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ABSTRACT: 

Road furniture semantic labelling is vital for large scale mapping and autonomous driving systems. Much research has been 
investigated on road furniture interpretation in both 2D images and 3D point clouds. Precise interpretation of road furniture in 
mobile laser scanning data still remains unexplored. In this paper, a novel method is proposed to interpret road furniture based 
on their logical relations and functionalities. Our work represents the most detailed interpretation of road furniture in mobile 
laser scanning data. 93.3% of poles are correctly extracted and all of them are correctly recognised. 94.3% of street light heads 
are detected and 76.9% of them are correctly identified. Despite errors arising from the recognition of other components, our 
framework provides a promising solution to automatically map road furniture at a detailed level in urban environments. 

1. INTRODUCTION

Road furniture interpretation has received much attention 
in recent years, which is significant for both road safety 
and large scale mapping. Road furniture are entities such 
as traffic signs and traffic lights mounted on the road. The 
distribution of traffic lights and street lights has a 
compelling effect on the road safety. For instance, in 
Europe and USA, departments of transportation have 
established protocols to regulate road infrastructure 
inventory to reduce traffic accidents. Road furniture, as an 
essential part of the road environment, plays an important 
role in large scale mapping which can provide aided 
services in autonomous driving systems especially in bad 
weather conditions. Although there is a lot of attention 
paid to road furniture semantic labelling, they still 
interpret road furniture at an object level without further 
detailed information. Interpretation of road furniture in 2D 
images has been investigated. However, these 2D labelled 
road furniture components are not precise enough to 
generate 3D mapping of road furniture by dense matching. 
Current work on mapping road infrastructure relies on 
visual interpretation and manual labelling, which is 
tedious and time-consuming. Therefore, fully automatic 
road furniture interpretation is in urgent demand. 

Much research has been carried out on road furniture 
recognition in point clouds. However, there is little 
attention on interpreting road furniture at a functional 
component level, namely semantically labelling of road 
furniture based on their functionalities. In this paper, we 
propose a method to semantically label road furniture 
based on their topological relations and features. One 
example of interpretation of road furniture by using our 
algorithm is as indicated as Fig. 1. The proposed method 
provides promising results for roadside furniture 
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inventory and large scale mapping. It can be potentially 
used for road furniture modelling. 

This paper is organised as follows. The related work is 
reported in Section 2. Section 3 describes the 
methodology in detail, which involves features notation, 
formulation and semantics labelling. The experimental 
result and analysis are given in Section 4. The conclusions 
are drawn and future work is pictured in Section 5. 

a. The original point cloud of a road furniture

b. The interpreted road furniture (Orange: Street signs,
Yellow: Street lights, Cyan: Traffic lights, Green: vertical
poles, Blue: Horizontal poles)

Figure 1. Road furniture interpretation 
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2. RELATED WORK

Model-driven methods represent an early attempt to 
recognize objects alongside roads from Mobile Laser 
Scanning (MLS) data. Several techniques used for 
recognition of structures in point clouds have been 
reviewed by Vosselman et al. (2004), which involves 
smooth surfaces, planar surfaces and parameterized 
shapes. These segmentation techniques have been widely 
used to model industrial installations, city landscapes, 
digital elevation models and trees. Brenner et al. (2009) 
use a local scatter matrix and a 3D cylinder stack to detect 
pole-like objects from MLS data. The basic principle of 
pole-detection is to analyse the distribution of points in 
both inner and outer region of cylinder. A voxel-based 
algorithm is proposed by Cabo et al. (2014) to detect pole-
like street furniture objects from MLS data by using the 
similar cylinder model mask. Lehtomäki et al. (2010) 
develop a framework to detect vertical-pole objects by 
using scan line segmentation method. A classification 
workflow proposed by Bremer et al. (2013) uses two 
radius neighbourhoods to extract linear, planar and 
volumetric features. Rules are defined to classify objects 
into three categories. A percentile-based method is 
proposed by Pu et al. (2011) to identify pole-like 
structures from MLS data for road inventory studies. Li 
and Oude Elberink (2013) optimize the method of Pu et 
al. (2011) by additionally using the reflectance 
information. Because of reflectance information, street 
sign detection rate is largely improved. However, for both 
methods, connected road furniture, like Fig. 1, cannot be 
detected and recognised in this method. Another 
framework is proposed by El-Halawany et al. (2013) to 
identify road poles from mobile terrestrial laser scanning 
data. 2D point density is the main feature used in this 
method. Oude Elberink and Kemboi (2014) detect objects 
by using the slicing features in mobile laser scanning data. 
Nurunnabi et al. (2016) present a robust diagnostic PCA 
approach to segment laser scanning data into different 
parts based on local normal and curvature. In order to 
avoid over or under segmentation, Yang et al. (2015) 
introduce a super-voxel based method to classify urban 
objects from MLS data. Similar to Pu et al. (2011), shape 
information is employed by Riveiro et al. (2016) to 
recognize traffic signs. However, there are poles 
connected to many components, which makes it difficult 
for the method to conduct the detection. 

Machine learning based methods have been widely 
studied by many scholars in recent years. Golovinskiy et 
al. (2009) propose a shape-based approach to recognize 
3D point clouds in urban environments by using min-cut 
algorithm. Yu et al. (2015) present a method to extract 
street light poles from MLS point-clouds using 
normalized cut algorithm. Munoz et al. (2009) adopt Max-
Margin Markov Networks (M3N) to classify urban scene 
into five categories. Ross et al. (2011) utilize message-
passing algorithms to learn and predict the labels of point 
clouds. Based on their work, Xiong et al. (2011) propose 
a sequenced predictor to do 3-D scene analysis. However, 
the precision of pole and tree trunk recognition using M3N 
is low compared with the identification of other 
categorises. Velizhev et al. (2012) present an implicit 
shape models (ISM) based method to automatically 
localize and recognize cars and light poles. The spin image 
(SI) descriptor is employed as the feature representation 
for recognition. Yokoyama et al. (2013) propose a method 

to detect and classify pole-like road furniture from MLS 
data. Both shape features of pole-like objects and their 
surrounding pole-like objects distributions are used in this 
method. (Yang et al., 2013; Huang and You, 2015; Soilán 
et al., 2016; Lehtomäki et al., 2016) employ SVM in 
combination with defined features to classify point clouds 
of urban scene by using SVM. Random forest is adopted 
with manually drafted features to identify objects from 
MLS data by (Fukano et al., 2015; Hackel et al., 2016). 
Weinmann et al. (2015) propose an optimal-feature-based 
method to classify urban environment objects into 
different categories by using random forest. Tombari et al. 
(2014) combine local descriptors and global descriptors to 
automatically recognize pole-like road infrastructures. 
Supported vector machine (SVM) and Markov random 
fields (MRF) are adopted at a local level and global level 
respectively. Song and Xiao (2014) train features 
generated from rendered views and make predictions to 
detect 3D objects by using SVM. 

Deep learning as an emerging technique has been applied 
to object recognition in point clouds. A 3D ShapeNets is 
developed by Wu et al. (2015) by using Convolutional 
Deep Belief Network to differentiate objects in point 
clouds. Compared with other methods, handcrafted 
features are not needed. A Bag of Words (BoW) and Deep 
Boltzmann Machine (DBM) method is applied to detect 
and recognize traffic signs in mobile laser scanning (MLS) 
data by Yu et al. (2016). However, this method cannot 
undertake the semantic labelling of complex connected 
street furniture. A 3D convolutional neural network 
(ConvNets) is introduced to detect objects in RGB-D 
images by Song and Xiao (2016). 3D Region Proposal 
Network (RPN) and Object Recognition Network (ORN) 
are firstly proposed in their work to learn objectness from 
geometric shapes and extract geometric features in 3D and 
colour features in 2D. 

Much effort has been put on road furniture recognition in 
point clouds. Compared with these research, the 
interpretation of road furniture in this paper is more 
detailed. In our research, we focus on the interpretation of 
pole-like street furniture, which consists of street lights, 
traffic lights and three types of traffic related signs. 

3. METHODOLOGY

In this research, a method is proposed to assign 
meaningful labels to decomposed road furniture. 
Decomposed road furniture is obtained by extracting poles 
and separating components attached to poles, which is 
explained in our previous work in detail. The 
methodology is described in three sections. In the first 
section (Section 3.1), we introduce features for 
distinguishing different types of road furniture 
components. Section 3.2 describes the formulation of 
generic rules for the recognition of road furniture 
components. The process of road furniture semantic 
labelling is explained in the last section (Section 3.3).  

3.1. Features notation

We firstly obtain the input data from the result of 
decomposition which is explained in our previous work 
(Li et al., 2016). In this method, seven discriminant 
features are utilized to differentiate components attached 
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to poles. The explanation of employed features are 
depicted as follows. 
 
Relative position. The relative position between poles 
and their corresponding attachments is summarised as 
bottom, middle and top. It describes the topological 
relations between poles and their attachments. We clarify 
that attachments are the components which are connected 
with poles. The calculation of this features is based on the 
percentage of attachment which is above the highest point 
of attached poles or underneath the lowest point of 
attached poles. If the percentile of attachment which is 
above the highest position of pole is higher than a 
predefined threshold, the attachment will be defined to be 
at the top of this pole. If the lowest position of this 
attachment is close to or lower than the lowest position of 
this pole, this attachment will be defined to be at the 
bottom of this pole. The relative position is set to be 
middle otherwise. The feature is designed to exclude 
attachments at the bottom of the pole such as ground 
points. 
 
Relative height. This feature is the relative height 
between attachments and their attached poles. The relative 
height is the lowest height of an attachment subtract the 
lowest height of its attached pole. This feature is reliable 
because the lowest height of an attachment can reflect the 
usage of this attachment. It is the main constraint for street 
light head connected to a vertical pole. 
 
Geometric structure. This feature indicates the 
geometric dimensionality of attachments, which are 
linear, planar and scattered. We use the definition of 
geometric features described by Vosselman et al. (2013). 
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is the geometric structure of an attachment. 
 
This feature is used to describe the geometric shape of 
attachments. It is helpful to recognize planar components 
such as traffic signs. 
 
Relative angle. It is the angle between the normal of 
attachments and the principal direction of their 
corresponding connected poles. As depicted in Fig. 2, V1 
is the main direction of the pole and V2 is the direction of 
the normal of the attachment. This is mainly used for 
distinguishing attached signs from other components. 
 
Ratio of high reflectance. This simple feature is obtained 
by calculating ratio of high reflective points of every 
component. If the reflectance of an individual point is 
higher than a threshold, this point will be set as a point 

with high reflectivity. Then the ratio of high reflective 
points in one component can be computed. For the reason 
that traffic functional signs have high reflectance, the 
feature is adopted to distinguish traffic functional signs 
and other signs. 
 

 
Figure 2. The relative angle between the principal 
direction of a pole and the normal of an attachment 
 
Size. This feature is designed for planar attachments. Size 
is the area of an attachment’s concave shape after it being 
projected to its normal direction. This feature is used to 
distinguish different types of traffic functional signs. 
  
Ratio of height to length. The ratio of height to length 
gives the proportion between the height of attachments 
and the largest variation in the horizontal plane. This 
feature is utilized to differentiate street signs and other 
signs. 
 
3.2. Formulation of rules and features 

In this paper, we categorise street furniture attached 
components into 5 classes, street lights, traffic signs, street 
signs (direction signs), traffic information signs and traffic 
lights. Instances of these components are as indicated in 
Table 1. 
 

Table 1. Examples of attached components 
 

Street light Traffic sign 
Street sign (direction 

sign) 

 
Traffic 

information sign
Traffic light  

 

 

 
In order to recognize components of road furniture, we 
character them by generic rules based on traffic 
regulations. Then, based on generic rules of assembling 
road furniture, we distinguish the topological relations 
between poles and their attached components. In this 
paper, the connectivity between a pole and an attachment 
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is decided by their minimum distance. If it is smaller than 
a threshold, it is considered to be connected. 
 
The following rules are defined to assign a semantic label 
to each component of road furniture. We first start with 
rules for components connected to a vertical pole. 
 
Street lights connected to a vertical pole (R1): If there 
is a component connected to a vertical pole, its relative 
height is larger than a threshold Hsl and it is on the top of 
this pole, this component will be street light. Hsl is the 
threshold of discriminant feature to recognize street light 
head. 
 
Traffic signs connected to a vertical pole (R2): If there 
is a component connected to a vertical pole, it is not at the 
bottom of this pole, its relative angle is perpendicular, it is 
linear or planar, its area is smaller than Ats, its ratio (height 
to length) is close to 1 and its ratio of high reflectance 
points is larger than Rts, this component will be a traffic 
sign. Ats is important for differentiating traffic signs from 
other traffic functional signs. 
 
Street signs / direction signs connected to a vertical 
pole (R3): Conditions are the same as traffic signs except 
that the area is smaller than Ass and size ratio is smaller 
than Rss. Then this component should be a street sign or 
direction sign. The ratio of size is significant for 
distinguishing street signs from other traffic functional 
signs. 
 
Traffic information signs connected to a vertical pole 
(R4): Traffic information signs are usually large. 
Conditions are the same as street signs except that the area 
is larger than max (Ats, Ass) and there is no constraint of 
size ratio. Then this component should be a traffic 
information sign. 
 
Traffic lights connected to a vertical pole (R5): If there 
is a component connected to a vertical pole, it is not planar 
and its relative height is smaller than Hsl, this component 
should be a traffic light. 
 
Then these are rules for components connected to a 
horizontal pole. 
 
Street signs / direction signs connected to a horizontal 
pole (R6): If there is a component connected to a 
horizontal pole, its relative angle is perpendicular, it is 
linear or planar, its area is smaller than Ats, its ratio (height 
to length) is smaller than Rss and its ratio of high 
reflectance points is larger than Rts, this component will be 
a traffic sign. 
 
Traffic information signs connected to a horizontal 
pole (R7): Conditions are the same as street signs except 
that the area is larger than max (Ats, Ass) and there is no 
constraint of size ratio. Then this component should be a 
traffic information sign. 
 
Traffic lights connected to a horizontal pole (R8): If 
there is a component connected to a horizontal pole, it is 
not planar, this component should be a traffic light. 
 

3.3. Semantics labelling 

Based on these rules, labels are assigned to the 
attachments. Poles are first detected by our previous work. 
Specifically, based on their principal direction, poles are 
recognised to be vertical and horizontal. Then the 
connectivity between attached components and poles is 
analysed. Based the connectivity relations, attachments 
are found for every pole. Features mentioned above are 
produced for every attachment afterwards. Then these 
attachments are given labels by fitting predefined rules 
with these generated features. Before giving labels to the 
attachments, the parameters are optimized by selecting the 
best combination of parameters in the training area. An 
example of complex road furniture interpretation is as 
shown in Fig. 1. 
 

4. EXPERIMENTAL RESULT 

The experimental test is carried out in two datasets, which 
are described in Section 4.1. The result and analysis are 
explained in the following Section 4.2 and Section 4.3. 
 
4.1. Test sites 

In order to evaluate the performance of this innovative 
method, we chose two test areas. Dataset A is collected in 
a medium size city located in Europe. Data acquisition 
system is Optech LYNX which comprises two laser 
scanner mounted at the back of a moving vehicle. Dataset 
B is Paris benchmark dataset, collected by Stereopolis II 
system (IGN, 2013). There are many different types of 
road furniture in these two research areas. Dataset A 
covers about 1.25km of street scene, and Dataset B covers 
approximate 0.43km of road scene. The point density of 
dataset A is high and even. The distance between 
neighbouring points is 0.02m in X direction and 0.03m in 
Y direction. In contrast, the point density in dataset B is 
low and uneven. The point density along the scanline 
direction is much higher than the point density 
perpendicular to the scanline direction. 
 
4.2. Results 

Due to the different configurations of data collection, the 
reflectance threshold for these two datasets is also 
different. Another problem is that the lowest street light of 
these two datasets is different. In order to get the optimal 
set of parameters, several types of road furniture are 
selected for training. Then the most favourable 
combination of parameters is obtained automatically 
based on the highest F1 score of recognition in training 
dataset. F1 score is used for evaluation in the training 
process because it can balance the precision rate and recall 
rate. The training process aims at tuning the sensitive 
parameters which react to our defined rules. These 
parameters are the relative height of attachment and 
reflectance value of attachment. In dataset A, the height 
threshold and reflectance threshold is set to be 2.4m and 
65. In dataset B, the height threshold and reflectance 
threshold are set to be 3.4m and -4. The reflectance value 
of some points in Paris dataset is negative because it is 
corrected by distance attenuation. 
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Figure 2. Road furniture interpretation of dataset A 

 

 
Figure 3. Road furniture interpretation in dataset B 

 
The result of road furniture interpretation in dataset A is 
shown in Fig. 2. The interpretation of road furniture in 
dataset B is as illustrated in Fig. 3. White components 
represents unrecognised components or uninteresting 
components such as ground points and non-traffic 
functional attachments. 
 
From the result, we can see road furniture are interpreted 
correctly. Individual examples of correctly interpreted 
road furniture in Dataset A are as indicated in Fig. 4. Poles 
(green points), street lights (yellow), traffic signs (orange), 
street signs (cyan) and traffic lights (blue) are correctly 
recognised. These road furniture are interpreted correctly 
in a detailed level based on their functionalities. Fig. 5 
shows some correct results of road furniture interpretation 
in Dataset B. 
 
 

         
Figure 4. Correctly interpreted road furniture in Dataset A 
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Figure 5. Correct interpretation of road furniture in 
Dataset B 

 
4.3. Analysis 

In the assessment, a confusion matrix is used to evaluate 
the performance of our proposed framework (Table 2 and 
Table 3). The recognition of six types of road furniture is 
evaluated. In these tables, P stands for poles, S1 represents 
street lights, S2 stands for street signs, T1 symbolises 
traffic signs, T2 stands for traffic information sign and T3 
represents traffic lights. M is for the road furniture 
components that are not given any labels. T is the total 
number of visually interpreted components. R is the 
recognition rate of this algorithm. Other are other 
components which are misrecognised as road furniture 
components. Total is the number of road furniture 
components which are recognised by the algorithm. FP is 
the false positive rate. 
 
Table 2. The evaluation of road furniture interpretation in 
Dataset A 
 

 
Visual interpretation FP (%)

P S1 S2 T1 T2 T3 Other Total
P 111 0 0 0 0 0 0 111 0 
S1 1 50 0 3 5 1 5 65 23.1 
S2 0 0 7 5 0 0 0 12 41.7 
T1 0 1 5 27 1 1 1 36 25.0 
T2 0 0 1 0 3 0 0 4 25.0 
T3 0 0 0 4 0 16 1 21 23.8 
M 7 2 4 14 2 13    
T 119 53 17 53 11 31    
R (%) 93.3 94.3 41.2 50.9 27.3 51.6    
 
Table 3. The evaluation of Paris road furniture 
interpretation in Dataset B 
 
 Visual interpretation FP (%)

P S1 S2 T1 T2 T3 Other Total
P 33 0 0 0 0 0 0 33 0 
S1 0 7 0 0 0 4 0 11 36.4 
S2 0 0 1 2 0 0 0 3 66.7 
T1 0 0 0 7 2 3 0 12 41.7 
T2 0 0 0 0 0 0 0 0 0 
T3 0 0 0 0 0 9 0 9 0 
M 9 0 3 4 0 28    
T 42 9 4 13 2 44    
R (%) 78.6 77.8 25.0 53.8 0 20.4    
 
In dataset A, 93.3% of poles are extracted by using 
decomposition which can be found in our previous work. 
All the detected poles are true positives. One horizontal 
pole is recognised as street light because this horizontal 

pole is not extracted as a pole at the decomposition stage. 
In addition, its relative height and relative position is 
similar to street lights, which gives rise to misrecognition. 
94.3% of street light heads are detected and 50 out of 65 
detected street light heads are correct. 50.9% of traffic 
signs are recognised, 27 out of 36 detected traffic signs are 
correct. Many of them are missed because their geometric 
structure and reflectance attributes are not calculated 
reliably. Through training, the threshold of reflectance is 
set to be 65. However, in view of that traffic signs can only 
be scanned one side when their normal is perpendicular to 
the driving direction, a few traffic signs do not have high 
reflectance. Another reason is their geometric structure is 
scattered result from small sized traffic signs being more 
effected by noisy points. As shown in Fig. 6, the point 
cloud of the traffic sign (in red circle) is scattered because 
of noisy points, which incurs it being misrecognised as 
street light.  41.2% of street signs are extracted and 7 out 
of detected 12 are correct. 27.3% of traffic information 
signs are recognised and 3 of detected 4 are correct. The 
recognition rate of traffic light is 51.6%. 16 out of 21 
detected traffic lights are correct. The recognition rate of 
street sign and traffic information sign is lower than 50.0% 
and the identification rate of traffic sign is 50.9%. One 
reason is that there are few instances of street signs and 
traffic information signs. An error in a small dataset has a 
larger influence on the percentage of recognition. Another 
reason is that the computation of geometric structure, size 
and reflectance of street signs and traffic signs is not 
correct in view of that the point cloud collection of these 
small sized sign components is incomplete. The 
recognition rate of traffic lights is not high because there 
are many traffic lights scanned incompletely, which leads 
to their incorrect structure features. Most of them are 
categorized as signs because of their high planarity. Later 
on more effort will be investigated to distinguish them. 
 

         
Figure 6. The point cloud of traffic sign (the left) and street 
view (the right) 
 
In dataset B, 78.6% of vertical poles are correctly 
extracted by our previous work. 77.8% of street light 
heads are detected and 7 out of detected 11 are correct. 
53.8% of traffic signs are identified and 7 out of detected 
12 are correct. Due to the limited number (only 2) of 
traffic information signs, we don’t evaluate their 
recognition rate. The recognition rate of street sign is low 
because of the noisy points. Only 20.4% of traffic lights 
are recognised because of their incomplete scanned data 
(Fig. 7). The first two left images are lateral view. The 
third one is the street view image of this road furniture. 
From the left image, we can see these traffic lights have 
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high planarity. Using geometric structure is not sufficient 
to recognize traffic lights in Dataset B. 

Figure 7. One road furniture which contains an 
unrecognised traffic light (white points) in Dataset B 

From the result, we conclude that poles can be extracted 
well. Street lights can be recognised reliably if the point 
cloud is dense and of good quality. Some street signs are 
labelled as traffic lights because these street signs are still 
connected with each other and not separated. The reason 
is the data is too noisy. As illustrated in the second image 
of Fig. 8, component 1 (yellow area) and component 2 (red 
zone) should be separated. Due to the noisy data, 
component 1 and component 2 are not separated by 
decomposition algorithm (the first image of Fig. 8), which 
results in the misrecognition. 

Figure 8. One example of incorrectly recognized road 
furniture 

5. CONCLUSIONS AND FUTURE WORK

To conclude, this paper provides a method to interpret 
road furniture at a detailed level. In dataset A, 93.3% of 
poles are correctly extracted and all of them are correctly 
recognised. 94.3% of street light heads are detected and 
76.9% of them are correctly identified. Street light heads 
are extracted well. In contrast, other types of components 
are not well identified because incomplete scanned data 
affecting the computation of features. Another reason is 
the quality of data affects the recognition. For example, 
part of components in dataset B can even not be 
interpreted by visual inspection. In addition, these 
interpreted components are very similar, which makes it 
even more challenging. 

Although there are errors, the result still provides a 
promising solution to assist large scale street furniture 
mapping. Future work will be investigated on using the 
combination of relations between components and 

relations between individual road furniture to generate 3D 
road furniture models. 
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