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ABSTRACT: 

Knowledge of surface albedo at individual roof scale is important for mitigating urban heat islands and understanding urban climate 

change. This study presents a method for quantifying surface albedo of individual roofs in a complex urban area using the integration 

of Landsat 8 and airborne LiDAR data. First, individual roofs were extracted from airborne LiDAR data and orthophotos using 

optimized segmentation and supervised object based image analysis (OBIA). Support vector machine (SVM) was used as a classifier 

in OBIA process for extracting individual roofs. The user-defined parameters required in SVM classifier were selected using v-fold 

cross validation method. After that, surface albedo was calculated for each individual roof from Landsat images. Finally, thematic 

maps of mean surface albedo of individual roofs were generated in GIS and the results were discussed. Results showed that the study 

area is covered by 35% of buildings varying in roofing material types and conditions. The calculated surface albedo of buildings 

ranged from 0.16 to 0.65 in the study area. More importantly, the results indicated that the types and conditions of roofing materials 

significantly effect on the mean value of surface albedo. Mean albedo of new concrete, old concrete, new steel, and old steel were 

found to be equal to 0.38, 0.26, 0.51, and 0.44 respectively. Replacing old roofing materials with new ones should highly prioritized.  

1. INTRODUCTION

Global warming is the term used to describe the increase in the 

average temperature of the Earth’s atmosphere, a change that is 

thought to be permanently changing the Earth’s climate. 

Increasing the temperature of the Earth’s surface cause not only 

thermal discomfort, but it also responsible for the increase of 

energy demand for air conditioning in buildings and 

photochemistry effects that increase atmospheric pollution, as 

well as increasing environmental impacts due to the demand of 

energy generation (Prado and Ferreira, 2005).  Air temperature 

is higher in urban areas than in rural areas, a phenomenon 

called urban heat island or UHI. The effects of UHI can be 

reduced through changing the materials used in buildings, 

which in turn can lead to valuable effects for human and 

environment. Lowering of air temperature in urban areas, the 

reduction of energy demand for air conditioning systems, and 

the reduction of atmospheric pollution are among those 

valuable effects. Surface albedo, which can be calculated by 

remote sensing and climate data, determines the fraction of 

incoming sunlight that is reflected is a key factor for 

determining the urban heat budget and understanding UHI 

effects. There are two factors determining urban albedo: 

building structure and surface material. Urban albedo decreases 

with decreasing street widths and increasing building heights 

(Sugawara and Takamura, 2014). Increasing the surface albedo 

can reduce the temperature of the urban areas and consequently 

the UHI intensity (Touchaei and Akbari, 2013). In addition, 

increasing urban albedo can reduce summertime temperatures, 

resulting in better air quality and savings from reduced air-

conditioning costs. Increasing urban albedo can result in less 

absorption of incoming solar radiation by the surface-

troposphere system, countering to some extent the global scale 

effects of increasing greenhouse gas concentrations (Akbari et 

al., 2009). Touchaei and Akbari (2013) presented a study in 

which increasing the albedo of roofs from 0.2 to 0.8 decreased 

the average air temperature of urban areas of Montreal by 0.3 K. 

Typically, surface albedo ranges from 0, all the incident energy 

is absorbed to 1, all the incident energy is reflected from the 

roof (Ban-Weiss et al., 2015a, 2015b). Materials with high 

albedo and emittance attain lower temperatures when exposed 

to solar radiation, reducing the transference of heat to the 

environmental air (Prado and Ferreira, 2005). Green roofs are 

highly efficient in reducing the variation of indoor temperature 

and decreasing the level of building energy consumption both in 

cold and warm climates.  The albedo of green roofs ranges from 

0.7 to 0.85, a value much higher than other roofs (Berardi et al., 

2014). On the other hand, a cool roof is a roof that reflects most 

of the incident sunlight and efficiently emits some of the 

absorbed radiation (especially in near infrared) back into the 

atmosphere, instead of conducting it to the building below 

(Garg et al., 2015). Green roofs and cool roofs are the two main 

effective solutions handling the problem of urban warming.  

2. METHODOLOGY

2.1 Study area 

The study area is a subset from the Universiti Putra Malaysia 

(UPM) campus located in peninsular (West) Malaysia. The 

study area is bounded between 101º 44' 05" E and 101º 44' 

35"E, 03º 00' 00"N and 03º 00' 35"N as shown in Figure 1. The 

study area is a complex urban area and it consists of mixed 

several types of roofs, urban vegetation, and asphalt roads. The 

study area has a surface area of (0.53 km2) with 30% is 

buildings and other 70% are vegetation, bare land, and asphalt 
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roads. Buildings have different roofing materials with different 

conditions. New concrete, old concrete, new steel, old steel, and 

asbestos are the main roofing materials in the study area.   

 

 
Figure 1. Location of study area presented by OpenStreetMap 

(left), and aerial orthophoto (right). 

 

  

2.2 Datasets 

The Landsat data (path = 127, row = 58) used in this study was 

collected on 27 March 2015 from the U.S. Geological Survey 

(USGS) official website (http://earthexplorer.usgs.gov/). The 

spatial resolution of Landsat 8 images is 30m and it has 11 

spectral bands in visible, infrared, and thermal regions. The 

Landsat image has the cloud cover of (19.98%); however, the 

subset used in this study has no cloud cover. On the other hand, 

the LiDAR data used in this study was collected on 8 March 

2013 by Riegl LM Q5600 and Camera Hassleblad 39Mp. The 

device has a spatial resolution of 13cm, laser scanning angle of 

60° and camera angle – 45°. In addition, the posting density of 

the LiDAR data was 3-4 pts/m2.  

 

 

2.3 Methods 

2.3.1 Overview  

 

Overall methodology applied in this study to quantify mean 

surface albedo of individual roofs is presented in Figure 2. First, 

LiDAR point clouds were processed to generate digital surface 

and elevation models for the study area. Then, DEM was 

subtracted from DSM to construct height raster (nDSM), which 

represents the height of objects in the study area. After that, first 

pulse LiDAR point clouds were then used to generate intensity 

raster. nDSM, intensity raster, and three bands of aerial 

orthophoto were then combined in one dataset by a process 

called raster composite. The combined raster then was 

segmented to create image objects utilizing both spatial and 

spectral characteristics. Next, SVM was used to classify the 

image objects using spatial and spectral attributes. The 

classified buildings then were exported to ArcMap to extract the 

roof footprints. On the other hand, Landsat image was 

preprocessed to correct it for geometric, radiometric, and 

atmospheric errors. After that, the processed Landsat image 

together with climate data downloaded online was used to 

calculate surface albedo. Finally, the extracted footprints of 

roofs and calculated surface albedo were then used to calculate 

mean surface albedo for individual roofs using zonal statistics.  

 

 
Figure 2. Overall methodology applied to quantify surface 

albedo of roofs in the current study. 

 
2.3.2 Segmentation  

 

In recent years, object based image analysis or OBIA has been 

accepted as a suitable classification technique for LiDAR data 

(Blaschke, 2010). OBIA has two main steps; the first is called 

image segmentation, which is the process of creating non-

overlapping homogeneous objects from the image pixels based 

on their spectral, spatial, and textural information. Usually in 

this step, OBIA uses multiresolution segmentation algorithm 

(Baatz & Schäpe, 2000). The accuracy level of feature 

extraction and object classification is generally controlled by 

the quality of segmentation (Baatz & Schäpe, 2000). 

Multiresolution segmentation algorithm requires three user-

defined parameters namely scale, shape, and compactness, 

which control the size and shape of image objects. Therefore, 

selection of suitable user-defined parameters is important for 

accurate segmentation and building extraction from airborne 

LiDAR. In this study, user-defined parameters were selected 

using Bhattacharyya Distance algorithm (Choi and Lee, 2003). 

This algorithm measures the class separability distance using 

feature space. The scale parameters of (10), was selected based 

on the highest class separability distance measured (1.82) using 

spatial and spectral attributes. Likewise, shape and compactness 

parameters were selected using the same technique and values 

of 0.8 and 0.5 were selected for shape and compactness 

respectively. Using these user-defined parameters and input data 

derived from LiDAR point clouds (Figure 3a, 3b, 3c, 3d), the 

image objects were created (Figure 3e).  
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Figure 3. Input data used for building extraction and image 

segments, (a) LiDAR derived DSM, (b) LiDAR derived DEM, 

(c) Height, or nDSM, (d) Intensity, (e) Image segments and

building footprints.

2.3.3 Supervised object based SVM classification 

The second step in OBIA process is the object classification. 

There are mainly two types of classification for OBIA; 

supervised or example-based and rule-based methods.  The 

supervised classifier based on samples objects to create training 

objects. Support vector machine (SVM) was used in this study 

to classify the image objects into four land cover, building, bare 

land, vegetation, and asphalt road. Two main parameters are 

required for SVM algorithm namely kernel function and penalty 

parameter (C). Careful selection of these parameters is critical 

for accurate classification of image objects.  In this study, kernel 

function and C value were selected using v-fold cross validation 

method (Hsu et al., 2003). In this method, the training dataset 

first was divided into v subsets of equal size. Sequentially one 

subset is tested using the classifier trained on the remaining v 

−1 subsets. Thus, each instance of the whole training set is

predicted once so the cross-validation accuracy is the

percentage of data, which are correctly classified. The main

advantage of this method for SVM parameter selection is that

cross-validation procedure can prevent the overfitting problem.

Using 10-fold cross validation, the kernel function, and C value

of SVM algorithm were selected. Linear type of kernel function

and C value of (100) were selected using the datasets of the

current study. Once the parameters of SVM algorithm selected,

image objects were then classified using training objects. In the

SVM classification, several spectral and spatial attributes were

used for classification. Three bands of aerial orthophoto,

nDSM, intensity, rectangular fit, density, shape index attributes

were used in the classification process. The classified image

contained four land cover classes namely building, vegetation,

bare land, and asphalt road. Overall accuracy of (87.2%) and

Kappa coefficient of (0.78) was achieved. The classified image

objects were then exported to GIS in a vector form for building

extraction (see Figure 3e).

2.3.4 Calculation and mapping of individual roof surface 

albedo 

The surface albedo was calculated using the following equation 

suggested by Bastiaanssen et al. (1998).  

where is the planetary albedo of each pixel or albedo 

without atmospheric correction, is the atmospheric albedo 

and  is the atmospheric transmittance in the solar radiation. 

The value of atmospheric albedo can be obtained through a 

radiative transfer model and, in general, is situated between 

0.025 and 0.040 (Allen et al., 2002). The value of 0.03 was 

adopted in the present study. On the other hand,  and 

were calculated using equations adopted from Silva et al. 

(2016). The calculations were done in ENVI 5.1 software using 

its Band Math tool. Once the surface albedo was calculated for 

the study area using Landsat 8 image, the result was exported to 

GIS for further analysis. The extracted buildings and calculated 

surface albedo were then used to generate surface albedo of 

individual roofs. Results were used to produce the final 

thematic map of surface albedo of individual roofs.  

3. RESULTS AND DISCUSSION

Mean albedo of individual roofs in a complex urban area were 

quantified. Figure 4 shows the thematic map of mean albedo at 

individual roof scale generated by using the proposed method in 

GIS. Statistics show that the mean albedo ranges from (0 to 

0.65) in the study area including buildings and other classes 

(i.e. vegetation, bare land, asphalt road). In addition, the mean 

albedo of buildings is ranged from (0.16 to 0.65) in the study 

area. These variations in albedo values resulted from various 

types and conditions of roofing materials found in the study 

area.   

Figure 4. Surface albedo of roofs in the study area generated in 

GIS by the proposed method. 

Table 1 presented the mean albedo calculated for each land 

cover class in the study area using zonal statistics in GIS. The 

analysis showed that building class has the highest mean albedo 
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among the classes. On the other hand, the lowest mean albedo 

was observed for asphalt road class (0.24). The high value of 

standard deviation of building class (0.092) indicates that there 

are various types of roofs in the study area. In addition to the 

types of roofing materials in the study area, it was observed that 

the roofing materials have different conditions. 

Table 2 shows the mean albedo of various types of roofing 

materials. Mean albedo of new concrete and old concrete were 

equal to 0.38 and 0.26 respectively. In addition, mean albedo of 

new steel and old steel were found to be equal to 0.51 and 0.44 

respectively. Results revealed that new roofing materials could 

play an important role in mitigating urban warming. Therefore, 

replacing old materials with new materials and increasing mean 

albedo of roofing materials in the study area should highly 

prioritized.  

Type of roofing material Mean Albedo 

New Concrete 0.38 

Old Concrete 0.26 

New Steel 0.51 

Old Steel 0.44 

Table 2. Mean albedo of various types of roofing materials 

CONCLUSION 

Landsat OLI and airborne LiDAR were integrated to quantify 

mean surface albedo of individual roofs in a complex urban 

area. Landsat OLI was used to calculate the surface albedos 

while airborne LiDAR utilized to extract building footprints. 

Results indicated that the study area is covered by 35% of 

buildings varying in roofing material types and conditions. The 

calculated surface albedo of buildings ranged from 0.16 to 0.65 

in the study area. The mean albedo of buildings was observed to 

be equal to 0.30 while other classes were slightly less than 

buildings albedo. Results showed that the proposed method is a 

valuable tool for decision makers and urban planners.  
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Class 

Name 

Surface Area 

(m2) 
Mean Albedo 

Standard 

Deviation 

Vegetation 125,704 (23%) 0.25 0.068 

Road 101,029 (19%) 0.24 0.057 

Building 187,418(35%) 0.30 0.092 

Bare Land 124,090 (23%) 0.27 0.061 

Table 1. Mean albedo and standard deviations of various land 

covers found in the study area 
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