and non-Associative Markov Network (Shapovalov et al., 2010) 

to generate a smooth result. But whether for individual 

classification methods or contextual classification methods, the 

robust and separable features are essential. 

The meaningful features can express the local structure for 

objects in nature scene, which mainly derived by calculating the 

point’s space distribution of points in local neighborhood 

(Weinmann et al., 2014). The recovery of 3D point local 

neighborhood can be summarized into fixed-scale methods (Filin 

and Pfeifer, 2005; Lee and Schenk, 2002; Linsen and Prautzsch, 

2001; Niemeyer et al., 2014) and adaptive scale method 

(Demantké et al., 2011; Lalonde et al., 2005; Weinmann et al., 

2014). The fixed scale method is limited to the prior knowledge 

of the scene, point cloud density and curvature (Weinmann et al., 

2015). And the uneven density and scan lines in point cloud bring 

great difficulties for the estimation of the local neighborhood 

system. The adaptive neighborhood can mitigate the influence of 
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uneven density and linear behavior in point cloud and can derive 

3D point local neighborhood from the functional relationship 

between the size of points’ neighborhood and point cloud 

distribution (Lalonde et al., 2005). But it requires ground truth 

information for the estimation of parameters. And the minimal 

entropy based method recovering neighborhood by varying scale 

parameter k (Weinmann et al., 2014; Yang et al., 2013) or radius 

r (Demantké et al., 2011) within fixed intervals, however, the 

radius r based method is easily influenced by the strong density 

variations within point cloud (Hackel et al., 2016), and the 

parameter k based method is limited to the linear behavior in high 

density region. Generally, the distance between objects and laser 

scanning sensor have a great impact on density of point cloud 

which is extremely uneven in the overall range. However, since 

the uneven distribution in point cloud not be considered, the 

robustness of adaptive neighborhood of whole 3D point cloud 

scene has not yet been confirmed. 

In this paper, we classify point with individual point 

classification framework based on state-of-the-art classifier. The 

main contribution of our work is a curvature based adaptive 

neighborhood extraction method, which enhanced the 

separability of features and improved the performance of 

classification results. The paper is organized as follow. The 

proposed classification method is describe in Section 2. The 

experiments are reported in Section 3. Conclusions are given in 

Section 4. 

2 Methodology 

For the classification of point cloud, we propose a methodology 

which involves curvature based adaptive neighborhood (Section 

2.1), feature extraction (Section 2.2) and supervised 

classification (Section 2.3). The framework is provided in Figure 

1. 

Curvature based 

Adaptive Neighbordhood

Feature Extraction

Classification

Labeled Point Cloud

 Point Cloud

Figure 1. Flow chart of the proposed point cloud classification 

method. 

2.1 Curvature based Adaptive Neighborhood 

The curvature (𝑐𝑢𝑟) of each 3D point is defined as the surface 

variation at point p within a certain radius of spherical 

neighborhood, and extracted by analyzing the 3D covariance 

matrix of 3D point and its neighborhood (Pauly et al., 2002). 

Denoting the eigenvalues of 3D covariance matrix by 𝜆1,𝜆2,𝜆3,

where 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0, the curvature is given by

𝐶𝜆 =
𝜆3

∑ 𝜆𝑖𝑖
 i = 1,2,3 (1) 

The curvature with a value field from 0 range to 1/3 where 0 

indicate all points lie in plane and 1/3 means points represent a 

completely isotropically behavior. 

Generally, the curvature of vegetation or object boundary provide 

a larger behavior, as can be seen from Figure 2c, which means 

there needs a small neighborhood to express the rich detail 

information. By contrast, the smaller curvature corresponds to 

larger neighborhood. Therefore, the adaptive scale method is 

essential for the distinctiveness of extracted feature.  

(b)(a)
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(f)(e)

Ⅱ
Ⅲ

(d)(c)

Ⅰ

Curvature0.0 0.33 0.0 3.0r

Figure 2. The distribution of the point cloud and the radius 

distribution for adaptive neighborhood. (a) Labeled point cloud 

(v: vegetation; w: wire; p/t: pole/trunk; f: facade; g: ground); (b) 

Density distribution for point; (c) Curvature distribution for point; 

(d) Result for k-minimal entropy based adaptive neighborhood;

(e) Result for r- minimal entropy based adaptive neighborhood;

(f) Result for curvature based adaptive neighborhood.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-219-2017 | © Authors 2017. CC BY 4.0 License.

 
220



Figure 2d shows the k-minimal entropy based adaptive 

neighborhood (Weinmann et al., 2014) (𝑣𝑘 ) over the interval

between 𝑘𝑚𝑖𝑛 = 10  and 𝑘𝑚𝑎𝑥 = 100  with ∆𝑘 = 1

(Weinmann et al., 2015), the neighborhood present a small and 

linearly behavior in region Ⅰ within high density regular range, 

which is not enough to extract robust feature. Figure 2e shows 

the result of r-minimal entropy based adaptive neighborhood 

(Demantké et al., 2011) (𝑣𝑟) over the interval between 𝑟𝑚𝑖𝑛 =

0.25𝑚 and 𝑟𝑚𝑎𝑥 = 2.0𝑚 with ∆𝑟 = 0.05𝑚, which remains the

same problem with region Ⅰ in region Ⅱ. And as can be seen 

from region Ⅲ in Figure 2e, the size of points’ neighborhood is 

quite larger for detail information in vegetation region. Since the 

uneven distribution of point cloud in complex scene not be 

considered, the current adaptive neighborhood recovering 

methods remain limited to recovering linearly behavior 

neighborhood within high density regular range. 

On the basis of two types of minimal entropy based methods, a 

curvature based adaptive neighborhood extraction method (𝑣𝑐) is

designed. The main idea of this method is to divide the point 

cloud into scatter and regular region by curvature threshold (𝑐𝑡)

and handles separately, as shown in Figure 3.  

For the outliers that with inadequate neighborhood point for 

curvature estimation were set to 1/3. The points are divided into 

scatter region when the curvature is greater than 𝑐𝑡  or into

regular region when the curvature less than cur. Then, the 

adaptive neighborhood in scatter region is recovered by 𝑣𝑘 and

in regular region with 𝑣𝑟.

𝑣𝑐 = {
𝑣𝑘 , 𝑐𝑢𝑟 ≥ 𝑐𝑡

𝑣𝑟 , 𝑐𝑢𝑟 < 𝑐𝑡
(2) 
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Figure 3. Sketch map of point cloud curvature based adaptive 

neighborhood. 

Since the prior knowledge of the object size in nature scene is 

unknown, the boundary of the adaptive neighborhood should be 

able to cover the most of object in scene while decrease the cost 

of computing. The adaptive neighborhood 𝑣𝑘  needs a lower

boundary of 𝑘𝑚𝑖𝑛 = 10 to estimated 3D point local geometric

features by PCA while the upper boundary is set with an ideal 

value to decrease the cost of computing. And the adaptive 

neighborhood 𝑣𝑟  needs a lower boundary 𝑟𝑚𝑖𝑛 = 0.25𝑚  to

avoid the points within 𝑣𝑟  centralized in one scan line within

high density regions, and enclose too few neighbors in low 

density regions (Hackel et al., 2016). Since the adaptive 

neighborhood 𝑣𝑐 has taken the prior knowledge of scatter and

regular region into account. The upper boundary of parameter 𝑘 

is set to be 50 to decrease the cost of computing and 𝑘 is varying 

between 𝑘𝑚𝑖𝑛 = 10  and 𝑘𝑚𝑎𝑥 = 50  with ∆𝑘 = 1 . However,

there are some points within scatter region that the density is a 

little bit small, which means the size of 𝑣𝑘 tend to be very large

to reach a stabilized state. Therefore, in our approach, the 

maximum size of adaptive neighborhood within scatter region is 

set to 3m which is a quite reasonable value for most of the objects 

in natural scene. The lower boundary of parameter 𝑟 is set to be 

0.5m for the objects within regular region which generally have 

a larger size, which aims to decrease the cost of computing. And 

the interval 𝑟 ∈ [0.5𝑚, 2.0𝑚]  has been sampled in 30 scales 

with ∆𝑟 = 0.05m  Finally the point cloud’s adaptive 

neighborhood 𝑣𝑐 is recovered by combining these two types of

adaptive neighborhood. 

The 𝑐𝑡 is extracted by k-means algorithm, that we split the points

into two clusters, the initial cluster centers are the minimum and 

maximum curvature in point cloud. Assume that the center of the 

two clusters are cur1 and cur2 (cur2>cur1), and we get the 𝑐𝑡 as

follow: 

𝑐𝑡 = 𝑐𝑢𝑟1 + (𝑐𝑢𝑟2 − 𝑐𝑢𝑟1) ∗
𝑛𝑢𝑚𝐶𝑙𝑢𝑠𝑡𝑒𝑟2

𝑛𝑢𝑚𝑃𝑜𝑖𝑛𝑡𝑠
(3) 

As can be seen from Figure 2e, the points’ neighborhood on 

façade or ground typically have a large size for its relatively 

regular distribution in point cloud. And the points’ neighborhood 

on natural vegetation has a small size for the relatively scattered 

distribution. 

2.2 Feature Extraction 

For the feature extraction, we only take the geometric features 

into consideration since most of the publicly benchmark point 

cloud datasets only contain space position information of 3D 

points. The meaningful feature can express the structure of local 

surface around 3D point, which mainly derived by calculating the 

point’s space distribution within the local neighborhood. And we 

increase the distinctiveness of features with the curvature based 

adaptive neighborhood. In our approach, we mainly use the 3D 

features including verticality 𝑉, maximum height difference 𝐷𝑧

and eigenvalue based features 𝐿𝜆 , 𝑃𝜆 ,  𝑆𝜆  and  𝐶𝜆 . Based on

normal vector for each 3D point, the verticality 𝑉 with 

𝑉 = 1 − 𝑛𝑧 (4) 
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can be estimated, which represents the angle between normal and 

ground level, 𝑛𝑧  is the third components of 3D point normal

vector. The normalized height difference 𝐷𝑧 according to

𝐷𝑧 =
𝑑𝑧 − 𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛
(5) 

which represent the distribution of 3D points in vertical direction 

within neighborhood. The value 𝑑𝑧 = 𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛  represents

the height difference within neighborhood where 𝑧𝑚𝑎𝑥  and

 𝑧𝑚𝑖𝑛  respectively represent the maximum and minimum z

coordinate within neighborhood. And max and min respectively 

represent the maximum and minimum 𝑑𝑧 in point cloud. The

eigenvalue based features are extracted with 

𝐿𝜆 =
𝜆1−𝜆2

𝜆1
𝑃𝜆 =

𝜆2−𝜆3

𝜆1
𝑆𝜆 =

𝜆3

𝜆1
(6) 

sum up to 1 which represents the linearity, planarity and 

scattering of neighborhood of 3D point.  

2.3 Classification 

Given a labeled 3D point cloud data X= {(𝒙𝑖 , 𝑙𝑖)} as training

dataset, where 𝒙𝑖  represent the feature vector of point 𝑛𝑖 , and

𝑙𝑖 ∈ {𝑙1, 𝑙2, ⋯ , 𝑙𝑚} is the semantic label of point  𝑛𝑖 , and m is

class number. Our goal is to obtain classifier based on training 

data X and classify test point cloud 𝐘 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}  by

assigning an object class label 𝑙𝑖 to each point. The point in test

dataset may have handle assigned semantic label, which can be 

used to evaluate the performance of classifier. For multi 

classification, we apply Random Forest (RF) (Breiman, 2001) as 

representative individual classification algorithms. We use a RF 

classifier with 200 trees and a tree depth of √𝑑, where 𝑑 is the 

dimension of the feature space. 

Since most of the point cloud datasets for natural scene appear an 

unbalance distribution behavior of 3D point per class in datasets, 

which may cause trained classifiers tend to classify all point into 

majority class and may have a detrimental effect on the 

classification process. We apply a data level method for the 

unbalance issue in point cloud (Kotsiantis et al., 2006). We do 

random resampling of training data to obtain a uniform size of 

training examples pre class try to balance the class distribution. 

3 Experiments and Results 

3.1 Datasets 

To evaluate the performance of the proposed method, we use the 

Oakland 3D Point Cloud Dataset (Munoz et al., 2009). The 

dataset was collected around CMU campus in Oakland by 

Naclab11 equipped with side looking SICK LMS laser scanners. 

It contains about 1.3 million manually labeled points and was 

divided into training set (1 file) and test set (15 files). And the 

classification task is to assign each 3D point one of the five 

semantic labels: vegetation, wire, pole/trunk, ground and facade. 

However, the dataset we use is imbalance data that almost 90% 

points are labeled as vegetation and ground, while less than 1% 

points are labeled as wire and pole/trunk. A number of solutions 

to solve the class-imbalance problem in data level, we randomly 

select 1,000 training examples per class from training set as the 

rebalanced training set for the training of model. 

3.2 Experiments 

In the experiments, first consider the impact of curvature 

threshold on classification results and verify the estimation of 

curvature threshold estimated by k-means algorithm. 

Subsequently, we focus on the impact of 3 different adaptive 

neighborhood on classification results: the k-minimal entropy 

based adaptive neighborhood 𝑣𝑘  over the interval between

𝑘𝑚𝑖𝑛 = 10  and 𝑘𝑚𝑎𝑥 = 100  with ∆𝑘 = 1 , the r-minimal

entropy based adaptive neighborhood 𝑣𝑟  over the interval

between 𝑟𝑚𝑖𝑛 = 0.25𝑚  and 𝑟𝑚𝑎𝑥 = 2.0𝑚  with ∆𝑟 = 0.05𝑚 ,

the proposed adaptive neighborhood 𝑣𝑐 defined in formula (2).

3.3 Results and Discussion 

For the evaluation, we use four commonly used measures: recall 

which represents the completeness of the classification result of 

classes, precision which represents the accuracy of the 

classification result of classes, F1-score which is harmonic mean 

of recall and precision for classes and overall accuracy which 

represents the overall performance of the proposed method on 

test set. Since the test set is imbalance data, the overall accuracy 

mostly dependent on the precision of ground and vegetation, we 

take the average of recall, precision and F1-score to evaluate the 

classification result of different categories. 

Determining the curvature threshold is the first step in the 

proposed method. The curvature of the Oakland point cloud is 

estimated with radius 𝑟 = 1m. We split the Oakland benchmark 

dataset into scatter and regular region with curvature threshold 

𝑐𝑡 = 0.03  which is achieve by equation 3 and the k-means

algorithm with initial cluster centers 0 and 1/3  after 17 

iterations. And we consider the distribution of each class over 

scatter and regular region. 

v. w. p./t. g. f.

scatter 271703 2105 4261 10535 24061 

regular 10063 4350 4758 937732 91764 

sum 281766 6455 9019 948267 115825 

Table 1. Distribution of the classes (v.: vegetation, w.: wire, p./t.: 

pole/tree-trunk, g.: ground, f.: facade) for scatter and regular 

region with curvature threshold 𝑐𝑡 = 0.03.

The respective distribution of per class is shown in table 1. Most 

of the vegetation points and ground points can be separated, 

which make up almost 90% of the point cloud.  

In order to evaluate the impact of curvature threshold, the interval 

𝑐𝑡 ∈ [0.01,0.05] has been sampled in 9 scales with ∆𝑐 = 0.005.

Figure 4 shows the obtained overall accuracy. Note that when 

curvature threshold 𝑐𝑡 = 0.03, the proposed method can get the

best performance classification result with overall accuracy of 
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96.1%, which confirmed the intuition that the estimation of 𝑐𝑡

by k-means algorithm is quite appropriate. 

Figure 4. Overall accuracy (%) obtained by proposed method 

using different C value. 

Since the adaptive neighborhood 𝑣𝑐  is the combination of 𝑣𝑘

and 𝑣𝑟, we compared the classification results of different classes

on three adaptive neighborhoods. The comparison of evaluation 

values are reported in table 2. The curvature based adaptive 

neighborhood is necessary when recovering neighborhoods in 

complex urban scene, since its do not use the empiric or heuristic 

a priori knowledge on scene and also avoids the influence of 

uneven density and curvature. And as can be seen from Table 2, 

the curvature based adaptive neighborhood significantly 

improves the performance of each class with respect to recall, F1-

score and mean class evaluation value. Considering the mean 

class evaluation value (Table 2), it becomes visible that the 

curvature threshold split the point cloud into scatter and regular 

region, which could exploit the full potential both 𝑣𝑘  and 𝑣𝑟 ,

and the classification result of 𝑣𝑐  is significantly improved

compared to 𝑣𝑘 and 𝑣𝑟.

% v. w. p./t. g. f. Avg. 

p. 

𝑣𝑘 88.77 89.17 69.92 99.70 65.86 82.68 

𝑣𝑟 89.31 93.83 71.28 99.70 69.66 84.76 

𝑣𝑐 89.44 92.25 71.56 99.70 83.75 87.34 

r. 

𝑣𝑘 94.59 8.13 56.50 99.72 83.09 68.41 

𝑣𝑟 94.15 10.36 59.55 99.80 82.60 69.29 

𝑣𝑐 94.66 15.16 66.96 99.84 86.67 72.66 

F1. 

𝑣𝑘 91.59 14.90 62.50 99.71 73.48 68.44 

𝑣𝑟 91.66 18.66 64.89 99.75 75.58 70.11 

𝑣𝑐 91.98 26.04 69.19 99.77 85.19 74.43 

Table 2. Comparisons of evaluation values (p.: precision, r.: 

recall, F1.: F1-score) by proposed method on three adaptive 

neighborhoods (v.: vegetation, w.: wire, p./t.: pole/tree-trunk, g.: 

ground, f.: facade). 

The improvement of façade with respect to recall values which 

means that more façade information is recognized (Table 2). 

Since the façade in 3D point cloud scene is quite complicated for 

its compositions of windows and walls, the robustness of features 

extracted from façade is limited, which makes the points 

classified with wrong semantic label. The windows with a 

relatively large curvature recovers adaptive neighborhood with 

𝑣𝑘  while fairly planar walls with 𝑣𝑟 , which improved the

robustness of features and further improved the recall value. The 

precision value of class wire and pole/tree-trunk is quite low 

which manly caused by their linear behavior. Since the point 

cloud is obtained by laser scanning sensors, which is formatted 

with scan lines, and this makes the points in facades or vegetation 

with low density is easily misclassified into class wire or 

pole/tree-trunk. As can be seen from Figure 5, the points in the 

middle of the window is misclassified into class pole/tree-trunk, 

since its provide a linear behavior. This may be solved by 

contextual classification method. 

Figure 5. The classification result of RF with 𝑣𝑐 (vegetation:

green, wire: bule, pole/trunk: red, façade: gray, ground: brown). 

Currently, the improvement of the proposed method is verified 

by benchmark datasets with only five classes which is quite 

simple, thus the classification results might vary for other 

increasingly complex scenarios. However, in-depth experiments 

and analyses for natural urban scene have not been done in our 

work, and it is still a challenging task for ensuring classification 

performance when the proposed method handles point cloud with 

pedestrians and vehicles. Considering that compared with 

Oakland dataset, the natural urban scene data may have more 

classes with a more complex spatial distribution, it should be 

noted that the applicability of the proposed method for natural 

urban scene with pedestrians, vehicles and others remains 

uncertain. 

4 Conclusions 

High accuracy classification methods for complex unban scene 

point cloud data are critical for the complex spatial distribution. 

In this paper, we proposed a curvature based  adaptive 

neighborhood for individual point cloud classification. The main 

improvement is a curvature based method for recovering adaptive 

neighborhood to enhance robustness of local 3D geometrical 

features. 

The experiments on Oakland and Paris benchmark datasets 

indicate that the proposed method significantly improved the 

performance of classification result. However, the proposed 

method still have some problems in class wires and pole/tree-

trunk, which appear a fine behavior. Feature work should focus 

95.80
95.85
95.90
95.95

96.00
96.05

96.10
96.15

0 0.02 0.04 0.06

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-219-2017 | © Authors 2017. CC BY 4.0 License.

 
223



on improving the classification results of class wires and 

pole/tree-trunk. Moreover, we intend to do contextual 

classification in natural scene analysis tasks, this cloud be based 

on probabilistic graphical model or deep learning.  
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